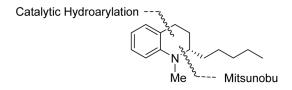
Communications

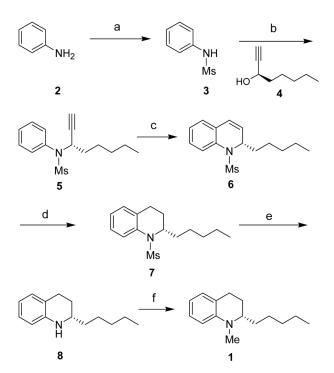
Hydroarylation for the Facile Synthesis of 2-Substituted Tetrahydroquinoline: A Concise Synthesis of (+)-(S)-Angustureine

Jae-Sang Ryu


College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea. E-mail: ryuj@ewha.ac.kr Received February 16, 2006

Key Words: Hydroarylation, Tetrahydroquinoline, (+)-(S)-Angustureine

Tetrahydroquinolines constitute important structural features present in a number of biologically active alkaloids. Especially, 2-substituted tetrahydroquinoline¹ has drawn medicinal chemists' attention as a privileged structure. Angustureine, one member of 2-substituted tetrahydroquinoline alkaloids, was first isolated² by Jacquemond-Collet and his co-workers in 1999 from *Galipea officinalis*, which has been used in traditional herbal medicine to treat a fever of dyspepsia, dysentery and chronic diarrhea.³ Recently, anti-tuberculous,⁴ anti-malarial,⁵ and cytotoxic⁵ activities have been reported for angustureine.


In the context to develop efficient synthetic methods for diversity oriented synthesis of tetrahydroquinolines, herein, we report a concise synthesis of (+)-(S)-angusture ine and hydroarylation strategy. As outlined in Figure 1, our synthetic stratagem includes the introduction of a chiral side chain by Mitsunobu reaction⁶ and the subsequent hydroarylation to dihydroquinoline. This approach is flexible and applicable to the preparation of other 2-substituted tetrahydroquinolines, as well. To this end, we chose the aniline as our starting point (Scheme 1). N-methanesulfonyl protection of aniline, followed by Mitsunobu inversion⁶ of the (R)-(+)-1-octyn-3-ol (4) (98% ee) with the resulting methanesulfonanilide 3 in the presence of DEAD/PPh3, afforded Npropargylaniline 5. The Mesyl-NH group served as an efficient nucleophile for Mitsunobu reaction as well as an arene-free protecting group in the next hydroarylation step.

With the hydroarylation precursor **5** in hand, we have explored the feasibility of intramolecular hydroarylation under a variety of catalytic conditions (Table 1). We first

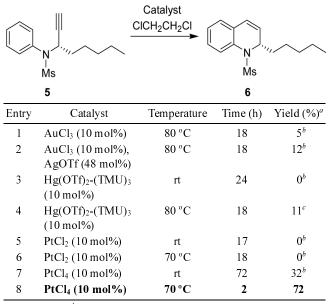

(+)-(S)-angustureine (1)

Figure 1. Key Features in Synthesis of (+)-(*S*)-Angustureine.

Scheme 1. Synthesis of (+)-(S)-Angustureine (1). (a) MsCl, Pyridine, CH₂Cl₂, 0 °C, 1 h, 92%; (b) (R)-(+)-1-Octyn-3-ol (4), DEAD, Ph₃P, THF, rt, 1 h, 100%; (c) See table 1; (d) H₂, Pd/C, EtOH, rt, 3 h, 85%; (e) Red-Al, toluene, 80 °C, 0.5 h, 99%; (f) K₂CO₃, THF, CH₃I, reflux, 24 h, 99%.

tested the reaction with AuCl₃ in the presence and absence of AgOTf.⁷ The catalysts were not active enough to complete the reaction within an acceptable reaction condition (80 °C, 18 h) (entries 1 and 2). Hg(OTf)₂-(TMU)₃ complex,⁸ which was reported as an efficient catalyst for the cyclization of activated arylalkynes, produced a unidentified byproduct as a major product with a small amount of dihydroquinoline **6** (entry 4). Then, we investigated platinum catalysts. We were pleased to find that PtCl₄ was an effective catalyst to provide dihydroquinoline **6**⁹ in a respectable yield (entry 8). None of undesired exomethylene regioisomer or 4H-dihydroquinoline was detected. Generally, the hydroarylation of unactivated arylpropargylamine, especially **Table 1**. Catalytic Hydroarylation of N-propargyl methanesulfon-anilide 5

^aIsolated yield. ^bRemaining starting material was recovered. ^cA unidentified byproduct was isolated as a major product.

terminal alkynes, suffers from low activities.¹⁰ Although Au(III),⁷ Hg(II),⁸ and Pt(II)¹¹ provided a few examples of activated-arylpropargylamine hydroarylations, the result with the unactivated substrate **5** was not satisfactory. To our best knowledge, our result constitutes the first example of a catalytic hydroarylation with unactivated *N*-propargylaniline to provide dihydroquinoline effectively.¹¹

Reduction of the dihydroquinoline **6** was effected in 85% yield under standard catalytic hydrogenation conditions (5% Pd/C, EtOH). Removal of Ms protecting group of **7** was best achieved using Red-Al in toluene, ultimately affording the tetrahydroquinoline **8** in 99% yield. Finally, *N*-methylation completed the synthesis of (+)-(S)-angustureine. The spectroscopic data¹² measured from **1** are in full accord with the published data¹³ of the compound.

In conclusion, we have accomplished a concise six-step synthesis of (+)-(S)-angustureine in overall 55% yield. The key features include an introduction of a chiral side chain by Mitsunobu reaction and an efficient Pt-catalyzed hydro-arylation to dihydroquinoline. Given the result described above, research to expand hydroarylation into diversity oriented synthesis is currently in progress.

Acknowledgement. This work was supported by the Ewha Womans University Research Grant of 2005.

References and Notes

- 1. Katritzky, A. R.; Rachwal, S.; Rachwal, B. *Tetrahedron* **1996**, *52*, 15031.
- Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fourasté, I.; Moulis, C. *Phytochemistry* 1999, 51, 1167.
- 3. Mester, I. Fitoterapia 1973, 44, 123.
- 4. Houghton, P. J.; Woldemariam, T. Z.; Watanabe, T.; Yates, M. *Planta Med.* **1999**, *65*, 250.
- Jacquemond-Collet, I.; Benoit-Vical, F.; Mustofa; Valentin, A.; Stanislas, E.; Mallié, M.; Fouraste, I. *Planta Med.* 2002, 68, 68.
- (a) Mitsunobu, O.; Jenkins, I. D. In *Encyclopedia of Reagents for* Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 8, p 5379. (b) Mitsunobu, O. Synthesis 1981, 1.
- 7. Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669.
- 8. Nishizawa, M.; Takao, H.; Yadav, V. K.; Imagawa, H.; Sugihara, T. Org. Lett. **2003**, *5*, 4563.
- 9. Representative procedure for PtCl4-catalyzed hydroarylation to dihydroquinoline 6: A solution of N-propargyl methanesulfonanilide 5 (28 mg, 0.1 mmol) in anhydrous dichloroethane (1 mL, 0.1 M) was added to PtCl₄ (3.4 mg, 0.01 mmol). The reaction reaction mixture was stirred at 70 °C for 2 h under N2. The solvent was then removed in vacuo. Column chromatography on silica gel (6 : 1 hexane/EtOAc) afforded pure dihydroquinoline **6** (20 mg; 72% yield). TLC: $R_f 0.27$ (6 : 1 hexane/EtOAc). $[\alpha]_D^{25} =$ +287 (c 1.0, MeOH). ¹H-NMR (400 MHz, CDCl₃): δ7.61 (d, 1H, J = 7.2), 7.27 (td, 1H, J = 7.2, 1.6), 7.22 (td, 1H, J = 7.2, 1.6), 7.14 (dd, 1H, J = 7.2, 1.6), 6.53 (d, 1H, J = 9.6), 6.08 (dd, 1H, J = 9.6, 5.6), 4.72 (m, 1H), 2.65 (s, 3H), 1.49–1.34 (m, 4H), 1.32–1.17 (m, 4H), 0.85 (t, 3H, J = 7.2). ¹³C–NMR (100 MHz, CDCl₃): δ 133.1, 130.1, 128.6, 128.5, 127.8, 126.9, 126.8, 125.0, 55.4, 37.7, 33.2, 31.5, 25.0, 22.6, 14.2. HRMS (FAB): calcd for C15H22NO2S ([M+H]⁺), 280.1371; found, 280.1374
- 10. Williamson, N. M.; Ward, D. A. Tetrahedron 2004, 61, 155.
- Pt-catalyzed hydroarylation of arylpropargylether to chromene has been extensively studied by Sames. There are a few examples of arylpropargylamines activated by electron-donating groups, see: (a) Pastine, S. J.; Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055. (b) Pastine, S. J.; Youn, S. W.; Sames, D. Tetrahedron 2003, 59, 8859.
- 12. TLC: $R_f 0.53$ (8 : 1 hexane/EtOAc). $[\alpha]_D^{25} = +6.1$ (*c* 1.0, CH₂Cl₂), {lit. $[\alpha]_D^{26} = +4.4$ (*c* 1.0, CH₂Cl₂)}. ¹H–NMR (400 MHz, CDCl₃): δ 7.08 (t, 1H, J = 7.2), 6.97 (d, 1H, J = 7.2), 6.58 (t, 1H, J = 7.2), 6.53 (d, 1H, J = 7.2), 3.24 (m, 1H), 2.93 (s, 3H), 2.81 (m, 1H), 2.66 (td, 1H, J = 16.0, 4.0), 1.89 (m, 2H), 1.63-1.27 (m, 8H), 0.90 (t, 3H, J = 7.2). ¹³C–NMR (100 MHz, CDCl₃): δ 145.6, 128.8, 127.3, 122.1, 115.4, 110.6, 59.2, 38.2, 32.2, 31.4, 26.0, 24.6, 23.8, 22.9, 14.2. HRMS (FAB): calcd for C₁₅H₂₃N (M⁺), 217.1830; found, 217.1832.
- Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. Tetrahedron: Asymmetry 2005, 16, 827.