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Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of
multireference-based approaches has opened up a completely new area, and has had a profound impact on the
potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the
closed-shell single reference Mgller-Plesset method, and has been successfully applied to many chemical and
spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and
dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is
chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the
size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed
to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on
our recent development in MRPT.
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Introduction (MC) SCF wave functiodd has been developed. The
general MCSCF functions are wave functions optimized in

Single reference many-body perturbation theory and coupledn active space spanned by an arbitrary set of Slater deter-
cluster theory are effective in describing dynamical correlationminants or CSFs. The approach can dramatically reduce the
but fail badly in dealing with (quasi-)degenerate nondynamicatlimension of the reference function. Recently, a very
correlation. Truncated configuration interaction (Cl) canefficient string product space (SPS) SCF/PT has been
handle nondynamical correlation well, but configuration proposed, where the total space is defined as a prodact of
expansion in multireference Cl is quite lengthy and is not amndp string spaces.
optimal approach. Multireference techniques can handle This review will focus on our recent development in
nondynamical correlation well. Once the state-specificmultireference-based perturbation theory.
nondynamical correlation is removed, the rest is primarily
composed of dynamical pair correlation and individual pair Multireference Mgller-Plesset Perturbation Method
correlation, and can be described even by second-order
perturbation theory. This is the basic idea of the multirefer- Our basic problem is to find approximations to some low-
ence-based perturbation theory (MRPT). lying solutions of the exact Schrodinger equation,

Multireference Mgller-Plesset (MRMP) and quasi- HW = EW (1)
degenerate perturbation theory (MC-QDPThave been - '
successfully applied to many chemical and spectroscopitl is the Hamiltonian and it is decomposed into two parts, a
problems, and this approach has established itself as aeroth-order HamiltoniaH, and a perturbatiow
efficient method for treating nondynamical and dynamical H=H +V @)
correlation effects. MRMP can handle any state, regardless 0 '
of charge, spin, or symmetry, with surprisingly high andWe assume that a complete set of orthonormal eigenfunc-
consistent accuracy. However, MRMP has a sharp limit tdions{ kPi(O)} and corresponding eigenvalues is available,
the number of configurations of the reference complete ©) _ (0):1:(0)

i i i HoW ™ =E W, . 3
active space (CAS) SCF wave functithTo avoid this oW i Wi ©)
problem, many approaches have been proposed. We hay@en the state wave functiol,  is expanded in terms of
developed perturbation theory (PT) based on the quaspasis functions¥” as
complete active space (QCAS) SCF wave funcidh.

QCAS is defined as the product space of CAS spanned by =3 C w9, (4)

the determinants or configuration state functions (CSFs). K

Although QCAS works quite well, QCAS requires physi-  some of the basis functions define an active spaead
cally sound judgment and intuition in the choice of the remaining part of Hilbert space is called the orthogonal
subspace. More flexible reference functions are required. ApaceQ =1~ P. The active space is spanned by the basis
second-order PT starting witheneral multiconfiguration  fynctions that have a filled core and the remaining active
*Corresponding author. E-mail: hirao@qcl.t.u-tokyo.ac.jp electrons distributed over a set of active orbitals. The
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orthogonal complete space incorporates all other possibiehereD; is the one-electron density matrix. The MCSCF
basis functions that are characterized by having at least orwbitals are resolved to make thg matrix as diagonal as
vacancy in a core orbital. The state wave function in arpossible. This zeroth-order Hamiltonian is closely analogous

active space is written as

qu(O) = Z C @y, ®)

to the closed-shell Fock operator. The definition of an active
space, the choices of active orbitals and the specification of
the zeroth-order Hamiltonian completely determine the

perturbation approximation.

where the sum runs over the active space basis functionsWhen a CASSCF wave function is L(J)SGd as the
{®} and Ci are the coefficients of just the active space basiseference, the zeroth plus first order enel:'é)) + EI is
functions. It is convenient to use intermediate normalizationgqual to the CASSCF energy. The lowest non-trivial order is

i.e.
ww0= wwo= 1. 6)

We also assume th&tfo) is diagonaPiapace,

0 0 0 1
WOHW D= 6,(E” + EY), @)
with
0 0 0
E” = wH, w0 ®)
E® = mOvw©n ©)

The state-specific Rayleigh-Schrédinger PT based on the

unperturbed eigenvalue equation

Howf? = £ 00)
leads to the first fevEl(k) as
E? = w{”IvVRVwO (11)
E® = O vRr(v- EY) RV (12)

4 0 1 1 0
EY = wVR(V- B")R(V- EY)RVW{0
~EP[WOVRVWO T+ WP VRH,SHRVW "]

, etc. (13)
R andSare the resolvent operators
_ 0) _
R=Q/(E™ -Hy), (14)
S=P/(E? —H,), (15)
whereP’ = P-|w{%mp()| .
El(o) is given in terms of orbital energies as
0
E( )= Z Diic€ic (16)
and the orbital energies are defined as
& = [i|Flo;D (7)
with
.. 1,. ..
Fy =y + 3 Dyl (KD -50KID], (19)

therefore the second order. Let the reference funWﬁ)ﬁD
be a CASSCF wave function,

la0= > C,|AO (29)
k
The energy up to the second order is given by
_ o VIO V]aO
EE,O 2) _ CAS Z al (20)

T EY-gY

where {|IQ is the set of all singly and doubly excited
configurations from the reference configurations in CAS.
This is our multireference Mgller-Plesset (MRMP) methibd.

We have also proposed a multistate multireference
perturbation theory, the quasidegenerate perturbation theory
with MCSCF reference functions (MC-QDPP.

The Perturbation Theory Based on QCAS-SCF and
MCSCF Wave Functions

CASSCE? can handle the near-degeneracy problem in a
balanced way and therefore can treat chemical reactions and
excited states. Once the active space is chosen, the wave
function is completely specified. It is size-consistent and the
wave function is invariant to transformations among active
orbitals. Although CASSCF does not include dynamical
correlation, it provides a good starting point for such studies.
However, CASSCF often generates too many configurations
with the number of active orbitals and active electrons.

To reduce the CAS dimension, we have proposed the
quasi-complete active space (QCAS) SCF methdd.
QCAS is an attempt to extend the method to widen the range
of applications. QCAS is defined as a product of complete
active spaces. Let us divide the active electrons and orbital
sets inta\ subsets and fix the number of active electroms,
and orbitalsp;, in each subset,

Myet = Zm., Nact = Zn

wheremgct andnae denote the number of active electrons and
active orbitals, respectively. We define the QCAS as the
product space of CAS spanned by the determinants or CSF

(21)

QCAZ{ m}{ n}) = CASm,m) x CASme,n2)
x -+ x CAmMy,My) (22)

Each active space is defined by a fixed number of active
electrons and active orbitals. Solution of the CI eigenvalue
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problem involves the; vector, which is given by The effective Hamiltonian up to the second orldé%{ 2 of
van Vleck perturbation theory with unitary normalization is
0, =2 H,C, given by
J
0-2
0 BEC (erff ))AB
=5 E,Z hy; |E;; 90+ 5 z (ij [KI) DE;; By =S,k E;y I © o © o
3 Lij |Jk| =Hpg + 2 [@D [HRgH|®g [+ [P, |HR H|Pg "0
(23) @7)
Here, | and E; are the CI basis functions and the group
generators. We adopt Slater determinants rather than Cé’i4
and split a determinant intband3 strings of each group Rz 3 |¢(O)QE(O) EI(O))—l@I(O)L 28)

N 1 N_ 1 N I Oref
[10= |I . U,IB [ g0= (150 1 B8 |1 g0 (24)
where CD(O)(CD(O)) andCD(O) are reference wave functions
Then we can decompose the one-bodwand 8 coupling  and a function in the complement sp@tﬁf the reference
constants into the coupling constants for the strings of thepace IP), respectively, anclEB anE are zeroth-order
groups as energies of functlong)( anfl;iI .
Adopting (state- avera ed? MCSCF wave function§3)
|E; \O= EﬂlE [J0+ EﬂlE |30 as reference functlormA (Pg )) , which define Ehepace,
Eq. (27) becomes
HISIES O Gy M8 + I3IE; |Jﬁmﬂ5H i [ 3

lada IpJp 0-2 MC SCF
= % F&TJGDG) (K& ))aﬁ = Oup
oo (otherwisé . .
1 Céx|H |1 CID|H D
(25) + 3 +(a - B0, (29)
2, DGCS O E(O) (O) O

Thus, theo-vector and the one- and two-particle density
matrices are expressed by the coupling constants for theherel is a determinant/CSF outside the GCS. The notation
strings of the groups. (a -« B) means interchange with 8 from the first term in

The dimension of QCAS is much smaller than that of CAScurly brackets. The complementary eigenfunctions of the
constructed from the same set of electrons and orbitals. LAMCSCF Hamiltonian and the determinants/CSFs generated
us consider CAS(16e, 160), wherel6 electrons are distributdsy exciting electrons out of the determinants/CSFs in GCS
among 16 orbitals. CAS(16e, 160) is spanned by there orthogonal to the reference functions and defin&the
165 636 900 determinants (wittl = 0). If we divide the space. The functions in the space complementary t® the
active electrons and orbitals into five groups: (4e, 40) + (4espace, however, do not appear in Eq. (29), because the
40) + (4e, 40) + (2e, 20) + (2e, 20), the dimension of QCASnteraction between the complementary functions and the
is reduced to 746 496. Using QCAS as a reference functioreference functions is zero. We define here the correspond-
in the perturbation theory, we may therefore extend activing CAS (CCAS) as a CAS constructed from the same active
electrons and orbitals beyond the limit of CAS. QCASSCF/electrons and orbitals, that is, the minimal CAS that includes
PT works quite well. However, it is not always possible tothe reference GCS.
select an appropriate QCAS, depending on the molecular The summation over in Eq. (29) may be divided into
systems of interest. QCAS requires physically sound judgmersummations over the determinants/CSFs outside CCAS and
and intuition in the choice of subspace. over the determinants/CSFs outside the GCS but inside

Therefore, we have developed a second-order QDPT usingCAS:
a generalmulticonfiguration (MC) SCF wave function as a _

: 2 = 2 + > : (30)

reference function (hereafter, GMC-QDF#%)The general |0GCS  106EAS | 0CCASHOGECS
configuration spacgGCS) is defined by a space that is
spanned by an arbitrary set of Slater determinants or CSFthen the former second-order term may be written as
The orbitals are partitioned into three categories as in the
ordinary MCSCF method: the core orbitals are doubly (Keff)aﬁ = > LaHIEH |50

occupied and the virtual orbitals are unoccupied in all the IOCCAS EE?’ _EI(O)

determinants/CSFs, while the active orbitals may be occupied I I 1B0

or unoccupied. The reference wave functions used in the + > -—l—l—l—lé(o) ©) . (31)
perturbation calculations are determined by MCSCF as a ioccasonees Ep’ —F

variational space: The first term in Eq. (31) represents external excitations, and

_ the second term represents internal excitations. The external
lat= AD%CSCA(G)IAD (26) term is calculated by the diagrammatic method and the
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internal term by the sum-over-states method. with 3, O {15}, JgU{lg} ,and
The external term may be further written as . ..
(2) (2) qu,rs,... = Qpa&rg " Q5q8gq (37)
Hodag= Y Ca(@)Ca(B)(H; (32) , .
. A BOGCS Epars,.. = @ppp* 8spqp- (38)
with
Because stringq (Jp) is determined by strinty (15 and
(Hffx) ABS 2 LAH IO HIBEY (33) active orbital Igajbe(lsﬁZ) and g the or)1/e bod?; (c%upllng

ioccas By —E(” + (Ey) - Ey) coefficients for strings M,|Eq N0 MAEAII,0 ) can be
stored in the computer memory in the fody[l,;p.q]
where (H( ) as Is the effective Hamiltonian in the (Jg[Jsp,q]). The perturbatlon calculatlon for three-body
determinant/CSFs. Because the second-order diagrams doupling coefficients[l,|E,, oarsHa DII]B|Ew|JBD for example,
not depend on the denominator, the second-order effectivis performed as follows:
Hamiltonian, Eq. (33) (hence, also Eq. (32)) is expressed bloop overl,
the same diagrams as in the conventional QDPT. Make all non—zerd]a|qu,rS|JaD foka
For internal terms, the diagrammatic approach may not be Loop overlg[l4]

applied. Instead, matrix operations for the Hamiltonian Loop overt andu

matrix are used: If Jgll4it,u] #0 and Jgfl 4t u] O {I aldal} then
do 3 body PT calculatlons fdiEa|qu rsl‘] DII]B|EM|JBD
(H)ap =V (a) W (B) (34) End loopt andu
. End looplg [l4]
with End loopl«
vi(a)= > [OHIAC,(a) (35) The other terms can be computed similarly.
ADGCS The one- and two-body coupling coefficients computed in

the same manner are used for the Cl-based calculation for
the internal terms. The vectorgn Eq. (34) are computed as
o-vectors using strings.

The intermediate determinants/CSFsre constructed by A more efficient algorithm has been developed by using
exciting one or two electrons from the reference deterthe a andp string spaces. Let us define the total space as a
minants/CSFs within the active orbital space. In general, theroduct ofa and 3 string spaces. This method is called a
number ofl is not large, and thus they may be managed irstring product space (SPS) SCF/PT methodaking
computer memory. advantage of the independence of dh@ndp string spaces,

In the present implementation, we used Slater determinantee computational efforts can be dramatically reduced. For
rather than CSFs. Letd} and {Ig} be sets ofr andf strings  example, the perturbatlon calculatlon for three-body coupling
appearing in the reference configurations, respectively. Theoefficients,[,|Ey s/, (10| Ey u|JBD is simplified as follows:
reference space is defined by tBestring sets for eachr Loop overlq
string, {lgl4]}, and equivalently the a string sets for egh Make all non- zerd]]a|qu,rS|JaD foly
string, {l4[14l}- Loop overlg (=Jp)

In the diagrammatic computation of the external terms,  do 3-body PT calculations fdiﬂalqurle I]]]B|E 190
one-, two-, and three-body coupling coefficients are necessary. End looplg
The one-body coupling coefficients are classified into two End looplq
types, Compared with the diagrammatic algorithm, the present

scheme does not require loops ovandu. Usually, thea
[I]a|qu|JaDII]B|JBD and [I]a|JaDJ]]B|E€q|JBD and_B string spaces are spannc—;‘d by the singly and doubly
excited configurations, respectively. Thus, the total SPS
the two-body coupling coefficients into three types, consists of configurations up to quadruple excitations. The
dimension of the reference function can be drastically

[I]a|qu rsM ol 0 [HalJaD]]]Blqu’rleBEl and reduced. The dimensions of CAS(14e, 140) and CAS(18e,

180) are 11 778 624 and 2 363 904 400, respectively, while

TalEpgla DIﬂﬁIE Mg the corresponding dimensions of SPS(14e, 140) and
SPS(18e, 180) are 241 081 and 1 898 884. Thus, we can

and the three-body coupling coefficients into four types,  handle PT based on the (18e, 180) reference functions. A
numerical illustration shows that SPS-PT can describe the

[I]C,|qu,rs,tu|JaDIﬂﬁlJﬂD EﬂalJaDIﬂﬁlqu,rs,tulJBEL double-bond breaking process and treat several potential

5 energy curves simultaneously. The excited states are also
oarsHaAE 50 and M, Eq . Dﬂ]ﬁlErs whp! calculated very accurately by SPS-PT.

w(B) = Y OHBCB)(ES -EY)  (36)
BO GCS

pa.r

I,E,
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Conclusion desirable. The steep scaling can be reduced using local
electron correlation methods. There has been continuing
The convergence of the dynamical correlation is ratheinterest in local MRPY! that uses the local character of the
slow, and the accurate representation of the dynamicalynamical correlation. Research in this direction is now in
correlation requires high levels of excitations in the many-{rogress?®
electron wave function and high levels of polarization

functions in a basis set. The situation is, however, quit% 2 arantin-aid for Scientific Research in Speciall
. ¢ : ) y g pecially
different for nondynamical correlation. The nondynamlcal,Promote d Research “Simulations and Dynamics for Real

near-degeneracy effect converges falrly_ smoothly WlthSystems" from the Ministry of Education, Science, Culture,
respect to both the one-electron basis function and the many: .
. L nd Sports of Japan, and by a grant from the Genesis
electron wave function. This implies that the near degenerac%
problem can be handled quite well even in a moderate
function space. This supports the use of QCASSCF or
MCSCF instead of CASSCF as a reference function in
MRPT calculations. The QCAS and MCSCF methods are 1. Hirao, K.Chem. Phys. Let1992 190, 374.
apparently quite poor when compared with the CASSCF, but2. Hirao, K.Chem. Phys. Let1992 196 397.
the deficiency is largely overcome when the dynamical 3- Hirao, Kintern. J. Qua”tu%ghemggg S26 517.
correlation is considered at the level of MRPT. g' H'rao' K.Chem. Phys. Letl993 201, 59.
. . Nakano, HJ. Chem. Phys.993 99, 7983.
MRPT can handle any state, regardless of charge, spin, 0fNakano, HChem. Phys. Let1993 207, 372.
symmetry with surprisingly high and consistent accuracy, 7. Siegbahn, P. E.; Heiberg, A.; Roos, B. O.; Levy,PBysica
supporting our use of this method as our ‘standard’ for Scriptal98Q 21, 323. _
treating small to medium-sized molecules. 8. F50703’ B. O.; Taylor, P. R.; Siegbahn, FCBem. Phys198Q 48,
AS.IS well known,ab initio computanonal_ effort ccji’&e‘rpends 9. RO(‘)S’ B. Olntern. J. Quantum Cherh98Q S14 175.
heavily on the systenhi. This dependence is of ordéffor 10 Nakano, H.; Hirao, KChem. Phys. Let200Q 317, 90.
SCF and is of ordeN° and higher for MRPT. The steep 11. Nakano, H.; Nakatani, J.; Hirao, &. Chem. Phys2001 114,
nonlinear cost of the conventional correlated methods has no 1133. _ _
physical origin; it is an artifact caused mainly by the use ofl2- 1\11%‘;3”0' H.; Uchiyama, R.; Hirao, K.Comput. Chen2002 23,
canonical orblFaIs. Canonlca! orbitals, although conceptuall;&& Nakéno, H.; Shirai, S.: Hirao, K. Chem. Phys submitied for
and computationally convenient, destroy the local character  , pjication.
of dynamical correlation. The development of alternativei4. Finley, J. P.; Hirao, KChem. Phys. Lete00Q 328 60.
formulations based on local quantities is both feasible and5. Nakao, Y.; Hirao, KJ. Chem. Physsubmitted for publication.
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