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We obtain probabilities at a crossing of two linearly time-dependent potentials that are constantly coupled to

the other by solving a time-dependent Schrödinger equation. We find that the system which was initially

localized at one state evolves to split into both states at the crossing. The probability splitting depends on the

coupling strength V0 such that the system stays at the initial state in its entirety when V0 = 0 while it is divided

equally in both states when V0 → . For a finite coupling the probability branching at the crossing is not even

and thus a complete probability transfer at t →  is not achieved in the linear potential crossing problem. The

Landau-Zener formula for transition probability at t →  is expressed in terms of the probabilities at the

crossing.
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Introduction

Nonadiabatic transitions, as being implied, take place

between adiabatic states when the adiabaticity of dynamics

does not hold due to rapid change of adiabatic parameters.

One typical example is the breakdown of Born-Oppen-

heimer approximation in molecules with fast nuclear

motions where the electronic transitions are induced. These

transitions often occur in regions of avoided crossings at

which the difference of energies between states are small

and/or the couplings between states are strong. Hence

nonadiabatic transitions must be taken into account in

reactions with high energies and for molecules under

electromagnetic fields where the level crossings are

introduced by the field.1 

Many types of potential curve crossings are used to

investigate nonadiabatic transitions theoretically in diabatic

representations. Curve crossings in a coordinate space have

been mainly considered to account for the transitions.

Crossing problems in time domain draw rising attention as

the interest for controlling molecular processes with lasers

become increased.2-8 Radiative transitions, for instance, are

treated as nonadiabatic transitions by regarding them as

curve crossings between the Floquet (dressed) states.9,10 The

simplest crossing system is probably the crossing of two

linear potential curves that are constantly coupled to each

other. This is the well known Landau-Zener problem.11

Zener solved it analytically and determined the transition

probability assuming the particle velocity to be constant12.

Studies on other crossing problems have followed the

pioneering work and such problems of non-curve crossings13

and the exponential potential crossings14,15 have been solved

quantum mechanically. Exact solutions for the linear curve

crossing, though not analytic in form, have also been obtain-

ed without constant velocity assumption.16,17 Meanwhile

solutions for general two state curve crossings have been

derived semiclassically using Wentzel-Kramers-Brilloin

(WKB) theory in association with Stokes phenomena.18-20

Owing to the continuing effort of many researchers, the

significance of nonadiabatic transitions is realized in various

processes of physics and chemistry.1 

The Landau-Zener formula12 is a high energy approxi-

mation of the potential crossing where two diabatic

potentials are linear in coordinates and their coupling is

constant.21 It represents the transition probabilities evaluated

at t → . However, the formula is the exact solution for the

crossing of linear potentials in time.1 It is interesting and

useful to determine the transition probabilities at the

crossing point (t = 0) of the Landau-Zener model since these

probabilities for one passage not only reproduce the

transition probabilities of the model at t →  but can be

used to evaluate the transition matrix for controlling the

system with linearly chirped fields.7 Furthermore they may

be used to calculate transition probabilities for the crossing

of potentials which are locally approximated to be linear. 

In this work, the transition probability at crossing is

analytically obtained for the time-dependent Landau-Zener

model. Final transition probability, namely the probability at

t →  (the Landau-Zener formula) is expressed in terms of

the probability at the crossing.

Time-Dependent Landau-Zener Problem

Consider following coupled time-dependent Schrödinger

equations;

(1a)

(1b)

where two diabatic potentials V1(t) and V2(t) are linear

functions of time and V0 is constant. It is assumed that the

slope of V1(t) is greater than the slope of V2(t) and that two

functions cross at t = 0. The model described by these

equations represents the Floquet Hamiltonian of the two-
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level system with energies E1 and E2 under the linearly

chirped constant intensity laser field of E(t) = εcos w(t)dt

where the frequency w(t) is linear in time and the pulse

envelope ε is constant.7 The conditions for solving above

equations are chosen so that initially the system is under

V1(t) and they are given as follows;

(2a)

  (2b)

Let us introduce U(t) and γ which are defined 

(3)

and

(4)

where γ is a positive constant since the slope of V1(t) is larger

than that of V2(t).

The second-order time derivative of c2(t) leads to the

following equation for U(t)

 (5)

and a transformation of variable t as below

(6)

reduces Eq. (5) to the Weber equation 

(7)

with Δ = . The parabolic cylinder function
22 is a particular solution of Eq. (7) depending

on the sign of Δ(− for Δ > 0 and + for Δ < 0). Since Δ is

assumed positive, the solution is chosen as

(8)

which vanishes as t → −  to satisfy Eq. (2b). This is

realized from that Dn(y) vanishes when  for

infinite y by 23 and from that

 =  is in the corresponding sector as t → − .

The constant A_ will be determined later. We obtain c2(t) by

placing U(t) in Eq. (3) and then find c1(t) in Eq. (1b). They

are given as follows;

(9a)

(9b)

Since  and  cross at t = 0, c1(0) and c2(0) are

calculated as follows;

(10a)

 (10b)

where . Values of 

and are explicitly known22 as below

(11a)

(11b)

where Γ(z) is the gamma function. Substitution of these

expressions in Eqs. (10a) and (10b) determines  and

 as 

(12a)

(12b) 

Since the sum of  and  is equal to 1 from

the initial condition (Eqs. (2a) and (2b)),  is to be 

 (13)

The probabilities at crossing are then obtained as follows;

(14a)

(14b)

where  and  represent probabilities for the

system to be in state 1 and in state 2 at t = 0 respectively. It

shows that the probability splits due to the potential crossing

although the system was entirely in the state 1 initially

. Unless the coupling is infinitely large

( ),  is not equal to . The complete

probability transfer at t →  is not achieved in the Landau-

Zener model since the probabilities at crossings can not be

made 1/2 by varying parameters. 

The probability P1( ) is equal to  and it is

calculated using Eq. (9a) and the asymptotic formula of

. First the following recurrence relation22 for

 is inserted in Eq. (9a);

 (15)

where . When Eq. (6) is

used, c1(t) is obtained as follows;
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 (16)

As t →  (thus ), the asymptotic formula for

 at  is given as below23;

(17)

in which the second term is to vanish due to the factor R−1 as

. The value  is then to be

(18)

where Eq. (13) is used for . This is just the probability

. The famous Landau-Zener probability which is

given by Zener12 exactly coincides with Eq. (18) and it

represents the probability that the system stays in the state 1

at t → . The probability for transition from state 1 to state

2, P2( ) can be expressed in terms of the probability at t = 0

as;

(19) 

which is similar to the Zhu-Nakamura formula for the linear

curve crossing in coordinate space.24 The result signifies that

the final probabilities are determined by the probabilities at

crossing which could be useful to apply in control problems. 

Conclusion

Probabilities at a crossing of two linearly time-dependent

potentials with a constant coupling are analytically obtained

by solving a time-dependent coupled Schrödinger equation

which is the time-dependent Landau-Zener problem. The

system which was initially localized in state 1 evolves to

split into both states at the crossing. The probability splitting

depends on the coupling strength V0 such that the system

stays at the initial state in its entirety when V0 = 0 while it

splits equally at both states when V0 → . For a finite

coupling the probability branching is not even and thus a

complete probability transfer at t →  is not achieved in the

crossing of two linear potentials. The Landau-Zener formula

for transition probability at t →  is calculated in terms of

the probabilities at the crossing. Considering a radiative

transition by a linearly chirped field is equivalent to the

crossing of two linear potentials, it is further realized that a

complete control of the corresponding transition may not be

feasible by a sequence of linearly chirped pulses. 
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