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A direct application of the WKB quantization to the three-dimensional Coulomb potential does not yield the
exact eigenenergies. The three-dimensional Coulomb potential is converted to a Morse potential by using the
point canonical transformation. Then the WKB quantization is applied to the Morse potential to find a
relationship between the eigenenergies of the Coulomb and those of the Morse potentials. From the relationship
the exact eigenenergis of the Coulomb potential are determined. The same method is found to be also valid for
the three-dimensional harmonic oscillator potential. And the Langer modified WKB quantization is
algebraically derived.
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Background

The Schrödinger equation for one-dimensional system is
(in units of 2m =  = 1)

.  (1)

Here we consider a potential V(r) that varies smoothly, i.e.,
there exist two classical turning points for all bound states.
The lowest order Wentzel-Kramers-Brillouin approximation
(or the WKB quantization condition) for the above system
is1,2

  n = 0, 1, 2, … (2)

where rL and rR are inner (short distance) and outer (long
distance) turning point, respectively, i.e., V(rL) = V(rR) = En.
The WKB quantization is a semiclassical method of obtain-
ing approximate eigenenergies in the limiting case of large
quantum numbers or high energy. But it is found to be exact
for the one-dimensional harmonic oscillator potential and
the one-dimensional Morse potential.2-4 For other potentials,
for example, the 3D-Coulomb potential or the 3D-harmonic
oscillator potential, the WKB quantization does not repro-
duce the exact eigenenergies.

Sukhatme et al. reported that all solvable potentials are
inter-related to each other by a certain transformation.5,6

They classify the solvable potentials by type-I and type-II.
The type-II category includes three potentials, i.e., the one-
dimensional Morse (V M(r)), the 3D-Coulomb (V C(r)) and
the 3D-harmonic oscillator (V H(r)) potentials. And the three
potentials can be transformed to each other by the so-called
point canonical transformation.

In this work we briefly introduce a new method of deter-
mining the exact eigenenergies of V C(r) from the point
canonical transformation and the WKB quantization. As
mentioned before, the exact eigenenergies of V M(r) can be

obtained from the WKB quantization but the eigenenergies
of V C(r) are not. First, we transform the Schrödinger
equation with V C(r) into another Schrödinger equation with
V M(r). And then we apply the WKB quantization to the
V M(r) to obtain a relationship between the eigenenergies of
V C(r) and those of V M(r). Since the exact eigenenergies of
V M(r) are known, the eigenenergies of V C(r) can be deter-
mined from the relationship. The above argument is also
valid for the 3D-harmonic oscillator potential V H(r).

We define the 3D-Coulomb and the 3D-harmonic oscil-
lator potentials as follows.4-6 For a given angular momentum
quantum number l, the 3D-Coulomb potential (q = charge
parameter) is

V (r) = V C(r) = ( )  (3)

and the eigenenergies  for n = 0, 1, 2, …

 (4)

Since V C(r) goes to zero as , the bound state
eigenenergies  are negative.

For a given l, the 3D-harmonic oscillator potential (ω =
frequency parameter) is

( ) (5)

and the eigenenergies  for n = 0, 1, 2, …

 (6)

For reference, the one-dimensional Morse potential (A, B,
α = parameters) is

  ( ).  (7)

The phase-space integral in the WKB quantization can be
analytically evaluated as4
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where . Since  goes to zero

as , the eigenenergies  are negative.

Canonical Transformation and WKB 
for 3D-Coulomb Potential

For the 3D-Coulomb potential, the Schrödinger equation
is

  ( ) (9)

with the boundary condition of  as  and
. Canonically transforming, i.e., changing the

variable r to  and the wave function  to
, one obtains

( ). (10)

The new function  satisfies the boundary condition of
 as  and . The transformation is

sometimes called the Langer transformation.7-9 Note that the
canonical transformation converts Eq. (9) on the half-line (0,
∞) to Eq. (10) on the full-line ( ).

Once  and  are given, Eq. (10) can be
considered as a Schrödinger equation for a Morse potential

 with , i.e.,

.  (11)

Eq. (11) looks awkward because the potential contains the n-
dependent  term. But, in fact, the potential is not a
function of n because the potential is defined for a fixed n,
i.e., Eq. (11) is defined for each n. Note that the eigenvalue

 is the same for all n. Therefore Eq. (11), as a whole, is a
Schrödinger equation with the eigenfuncion  and the
eigenenergy .10

One can evaluate  in Eq. (11) using the WKB
quantization in Eq. (2) that is exact for Morse potentials,

 (12)

where . (In Appendix we explicitly
show why the WKB quantization is exact for Morse
potentials but not exact for 3D-Coulomb potentials or for
3D-harmonic oscillator potentials.) Comparing the potential
in Eq. (12) with that in Eq. (7), one immediately finds that

, B = , and . From the
phase-space integral expression in Eq. (8) and the WKB
quantization in Eq. (12), one obtains

 for n = 0, 1, 2, … (13)

And the Morse eigenenergy  is

.  (14)

Eq. (14) shows the relationship between the eigenenergies of
the original 3D-Coulomb potential  and
those of the transformed Morse potential .
Since , Eq. (14) gives the eigenenergies of
the 3D-Coulomb potential  (n = 0,
1, 2, …) that is identical with that in Eq. (4). Indeed the new
method that utilizes the point canonical transformation and
the WKB quantization reproduces the exact eigenenergies of
the 3D-Coulomb potential.

To make the WKB quantization exact for the 3D-coulomb
potential, modified versions of WKB quantization have been
suggested. The earliest work was the Langer modification
where the centrifugal term  in Eq. (19) is
replaced by .7 Though various modifications or
improvements of the WKB quantization, since the Langer’s
work, have been studied, they all include the term

 (or some operator related to it) in their
modification.8,9,11

The Langer modification has its own physical origin, but
using our transformation technique we can justify the
existence of the modification algebraically. Inserting

 into the WKB quantization in Eq. (12),
one obtains

.  (15)

Changing the variable x back to r using the previous x =
−lnr, one obtains

.  (16)

Eq. (16) is none other than the Langer modified WKB
quantization that can exactly reproduce the eigenenergies of
the 3D-Coulomb potential. We would like to stress that our
transformation technique naturally introduces the Langer
modification without imposing any semiclassical approxi-
mation.

Example of 3D-Harmonic Oscillator Potential

The method proposed in the previous section can be
applied to any potential that can be transformed to a Morse
potential. In this section, taking the 3D-harmonic oscillator
potential as another example, we repeatedly show how the
method works.

For the 3D-harmonic oscillator potential, the Schrödinger
equation is
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( ). (17)

Changing the variable r to  and the wave function

 to , one obtains

.  (18)

Eq. (18) can be considered as a Schrödinger equation for a

Morse potential  with

eigenenergy . 

The WKB quantization for Eq. (18) is

.  (19)

Comparing the Morse potential in Eq. (19) with that in Eq.
(7), one finds that α = 1, B = ω/4, and A = /2ω − 1/2.
From Eq. (8) and Eq. (19), one obtains

  for n = 0, 1, 2, … (20)

Then the Morse eigenenergy  is

.  (21)

Since , the eigenenergies of the
3D-harmonic oscillator potential is 
(n = 0, 1, 2, … ) that is identical with the exact eigenenergies
in Eq. (6). Again we are able to derive the exact eigen-
energies of the 3D-harmonic oscillator potential using the
point canonical transformation and the WKB quantization. 

Following the same way for the 3D-Coulomb potential,
the Langer modified WKB quantization is derived as

.  (22)

The Langer modification for the 3D-harmonic oscillator
potential turns out to be the same as that for the 3D-
Coulomb potential. Actually it is the same for all solvable
spherically symmetric potentials.9,12

Conclusion

The point canonical transformation has been introduced to
explain the inter-relation among the exactly solvable
potentials.5,6 This transformation has been utilized to explain
the supersymmetry6,13 of certain potentials.10 In this work we
have found another interesting usage of the transformation.

Using the point canonical transformation, the Schrödinger
equation for the 3D-Coulomb potential is converted to
another Schrödinger equation with a Morse potential. Then

an application of the WKB quantization to the Morse
potential yields a relationship between the eigenenergies of
the Coulomb and those of the Morse potentials. From the
relationship the exact eigenenergies of the Coulomb potential
are derived. The Langer modified WKB quantization is also
algebraically derived. The proposed method is valid for any
potential that can be transformed to a Morse potential. As
another example, the exact eigenenergies of the 3D-
harmonic oscillator potential are determined by using the
same method.

Other solvable potentials belonging to the type-I category
(e.g., the Eckart potential, the Scarf potential, and the Rosen-
Morse potential, etc.) are related to the type-II potentials
(e.g., the Morse potential, etc.) through redefinition of
parameters and the so-called limiting procedure.5 Therefore
the type-I potentials are easily transformed to a Morse
potential and, consequently, our method can be again used to
determine the exact eigenenergies of the type-I potentials.
As a matter of fact, all the type-I and type-II potentials have
a common feature of Natanzon potentials that are exactly
solvable.

One cannot say that the WKB quantization is exact for all
solvable potentials. However it is not appropriate for one to
assert that the WKB quantization is useless when one desires
exact eigenenergies of solvable potentials other than the
Morse potential (or one-dimensional harmonic oscillator
potential.) As shown in this work, the WKB quantization
may be useful even in low energy regime where semi-
classical approximation is not valid.

Appendix

Another way of modifying the WKB quantization is to introduce
the nonintegral Maslov index μ.2,14 In this scheme the exact
quantization condition is written as

.  (A1)

When the Maslov index μ = 2, Eq. (A1) is, of course, reduced to the
WKB quantization. There is no general way of evaluating the Maslov
index for an arbitrary potential. However it can be evaluated for
exactly solvable potentials. The direct method of evaluating the
Maslov index is to adopt an exact quantization, for example, the
analytical transfer matrix method (ATMM).

The ATMM quantization condition can be summarized as15
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former work.16 Consequently the Maslov index μ is 2. It proves that
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the WKB quantization should be valid for the Morse potential.
In our previous paper17 in this Journal we have presented

 for the 3D-Coulomb potential in Eq. (3).
Therefore the Maslov index μ is . Using the same
method suggested in the previous paper we algebraically evaluate the
phase shift and the Maslov index for the 3D-harmonic oscillator
potential Eq. (5) for the first time. And the result is that

 and . (In
Ref. 14, based on qualitative arguments, the same Maslov index has
been deduced.) It shows that the WKB quantization is not valid for the
3D-Coulomb potential nor for the 3D-harmonic oscillator potential
since μ is not 2. However, this work extends the validity of the WKB
quantization to the 3D-Coulomb and 3D-harmonic oscillator
potentials through the point canonical transformation.
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