Facile Synthesis of Various 1-Azabicyclo[n.4.0]alkanes *via* Beckmann Rearrangement/Allylsilane Cyclization

Kyung-Tae Kang,* Tae Myung Sung, Hyun Chul Jung, and Jong Gun Lee

Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea *E-mail: kytkang@pusan.ac.kr Received June 13, 2008

Key Words : Allylsilane, Beckmann rearrangement, 3-Stannyl-2-(silylmethyl)propene, N-Heterocycle

The carbon-carbon bond formation by the reaction of allylsilanes with electrophiles has been widely used in organic synthesis.¹ Particulary, intramolecular cyclization of allysilanes bearing an electrophilic terminus has an extensive application for the highly regio- and stereo-selective synthesis of various ring compounds.

The bismetallic reagent 3-stannyl-2-(silylmethyl)propene 1^2 should be a versatile conjunctive reagent since the allylstannane and the allylsilane moieties of 1 could be manipulated sequentially and in a controlled manner.³ Indeed, the allylstannane moiety of 1 selectively react with an aldehyde to yield hydroxy allylsilane 2.⁴ The reactions of 2 with either vinyl ethers or α -halo ethers give acetals which are subsequently cyclized to afford 2,6-*cis*-disubstituted-4-methylenetetrahydropyrans 3.⁵

Enantioselective synthesis of the tetrahydropyrans **3** was achieved by using the hydroxy allylsilanses **2** generated from the catalytic asymmetric allylation of **1** with aldehydes.⁶ This annulation reaction enabled an efficient synthesis of the biologically active tetrahydropyran natural products.⁷ Various 2,6-disubstituted 4-methylenepiperidines were also prepared in one-pot by the sequential reactions of aldimines with bismetallic reagent **1** followed by aldehydes.⁸

We described herein the synthesis of 1-azabicyclo[n.4.0]alkanes using bismetallic reagent **1**. Reaction of α -tetralone oxime mesylate **6a** with 2 equivalents of trimethylaluminum resulted in the formation of cyclic ketimine **8a**. Methylation of intermediate iminocarbocation **7a**, which was generated from the organoaluminum-promoted Beckmann rearrangement⁹ of oxime mesylate **6a**, with trimethylaluminum afforded cyclic imine **8a**. Allylation of cyclic ketimine **8a** with allyllithium **9** gave cyclic amino allylsilane **10a** in good yield.¹⁰ 2-(Trimethylsilylmethyl)allyllithium **9** was generated by treating bismetallic reagent **1** with methyllithium.

This easy and one-pot reaction has a wide generality. Other synthetic examples of this type are given in Table 1. It permits the introduction of an allylsilane moiety into a substrate with a simultaneous ring expansion.

In the synthesis of ketimines **10a** and **10b**, rigorous regioselectivities were observed. The phenyl group anti to departing mesylate group migrated preferentially.⁹ For some reasons, this process did not work for all the oxime mesylated tested. For example, reaction of 1-indanone oxime mesylate **6i** with trimethylaluminum and followed allyl-lithium **9** under standard reaction condition gave only diallylation product **11** in low yield.¹¹ Even with larger excess of trimethylaluminum (4 equiv) and after prolonged reaction time, the expected monoallylation product **10i** was not produced. It is not clear why such anormalous behavior was observed for 1-indanone oxime mesylate only.

Mannich cyclization of iminium-vinyl and allylsilanes is to provide an attractive method for the regio-controlled production of piperidines possessing either endo- or exo-

1670 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 9

cyclic unsaturation.¹² Cyclic amino allylsilanes **10** as their trifluoroacetate salts were treated at 40-45 °C with 1.2 equiv. of formaldehyde in water:tetrahydrofuran (3:1) to give azabicyclic compounds **13**.¹³

Table 1. Synthesis of cyclic amino allylsilanes 10 and 1-azabicyclo[n.4.0]alkanes 13

Entry	Oxime mesylate 6	Amino allysilane 10 /Yield (%)		Azabicycle 13/Yield (%)	
1	N ^{OMs} 6 6a	SiMe ₃	72	N I3a	87
2	N ^{OMs} T 6b	H H 8 10b	78	13b	72
3	N ^{-OMs}	H SiMe ₃ 10c	57	N 13c	54
4	6d	H N 10d	61	N 13d	85
5	N ^{OMs} 7 6e	NH 8 10e	49	N 13e	66
6	N ^{OMs} 8 6f	SiMe ₃	57	13f	86
7	6g	SiMe ₃	42		64

Communications to the Editor

As shown be seen in Table 1, 1-azabicyclo[n.4.0]alkanes of various ring size (n = 4, 5, 6, 7 and 11) were obtained in good yields.

The present reaction sequence, organoaluminum-promoted Beckmann rearrangement of oxime mesylate, allylation reaction with 2-(trimethylsilylmethyl)allyllithium, and Mannich reaction, provides a versatile and useful synthetic method for 1-azabicylo[n.4.0]alkanes.

Acknowledgments. This work was supported for two years by Pusan National University Research Grant.

References and Notes

- (a) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57.
 (b) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375. (c) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173.
- (a) Kang, K.-T.; U, J. S.; Park, D. K.; Kim, J. G; Kim, W. J. Bull. Korean Chem. Soc. 1995, 16, 464. (b) Benoit, D.; Bemand, L. Synlett 2006, 2148.
- (a) Clive, D. L. J.; Paul, C. C.; Wang, Z. J. Org. Chem. 1997, 62, 7028. (b) Kang, K.-T.; Hwang, S. S.; Kwak, W. Y.; Yoon, U. C. Bull. Korean Chem. Soc. 1999, 20, 801.
- (a) Majetich, G.; Mishidie, H.; Zhang, Y. J. Chem. Soc. Perkin 1 1995, 453.
 (b) Kang, K.-T.; U, J. S.; Park, D. K.; Kim, J. G.; Kwon, Y. M. Synth. Commun. 1997, 27, 1173.
 (c) Takuwea, A.; Saito, H.; Nishigaichi, Y. Chem. Commun. 1999, 1963.
- Sung, T. M.; Kwak, W. Y.; Kang, K.-T. Bull. Korean Chem. Soc. 1998, 19, 862.
- (a) Yu, C.-M.; Lee, J.-Y.; So, B.; Hong, J. Angew. Chem. Int. Ed. 2002, 41, 161. (b) Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. 2002, 4, 1189.
- (a) Keck, G. E.; Truong, A. P. Org. Lett. 2005, 7, 2153. (b) Sanchez, C. C.; Keck, G. E. Org. Lett. 2005, 7, 3053.
- Kang, K.-T.; Kim, E. H.; Kim, W. J.; Song, N. S.; Shin, J. K.; Cho, B. Y. Synlett 1988, 921.
- 9. (a) Maruoka, K.; Miyazaki, T.; Audo, M.; Matsumara, Y.; Sakane, S.; Hattori, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1983**, *105*, 2831.
 (b) Schinzer, D.; Bo, Y. *Angew. Chem. Int. Ed. Engl.* **1991**, *30*, 687. (c) Schinzer, D.; Langkopt, E. *Synlett* **1994**, 375.
- 10. **10a**: ¹H NMR δ 0.04 (9H, s), 1.06 (3H, s), 1.62-1.72 (4H, m), 1.63 (1H, d, J = 13.2 Hz), 1.74 (1H, d, J = 13.2 Hz), 2.08 (1H, d, J = 13.0 Hz), 2.23 (1H, d, 13.0 Hz), 2.74 (2H, t, J = 4.8 Hz), 3.74 (1H, brs), 4.74 (1H, s), 4.81 (1H, s), 6.67-6.98 (4H, m); ¹³C NMR δ 1.5, 22.5, 25.5, 29.5, 35.5, 42.7, 50.6, 54.9, 111.9, 121.0, 121.2, 126.4, 129.9, 134.0, 144.3, 146.2; HRMS m/z 287.2080 (C₁₈H₂₉NSi requires 287.2071).
- 11. **11**: ¹H NMR δ 0.00 (18H, s), 1.61 (4H, d, J = 13.2 Hz), 1.71 (4H, d, J = 13.2 Hz), 1.83 (2H, t, J = 6.8 Hz), 2.10 (4H, d, J = 13.4 Hz), 2.26 (4H, d, J = 13.4 Hz), 2.78 (2H, t, J = 9.8 Hz), 3.90 (1H, brs), 4.59 (2H,s), 4.71 (2H, s), 6.46-7.06 (4H, m); ¹³C NMR δ –1.3, 23.7, 29.4, 30.4, 46.7, 54.0, 111.4, 114.7, 116.7, 120.4, 126.7, 129.2, 143.9, 144.0; HRMS m/z 385.2619 (C₂₃H₃₉NSi₂ requires 385.2623).
- 12. Grieco, P. A.; Fobare, W. F. Tetrahedron Lett. 1986, 27, 5067.
- 13. **13a.** ¹H NMR δ 0.97 (3H, s), 1.26-1.42 (2H, m), 1.52-1.72 (1H, m), 1.80-1.99 (2H, m), 2.28-2.45 (2H, m), 2.48-2.74 (2H, m), 2.92-3.50 (3H, m), 4.75 (1H, s), 4.88 (1H, s), 6.88-7.28 (4H, m); ¹³C NMR δ 19.2, 19.5, 30.3, 35.5, 37.7, 44.9, 46.8, 56.1, 109.6, 121.4, 122.5, 126.6, 128.2, 137.0, 145.6, 148.8; HRMS m/z 227.1681 (C₁₆H₂₁N requires 227.1675).