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In this paper a new theory is presented to treat the problem of stimulated absorption and emission of photons

between energy levels from the standpoint of discrete quantum jumps. In order to implement the theory a

scheme to avoid the quantum Zeno effect is proposed. Numerical simulations are performed to demonstrate

that this approach does not contradict the principles of the standard wave mechanics. It is shown that with this

approach one can obtain photon observation statistics as well.
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Introduction

The canonical interpretation of quantum mechanics provides

us with an expectation value of an observable, which is

equal to an ensemble average over similarly prepared

systems.1 However, advances in experimental techniques

have allowed the close examination of a single atom or ion.2

The single atom experiments we are interested in are those

which dramatically reveal Bohr's quantum jumps between

energy levels3 that would have been smeared out by the

ensemble averaging. These features (also known as the

collapse of the wave function) may not be accounted for by

the Schrödinger equation that can only predict continuous

evolution of the wave function.

Beginning early 1990s several research groups developed

theories to treat quantum jumps using stochastic methods.4

These are best known as the Monte-Carlo Wave Function

(MCWF) theories, and recently they have been applied to

quantum computing5 and atom lithography.6 The original

motivation of the MCWF theories is concerned with the

dissipative process of spontaneous emission. Atoms spon-

taneously emit photons at random directions and times, so

theses theories could naturally be based on stochastic

techniques. When the atom is subject to a coherent driving

field like laser, coherent processes of stimulated absorption/

emission as well as incoherent spontaneous emission are

present. In the MCWF method the atom evolves coherently

and continuously according to the time-dependent Schrödinger

equation until it spontaneously emits a photon and the atomic

state makes a discrete jump, which is treated stochastically.

Since quantum jumps may also occur in stimulated absorp-

tion and emission, however, the MCWF methods may not

consistently treat the processes.

The purpose of this paper is to provide a means to remedy

the defect of the MCWF theories. Since the problem of

spontaneous emission has already been addressed, we will

concentrate on the stimulated processes. In fact, there are

several methods, including cavity-QED experiments,7 for

suppressing spontaneous emission. Thus, considering only

the stimulated processes is not unrealistic and has merits on

its own. We will attempt to incorporate in the Schrödinger

equation the quantum jumps due to these processes.

Simulation Method

To capture the essential point of the matter we consider the

simplest case of shining a resonant single mode light to a

two-level atom.8 We first sketch how the problem is handled

traditionally. Let the lower and upper states of the atom be

denoted as  and . The evolution of the atomic state is

governed by the Schrödinger equation 

, (1)

with the Hamiltonian 

, (2)

where ωA is the resonance frequency between the two

atomic energy levels, Ω is the Rabi frequency, σ+ = ,

σ− = , and σz =  − . The solution of Eq. (1)

is well known.9 If initially the atom is in the lower state,

ψ(0)> = , the interaction of the atom with the light puts

the atom in a coherent superposition state  = c1(t)

+ c2(t) . When it is substituted in Eq. (1) with the rotating-

wave approximation, we have the probabilities of finding the

atom in the respective states

,

 (3)

.

Note that the state of the atom evolves continuously

between the lower and the upper states, giving the celebrated

Rabi oscillation. It does not show when the atom absorbs or

emits a photon, however.

In order to simulate discrete quantum jumps we divide the

total observation time Tobs into small segments, each having

Δt. For each time segment we propagate the atom according

to the Schrödinger equation, and at the end of the segment
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we observe if a photon is absorbed or emitted. Such an

observation makes the wave function collapse. But what is

the collapse probability? We make the ansatz that ,

(j = 1, 2) in Eq. (3) is the probability for the wave function

collapse . We further assume that the collapse

occurs instantaneously.10 Since  = 1 −  at any

time t, we need to consider only the probability . Our

simulation takes place at discrete times , (n = 1, 2,

3, ...). For each tn we generate a random number rn and

compare it with . We take that  as the

condition for the collapse  to occur.

Otherwise, we have the collapse , instead.

Then we have four possible cases of quantum jump at t = tn
and photon absorption/emission during the interval

:

(1)  and  : , 

no absorption.

(2)  and  : , 

absorption. 

(3)  and  : , 

no emission. 

(4)  and  : ,  

emission.

These four regions are schematically shown in Figure 1.

However, it should not be construed that the wave function

exists only as either  or . As mentioned earlier, the

wave function is in coherent superposition states until a

measurement is made, and we plot the collapsed wave

function as a result of measurements at discrete times.

There is one caveat with the measurement intervals. Since

the wave function collapses each time a measurement is

made, the atom never has a chance to leave the lower state if

it is continuously observed (i.e. ). For finite Δt the

probability of having made a transition after Tobs is reduced.

This is known as the quantum Zeno effect11 and is experi-

mentally verifiable.12 Clearly, a scheme to avoid this effect is

necessary to correctly observe (and simulate) light absorp-

tion/emission. One such a scheme is shown in Figure 2,

where we make a series of measurements following the

atomic evolution, each time with increasing duration starting

from t = 0 to nΔt, (n = 1, 2, 3, ... N). It means that the atom

needs to be prepared afresh for each measurement. Such a

series of N measurements constitutes a quantum trajectory

for the atom.

Results and Discussion

In our simulation the Rabi frequency Ω = 5 × 104, the time

Pj t( )

ψ t( )| 〉 j| 〉→
P
1

t( ) P
2

t( )
P
2

t( )
tn = nΔt

P
2

t( ) P
2

tn( ) rn≥
ψ tn( )| 〉 2| 〉→

ψ tn( )| 〉 1| 〉→

(tn 1–
, tn]

P
2

tn 1–
( ) rn 1–

< P
2

tn( ) rn< ψ| 〉 1| 〉→

P
2

tn 1–
( ) rn 1–

< P
2

tn( ) rn≥ ψ| 〉 2| 〉→

P
2

tn 1–
( ) rn 1–

≥ P
2

tn( ) rn≥ ψ| 〉 2| 〉→

P
2

tn 1–
( ) rn 1–

≥ P
2

tn( ) rn< ψ| 〉 1| 〉→

1| 〉 2| 〉

Δt 0→

Figure 1. Four typical regions of measurement history. ψ
c
(t)

denotes the collapsed wave function. In region (1) the atom is
found to be in the lower state as in the previous measurement, so no
photon is absorbed. The atom makes a transition to the upper state
in region (2), and a photon is absorbed. The atom is still at the
upper state in region (3), so no photon is emitted. In region (4) the
atom returns to the lower state, emitting a photon. 

Figure 2. The proposed measurement scheme to avoid the
quantum Zeno effect. Successive measurements are made after
the atom evolves for integer multiples of Δt, each time starting
from t = 0. 

Figure 3. Simulated measurement histories with 1, 10, 100, and
105 atoms (from top to bottom). The one atom history shows
discrete quantum jumps, which are gradually smeared out and the
oscillatory structure becomes more evident as the number of atoms
increases. 
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increment Δt = 1.0 × 10−7 (both the Rabi frequency and time

are in arbitrary units such that frequency × time = 1), and the

number of time segments N = 500. Thus, the overall

observation time Tobs = NΔt = 5 × 10−5. Figure 3 shows the

simulated history of observations of photon absorption/

emission as a function of time. The number of atoms from

top to bottom in the simulation is 1, 10, 100, and 105. As the

number of atoms increases, the oscillatory structure of the

Rabi nutation becomes manifest. One more thing to note is

that the one-atom quantum trajectory shows that the photon

absorptions/emissions are concentrated in the region where

 despite the stochastic nature of the

simulation. In a sense, the processes may be regarded as

“bunched”.13 Then it would be interesting to calculate the

distribution of waiting times defined by the time intervals for

the atom to absorb or emit a photon. Figure 4 shows the

simulated waiting-time distribution with different Ω values

keeping other parameters the same. Although the details

vary, the distributions are sharply peaked about a few

multiples of Δt. We have found that for Ω values not too

high or too low there is approximately one absorption or

emission per 4Δt.

Conclusions

In conclusion, we have shown that the quantum jump

approach can be applied to the problem of stimulated

absorption/emission without contradicting the principles of

the standard wave mechanics. We have demonstrated this by

recovering the Rabi oscillation, and the approach even

allows us to obtain photon observation statistics, which is

not possible with the usual quantum theory. Finally, we have

proposed a scheme to avoid the perplexing quantum Zeno

effect. 
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Figure 4. The waiting-time distribution as the Rabi frequency is
varied. In all cases considered, the back-to-back absorption and
emission is the most pronounced. Except for two extreme cases
there is one absorption or emission per approximately 4Δt. 


