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Ligand-based quantitative structure-activity relationship (QSAR) studies were performed on indolinones
derivatives as a potential inhibitor of the protein tyrosine kinase of fibroblast growth factor receptor (FGFR) by
comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis
(CoMSIA) implemented in the SYBYL packages. The initial X-ray structure of docked ligand (Su5402) to
FGFR was used to minimize the 27 training set molecules using TRIPOS force field. Seven models were
generated using CoMFA and CoMSIA with grid spacing 2 Å. After the PLS analysis the best predicted
CoMSIA model with hydrophobicity, hydrogen bond donor and acceptor property showed that a leave-one out
(LOO) cross validated value (r2cv) and non-cross validated conventional value (r2ncv) are 0.543 and 0.938,
respectively. 
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Introduction

Computer-aided drug design1 is a new field to develop
new biologically active compounds based on the knowledge
of previously synthesized ones. The most widely used
approach, quantitative structure-activity relationship (QSAR)2

is to correlate observed biological activities with structural
changes of ligands. 3D QSAR techniques, such as the com-
parative molecular field analysis (CoMFA)3 and the com-
parative molecular similarity indices analysis (CoMSIA),4 are
based on the experimental structure-activity relationship on
specific bio-macromolecule and ligand pair. This method is
based only on the ligand structure and thus the spatial
arrangement (or alignment) is crucial in determining the
accuracy of these approaches.

Selective inhibition of the protein tyrosine kinases (PTKs)
inhibitor of Fibroblast Growth Factor Receptor (FGFR) is
considered as a major emerging strategy in cancer therapy
because PTKs are critical components of signal pathways
that control cell proliferation and differentiation and
enhanced PTK activity due to activating mutations or over-
expression has been implicated in many human cancers.5

Indolinone derivative inhibitors (IDIs) of protein tyrosine
kinase of FGFR with high potency and selectivity have
already been developed by Cho Tang etc. in Sugen Inc. and
have been under clinical evaluation.6 QSAR study on PTKs
of FGFR was studied using the 2D descriptors by Corwin
Hansch group.7 

In this work, however, we plan to perform QSAR study on
IDIs using the ligand-based CoMFA and CoMSIA to
correlate their biological activities with three-dimensional
structures and to provide useful information necessary for
designing improved lead compounds.

Methods

Data Set for Analysis. To perform the ligand-based
QSAR study, 27 IDIs, which have been synthesized and
tested for biological inhibitory activity toward tyrosine
phosphorylation were taken from the literature.6,8 Experi-
mentally, the indoline-2-one core is known to occupied the
adenine binding site of ATP8 and thus the information
deduced from the substitution on the core is useful for
further modification of indoline-2-one as inhibitors against
FGFR. The molecular structures are shown in Figure 1.
From the reference data, IC50 values were defined as the
concentration of a compound required to achieve 50%
inhibition of maximal tyrosine phosphorylation as measured
by bromodeoxyuridine (BrdU) incorporation when compar-
ed to vehicle-treated controls (DMSO). 

Computational Methods and Ligand-based Molecular

Alignment. The crystal structure of Su5402 (3-[(3-(2-
carboxethyl)-4-methylpyrrol-2-yl) methylene]-2-indolinone)
was used to generate initial structures of 27 IDIs.6,8 All
ligands were sketched using the sketch module in the
SYBYL package and conformational searches were per-
formed by grid search which calculates energies by system-
atically changing the dihedral angles of each ligand using
standard TRIPOS force field.9 Among them, the lowest
energy structures were selected as the conformers for the
3D-QSAR studies. Finally all ligands were fully optimized
using the standard TRIPOS force field with Gasteiger-
Hückel charges until the energy gradient converged to below
0.05 kcal/mol. Total 27 ligand structures were selected as
training set and indolinone fragment of the molecules were
used for the alignment. Result of the superimposed image of
27 ligand structures is shown in Figure 2. All calculations
were done on a SGI octane 2 workstation using SYBYL 6.9
software packages.10
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Figure 1. Structures of indolinone-based protein tyrosine kinase inhibitors used as a training set.
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PLS Analysis Using CoMFA and CoMSIA. CoMFA is
one of the well known 3D-QSAR descriptors which has
been used to produce the 3D models to indicate the regions
that affect biological activity with a change in the chemical
substitution.11-13 CoMFA quantifies the statistical relationship
between the 3D properties of a set of small molecules and a
global property, such as their potency in a particular
biological assay. CoMFA was performed with the QSAR
option of SYBYL. For all steps of conventional CoMFA, the
default SYBYL settings were used except otherwise noted.
For each CoMFA analysis, the minimum s was set to 2.0 to
expedite the calculation. The steric and electrostatic field
energies were calculated using sp3 carbon probe atoms with
+1 charge. CoMFA grid spacing used in this work was 2.0 Å
in all X, Y and Z directions. CoMFA QSAR equations were
calculated with the partial least square (PLS) algorithm. The
optimal number of components (ONC) in the final PLS
model was determined by the r2

cv and standard error of
estimate values, obtained from the leave-one-out cross-
validation technique. The van der Waals potential and
columbic terms, which represent the steric and electrostatic
terms, respectively, were calculated using the standard
TRIPOS force field. A distance dependent dielectric constant
of 1.00 was used. Values of the steric and electrostatic
energy were truncated at 30 kcal/mol. 

CoMSIA calculates similarity indices at the intersections
of a surrounding lattice. The five CoMSIA fields of steric,
electrostatic, hydrophobic, hydrogen bond donor and acceptor
were calculated at the grid lattice point using a probe atom of
2.0 Å radius as well as the charge, hydrophobic and
hydrogen bond properties of H, and an attenuation factor of
0.3. The CoMSIA approach can avoid some inherent
deficiencies arising from the functional form of Lennard-
Jones and Coulomb potentials used in the conventional
CoMFA. In CoMSIA, a distance-dependent Gaussian-type
functional form has been introduced, which can avoid
singularities at the atomic positions and the dramatic
changes of potential energy for these grids in the proximity

of the surface. Compared with usual CoMFA, CoMSIA has
better ability to visualize and interpret correlations obtained
in terms of field contributions. The unique difference
between conventional CoMFA and CoMSIA is the field type
and the field calculation function.

The partial least-squares (PLS) analysis algorithm was
used in conjugation with the cross-validation (leave-one-out)
option to obtain an optimum number of components, which
were used to generate the final CoMFA and CoMSIA
models without cross validation. The result from a cross
validation analysis was expressed as r2

cv defined in eq. (1):

r2
cv = 1 − PRESS / Σ(Yobs − Y mean)2 (1)

The PRESS statistic is calculated by the following equation,
eq. (2).

PRESS = Σ (Yobs − Ypred)2  (2)

where, Yobs, Ymean and Ypred are observed, the mean of the
predicted and predicted values of the activity, respectively.

Results and Discussion

In this work, CoMFA and CoMSIA approaches were used
to elucidate the QSAR as descriptors for protein tyrosine
kinase inhibitors of FGFR biological activity. 

CoMFA offers two different descriptors and CoMSIA
offers five different descriptors; therefore, diverse combina-
tions of descriptors are possible for CoMSIA.14 Seven
different models were generated using 2 Å grid spacing with
diverse descriptors - Model 1: CoMFA with steric and
electrostatic descriptors, Model 2: CoMSIA with steric,
electrostatic, hydrogen bond donor, acceptor and hydro-
phobic descriptors, Model 3: CoMSIA with steric and
electrostatic descriptors, Model 4: CoMSIA with hydrogen
bond donor and acceptor, Model 5: CoMSIA with steric,
electrostatic and hydrophobic descriptors, Model 6: CoMSIA
with steric, electrostatic, hydrogen bond donor and acceptor
descriptors, and Model 7: CoMSIA with hydrogen bond
donor, acceptor and hydrophobic descriptors.

The results obtained from the PLS analysis are summariz-
ed in Table 1. Inspection of Table 1 shows that leave-one out
cross-validated value (r2

cv) is 0.494 and non cross-validated
conventional value is 0.840 for CoMFA Model 1 and the
results of PLS analysis for CoMSIA Model 2 show that r2

cv

is 0.527 and r2
ncv is 0.900. This means that the CoMSIA

model is better than CoMFA model to elucidate the QSAR
as descriptors for PTK inhibitors of FGFR biological
activity. In order to obtain better predictive values using
CoMSIA, five more models were considered.

In these approaches, Model 7 with hydrogen bond donor,
acceptor and hydrophobic descriptors shows best correlation
- leave-one out cross-validated value (r2

cv) and non cross-
validated conventional value (r2

ncv) are 0.543 and 0.938,
respectively. Smaller standard error of estimate values (SEE)
and higher F values also suggests that the selected CoMSIA
Model 7 is better than the others. From this analysis, we can
conclude that Model 7 is the best model. 

Figure 2. Superimposed complexes model using indolinone based
molecular alignment. Atoms with capped sticks type selected as the
fitting fragment.
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Activities of 27 compounds in the training set are
predicted from the PLS analysis using the best model and
the results along with their actual pIC50 values and residuals
are summarized in Table 2. A plot of actual pIC50 vs.
predicted pIC50 is shown in Figure 3. Close examination of
Table 2 shows that average residual of the actual and
predicted values is 0.16. Therefore we can confirm that
Model 7 is the best, which is also apparent from the linear
plot depicted in Figure 3. 

Graphical representations of the selected CoMSIA maps
for the best model are displayed in Figures 4-6. The contour
maps were superimposed on Su 5402 (entry 8) shown in
atom type color. The field type “stdev*coeff” was used to
obtain contour maps in CoMSIA. 

Hydrogen bond donor contour map of CoMSIA is
depicted in Figure 4. Cyan colored region where hydrogen
bond donor is associated with enhanced affinity is not found
in this map. But orange colored regions where hydrogen

bond donor is associated with diminished affinity are found
in the near 5-position of indolinone ring, which is found for
the compounds with 5-SO2NH2 group (entry 4, 18, and 24).
Hydrogen bond acceptor contour map of CoMSIA is
described in Figure 5. Blue colored regions where hydrogen
bond acceptor is associated with enhanced affinity is found
largely in near carboxyethyl group of methyl pyrrol ring. It
indicates that carboxyl group found for entry 8 or 15 is
essential for the interaction with amino acid residues of the
active site. But red colored region where hydrogen bond
acceptor is associated with diminished affinity is not found
in this map. In Figure 6, hydrophobic contour map of
CoMSIA is shown. Yellow color contour region where
hydrophobicity is associated with enhanced affinity is near
the 6 position of indolinone ring (compare entry 19 vs. entry
20 or entry 25 vs. entry 26), aliphatic hydrophobic side chain
of carboxyethyl and near the methyl pyrrol ring, which is
found for entry 8 and 15 with carboxyethyl group at 4
position and CH3 group at 3 position. On the other hand,

Table 1. The results of PLS analysis in the Training Set using CoMFA and CoMSIA

CoMFA CoMSIA

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Selected Fields
a 

SE SEDAH SE DA SEH SEDA DAH

PLS

Analysis

r2cv 0.494 0.527 0.397 0.567 0.481 0.504 0.543

Components 3 3 5 4 5 3 4

r2ncv 0.840 0.900 0.859 0.684 0.911 0.891 0.938

SEE 0.323 0.255 0.318 0.464 0.253 0.267 0.206

F Value 40.25 69.05 25.48 11.91 47.73 62.60 82.81

Contribution

Steric 0.470 0.060 0.296 0.131 0.072

Electrostatic 0.530 0.307 0.704 0.481 0.390

H Bond Donor 0.449 0.911 0.488 0.068

H Bond Acceptor 0.043 0.089 0.050 0.498

Hydrophobic 0.144 0.388 0.434

aS=steric, E=electrostatic, D=hydrogen bond donor A=hydrogen bond acceptor, H=hydrophobic

Table 2. Actual and predicted activities (pIC50 ) of the Training Set
Molecules using Model 7

pIC50 pIC50

NO. Actual Pred. Residual NO. Actual Pred. Residual

1 5.15 5.13 0.02 15 7.52 7.23 0.29

2 4.98 4.80 0.18 16 5.92 6.25 −0.33

3 4.88 4.67 0.21 17 5.43 5.59 −0.16

4 6.66 6.45 0.21 18 6.34 6.59 −0.25

5 4.70 4.93 −0.23 19 5.41 5.57 −0.16

6 4.76 4.90 −0.14 20 5.98 5.72 0.26

7 4.70 4.89 −0.19 21 5.81 5.68 0.13

8 7.52 7.48 0.04 22 5.52 5.51 0.01

9 6.57 6.79 −0.22 23 5.69 5.39 0.30

10 6.57 6.66 −0.09 24 6.55 6.49 0.06

11 5.97 5.83 0.14 25 5.27 5.49 −0.22

12 5.90 5.99 −0.09 26 5.64 5.65 −0.01

13 5.87 5.96 −0.09 27 5.85 5.61 0.24

14 6.06 5.95 0.11 Ave. 0.16

Figure 3. Comparison of actual vs predicted pIC50 (based on the
data of Table 2).
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white color contour region where hydrophobicity is
associated with diminished affinity is not found. 

To further validate our results, five compounds which
were not included in the training set molecules with pIC50

range between 4.70 and 7.10 were assigned as a test set and
their biological activities are predicted from the PLS
equation derived from Model 7. Predicted and actual
activities of test set molecules are summarized in Table 3.

Predicted pIC50 values agree well with the experimental ones
with average deviation of 0.28, which suggests that our best
model is good in predicting the pIC50 values.

Conclusion

In order to perform ligand-based QSAR studies, 27
training set molecules as an inhibitor of the protein tyrosine
kinase of FGFR were selected as a training set and indoli-
none fragment of the molecules were used for the alignment.
With combination of diverse descriptors, seven models were
generated from CoMFA and CoMSIA. The best model,
Model 7, was CoMSIA with hydrogen bond donor, acceptor
and hydrophobic descriptors, and this model showed good

Figure 4. Superposition of the CoMSIA Hydrogen bond donor
stdev*coeff contour plots 

Figure 5. Superposition of the CoMSIA Hydrogen bond acceptor
stdev*coeff contour plots 

Figure 6. Superposition of the CoMSIA Hydrophobic stdev*coeff
contour plots. 

Table 3. Actual and predicted activities (pIC50) of test set
molecules using CoMSIA Model 7

No. Structure
Actual 

pIC50

CoMSIA Model 7

Predicted 

pIC50

Residual

T1a  

 

 

4.70 4.78 -0.08

T2b 5.24 5.60 -0.36

T3b 6.44 5.69 0.75

T4a 6.70 6.79 -0.09

T5b 7.10 7.00 0.10

AVE. 0.28

aFrom reference 6(b). bFrom reference 6(a).
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statistical results. From above PLS correlations, activities of
five test set molecules were predicted satisfactorily. Based
on above 3D-QSAR results, we are currently performing
virtual screen work to find novel inhibitors.
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