Asymmetric Synthesis and Epimerization of Aryloxazinones

Seung-Han Lee* and Dae-Jun Ahn
Department of Chemistry, College of Natural Science, Kyung Hee University, Yongin 449-701, Korea

Received September 21, 1998

An interesting and important nonproteinogenic class of amino acids is the arylglycines ${ }^{1}$ which are found in a wide range of bioactive compounds such as nocardicines ${ }^{2}$ and glycopeptide antibiotics ${ }^{3}$ (e.g. vancomycin, teicoplanin, ristocetin, β-avoparcin, and actaplanin). However, the arylglycines are difficult to synthesize in optically pure form due to the ease at which the α-methine proton can undergo basecatalyzed racemization. ${ }^{4}$

Numerous approaches to the asymmetric synthesis of arylglycines have appeared, including: asymmetric Strecker synthesis; ${ }^{5}$ arylation or alkylation of nucleophilic glycinates; ${ }^{6}$ arylation of electrophilic glycinates; ${ }^{7}$ electrophilic amination of chiral enolates; ${ }^{8}$ and nucleophilic amination of α-substituted acids ${ }^{9}$ and others. ${ }^{10}$

Some of these works use the chiral 5,6-diphenyloxazinones as a glycine equivalent. Williams reported the asymmetric synthesis of several arylglycines via the cuprate or Friedel-Crafts couplings to chiral 3-bromooxazinone. ${ }^{7 d}$ Also the photolysis of [(amino)(aryl)carbene]chromium complexes having the optically active amino alcohol were reported to give the aryloxazinones. ${ }^{10 \mathrm{~b}}$ However these methodologies limit the general synthesis of various arylglycines due to the availability of aryl metal compounds.

We report herein our preliminary studies on the conversion of (arene) $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+} \mathrm{PF}_{6}{ }^{-}$complexes to aryloxazinones, which can be converted to arylglycines, via their reaction with the chiral glycine equivalent, 5-phenyloxazinone (1a or $\mathbf{1 b}$). ${ }^{11}$

Preparation of the arene-manganese complexes were accomplished in high yields on using a modification of the procedure described by Rybinskaya et al. ${ }^{12}$ Benzene-manganese complex was obtained by means of the conventional procedure $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}-\mathrm{AlCl}_{3}\right.$-heat $] . .^{13} \quad$ (Arene) $\mathrm{Mn}(\mathrm{CO})_{3}$ complexes (2) were treated with enolate of $\mathbf{1 a}$ or $\mathbf{1 b}$ to give the substituted cyclohexadienyl- $\mathrm{Mn}(\mathrm{CO})_{3}$ complexes (3). We could not separate the cyclohexadienyl- $\mathrm{Mn}(\mathrm{CO})_{3}$ complexes since significant decomposition of cyclohexadienyl$\mathrm{Mn}(\mathrm{CO})_{3}$ complexes occurs upon attempted silica gel chromatography. So direct treatment of these reaction mixture with N-bromosuccinimide (NBS) effected oxidative demetallation to give the anti-aryloxazinones (4) in moderate yields and high diastereoselectivities (Scheme 1).

The results were summarized in Table 1. We have examined the various bases and solvents (NaHMDS/DME, $\mathrm{NaH}-$ MDS/THF, KHMDS/THF, LiHMDS/THF, and LDA/THF) for the reaction and found that they gave the similar yields (61-67\%). Also addition of HMPA did not improve the yields and diastereoselectivities. The electrophile approaches from the less hindered face of the oxazinone enolate giving the anti-aryloxazinone.

Table 1. Arylation of Oxazinones Using (Arene) $\mathrm{Mn}(\mathrm{CO})_{3}$ Complexes

entry	P	Mn complexes (2)	product yield $(\%)^{a}$ de $(\%)^{b}$		
1	Boc	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$	$\mathbf{4 a}$	63	95
2	Boc	$\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}$	$\mathbf{4 b}$	65	90
3	Boc	$\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OPh}$	$\mathbf{4 c}$	49	75
4	Boc	$\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{O}\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$	$\mathbf{4 d}$	55	99
5	Boc	$\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{O}\left(p-\mathrm{PhCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$	$\mathbf{4 e}$	44	81
6	Cbz	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$	$\mathbf{4 f}$	60	89
7	Cbz	$\mathrm{R}_{1}=\mathrm{H}_{1}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$	$\mathbf{4 g}$	55	94
8	Cbz	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}$	$\mathbf{4 h}$	62	87

${ }^{a}$ Yield of isolated, pure anti-isomer. ${ }^{b}$ Determined from isolated yields of pure anti- and syn-isomers.

In case of the (1,3-dimethoxycyclohexadienyl)Mn complex ($\mathrm{P}=\mathrm{Boc}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}$), use of 1 equivalent of NBS gave the complicated reaction mixture. However, use of 2 equivalents of NBS gave the mixture of anti-aryloxazinone 5 (25\%) and monobrominated aryloxazinone 6 (30\%). Brominated aryloxazinone 6 might be formed by electrophilic substitution of aryloxazinone 5 which has the electron-rich aromatic ring.

5

6

We tried the alkylation of the enolates of anti-3-aryloxazinones with alkyl halide to prepare the 3-alkyl-3-aryloxazinones. However, the reaction gave the epimerized syn-3-

Scheme 2
Table 2. Epimerization of anti-3-Aryloxazinones

entry	anti-oxazinone $\mathbf{(4)}$	syn-oxazinone $(\mathbf{7})$	ratio $(\mathbf{7 : 4})^{a}$
1	$\mathbf{4 a}$	$\mathbf{7 a}$	$87: 13$
2	$\mathbf{4 b}$	$\mathbf{7 b}$	$81: 19$
3	$\mathbf{4 c}$	$\mathbf{7 c}$	$70: 30$
4	$\mathbf{4 d}$	$\mathbf{7 d}$	$72: 28$
5	$\mathbf{4 e}$	$\mathbf{7 e}$	$70: 30$
6	$\mathbf{4 f}$	$\mathbf{7 f}$	$56: 44$
7	$\mathbf{4 g}$	$\mathbf{7 g}$	$88: 12$
8	$\mathbf{4 h}$	$\mathbf{7 h}$	$74: 26$

${ }^{a}$ Determined from isolated yields of pure anti- and syn-isomers.
aryloxazinones instead at $-78{ }^{\circ} \mathrm{C}$. Therefore, we studied the conversion of anti-3-aryloxazinones to syn-3-aryloxazinones at low temperature. Anti-aryloxazinones $\mathbf{4}^{14}$ were treated with KHMDS in THF at $-78{ }^{\circ} \mathrm{C}$ and quenched with saturated ammonium chloride solution at $-78^{\circ} \mathrm{C}$ to give the epimerized syn-aryloxazinones 7^{15} in moderate yields (Scheme 2, Table 2). The treatment of syn-3-aryloxazinones with base at $-78{ }^{\circ} \mathrm{C}$ gave the similar syn/anti ratios. The results show that the enolate anion of 3-aryloxazinone is stabilized by the aryl group and attacked by proton from the opposite side of the 5-phenyl group to afford the syn-3-aryloxazinone as a major isomer.

The equilibration experiments were done using several bases to show whether the syn-3-aryloxazinones were the kinetic or thermodynamic products (Scheme 3). The results show that anti-3-aryloxazinones are thermodynamic products (Table 3). Thus, the epimerization of the arylglycine enolate synthons demonstrated to be the result of kinetic control by equilibration experiments for phenyl adduct $\mathbf{4 a}$.

Scheme 3
Table 3. Thermodynamic Equilibration Studies

entry	base	ratio $(\mathbf{4 a}: \mathbf{7 a})^{a}$
1	$\mathrm{NaOEt} / \mathrm{EtOH}$	$2.7: 1$
2	$\mathrm{LDA} / \mathrm{THF}$	$1: 1$
3	$\mathrm{NaHMDS} / \mathrm{THF}$	$1.1: 1$
Ratios were determined by isolated yields.		

[^0]

A simple deprotection scheme was used for the Boc-protected phenyl adduct (Scheme 4). ${ }^{11}$ Exposure of anti-phenyloxazinone $\mathbf{4 a}$ to excess refluxing ethanolic hydrogen chloride for 2 h and removal of the volatiles provided the ethyl ester HCl salt which was neutralized by refluxing in absolute ethanol containing propylene oxide to afford $\mathbf{8 a}$ in 96\% yield. Hydrogenolysis of 8a under influence of 5\% Pd/ C and hydrogen (15 psi) at room temperature gave the phenylglycine ethyl ester. Determination of optical purity of the final phenylglycine derivative is underway.
In conclusion, the anti-aryloxazinones were prepared in moderate yields and high diastereoselectivities from the nucleophilic substitution of chiral glycine enolate equivalents with (arene) $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+}$complexes. Also, syn-aryloxazinones were obtained in moderate yields via epimerization of anti-aryloxazinones. Investigations concerning the conversion of aryloxazinones to arylglycines are underway.

Acknowledgment. We are grateful to the Korea Science and Engineering Foundation (92-25-00-08) and Kyung Hee University for financial support of this work.

References

1. For reviews, see: (a) Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon Press: Oxford, 1989. (b) Williams, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889.
2. (a) Townsend, C. A.; Brown, A. M. J. Am. Chem. Soc. 1983, 105, 913.
3. (a) Rama Rao, A. V.; Gurjar, M. K.; Laxma Reddy, K.; Rao, A. S. Chem. Rev. 1995, 95, 2135.
4. (a) Smith, G. G.; Sivakura T. J. Org. Chem. 1983, 48, 627.
(b) Bodanszky M.; Bodanszky, A. J. Chem. Soc., Chem. Commun. 1967, 591.
5. (a) Weinges, K.; Brachmann, H.; Stahnecker, P.; Rodewald, H.; Nixdorf, M.; Irngartinger, H. Liebigs Ann. Chem. 1985, 566. (b) Kunz, H.; Sager, W.; Schanenbach, D.; Decker, M. Liebigs Ann. Chem. 1991, 649. (c) Kunz, H.; Pfrengle, W. J. Am. Chem. Soc. 1988, 110, 651. (d) Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M. J. Am. Chem. Soc. 1996, 118, 4910.
6. (a) Lee, S.-H.; Nam, S.-W. Bull. Korean Chem. Soc. 1998, 19, 613. (b) Pearson, A. J.; Bruhn, P. R.; Gouzoules, F.; Lee, S.-H. J. Chem. Soc., Chem. Commun. 1989, 659. (c) Pearson, A. J.; Lee, S.-H.; Gouzoules, F. J. Chem. Soc., Perkin Trans. 1 1990, 2251. (d) Schöllkopf, U.; Scheuer, R. Liebigs Ann. Chem. 1984, 939. (e) Seebach, D.; Aebi, J. D.; Naef, R.; Weber, T. Helv. Chim. Acta. 1985, 68, 144.
7. (a) Schöllkopf, U.; Gruttner, S.; Anderskewitz, R.; Egert, E.; Dyrbusch, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 683. (b) Harding, K. E.; Davis, C. S. Tetrahedron Lett. 1988, 29, 1891. (c) Schickli, C. P.; Seebach, D. Liebigs

Ann. Chem. 1991, 655. (d) Williams, R. M.; Hendrix, J. A. J. Org. Chem. 1990, 55, 3723.
8. (a) Oppolzer, W.; Tamura, O. Tetrahedron Lett. 1990, 31, 991. (b) Evans, D. A.; Britton, T. C.; Dorow, R. L.; Dellaria, J. F. Tetrahedron 1988, 44, 5525. (c) Evans, D. A.; Nelson S. G. J. Am. Chem. Soc. 1997, 119, 6452.
9. (a) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011. (b) Feenstra, R. W.; Stokkingreef, E. H. M.; Nivard, R. J. F.; Ottenheijm, H. C. J. Tetrahedron 1988, 44, 5583.
10. (a) Hegedus, L. S.; Schwindt, M. A.; DeLombaert, S.; Imwinkelried, R. J. Am. Chem. Soc. 1990, 112, 2264. (b) Vernier. J.-M.; Hegedus, L. S.; Miller, D. B. J. Org. Chem. 1992, 57, 6914. (c) Charri, M.; Jenhi, A.; Lavergne, J.-P.; Viallefont, P. Tetrahedron 1991, 47, 4619. (d) Boger. D. L.; Borzilleri, R. M.; Nukui, S. J. Org. Chem. 1996, 61, 3561. (e) Reddy, K. L.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207.
11. Dellaria, J. F.; Santarsiero, B. D. J. Org. Chem. 1989, 54, 3916.
12. Rybinskaya, M. I.; Kaganovich, V. S.; Kudinov, A. R. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1984, 33, 813.
13. Pauson, P. L.; Segal, J. A. J. Chem. Soc., Dalton Trans. 1975, 1677.
14. (3S,5S)-4-tert-Butyloxycarbonyl-3,5-diphenyl-2,3,5,6-tetrahydro-4H-1,4-oxazin-2-one (4a). mp 176-177 ${ }^{\circ} \mathrm{C}$, $[\alpha]^{25}{ }_{\mathrm{D}}=-92.5$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, at 298 K$) \delta 7.46-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.99(\mathrm{~s})$ and $5.91(\mathrm{~s})\left(1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCHPhN}\right), 5.55(\mathrm{~s})$ and $5.43(\mathrm{~s})(1 \mathrm{H}$, $\mathrm{NCHPhCHHO}), 4.76$ (d) and 4.57 (d) $(1 \mathrm{H}, J=11.0 \mathrm{~Hz}$, $\mathrm{NPhCHCHH}), 4.54$ (d) and 4.38 (d) ($1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{NPh}-$ $\mathrm{CHCHH}), 1.16$ and $1.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, at 373 K) $\delta 7.46-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.95(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCHPhN}$), 5.47 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHPhCHHO}$), 4.66 (br s) and 4.46 (br s) ($2 \mathrm{H}, \mathrm{PhCHCHHO}$), $1.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR (KBr) $1756,1706 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 71.37 ; H, 6.56; N, 3.96. Found: C, 71.20; H, 6.81; N, 4.06.
15. (3R,5S)-4-tert-Butyloxycarbonyl-3,5-diphenyl-2,3,5,6-tetrahydro-4H-1,4-oxazin-2-one (7a). $[\alpha]^{25}{ }_{\mathrm{D}}=+89$ (c 0.4 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 7.48-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.25-$ $7.23(\mathrm{~m}, ~ 3 \mathrm{H}), ~ 7.08-7.05(\mathrm{~m}, ~ 2 \mathrm{H}), ~ 6.27(\mathrm{~s})(1 \mathrm{H}$, $\mathrm{O}_{2} \mathrm{CCHPhN}$), 4.96 (dd, $1 \mathrm{H}, J=12.0,5.0 \mathrm{~Hz}$, NPhCHCHHO), 4.19 (dd, $1 \mathrm{H}, J=12.4,5.6 \mathrm{~Hz}$, NPhCHCHHO), $4.13(\mathrm{t}, J=12.2 \mathrm{~Hz}, \mathrm{NPhCHCHH}), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 168.6,155.6,138.2,137.1,129.7$, $129.0,128.9,128.4,127.2,126.9,82.3,69.0,59.7,58.7$, 28.4; IR (KBr) 1772, $1697 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 71.37; H, 6.56; N, 3.96. Found: C, 70.95; H, 7.02; N, 3.88.

[^0]: ${ }^{a}$ Ratios were determined by isolated yields.

