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Transport Properties of Ar-Kr Mixtures: A Molecular Dynamics Simulation Study 
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Equilibrium molecular dynamics (EMD) simulations are used to evaluate the transport coefficients of argon-

krypton mixtures at two liquid states (state A: 94.4 K and 1 atm; state B: 135 K and 39.5 atm) via modified

Green-Kubo formulas. The composition dependency of the volume at state A obeys close to the linear model

for ideal liquid mixture, while that at state B differs from the linear model probably due to the high pressure.

The radial distribution functions for the Ar-Kr mixture (x = 2/3) show a mixing effect: the first peak of g11 is

higher than that of g(r) for pure Ar and the first peak of g22 is lower than that of g(r) for pure Kr. An exponential

model of engineering correlation for diffusion coefficient (D) and shear viscosity (η) is superior to the simple

linear model for ideal liquid mixtures. All three components of thermal conductivity (λpm, λtm, and λti) at state

A and hence the total thermal conductivity decrease with the increase of x. At state B, the change in λtm is

dominant over those in λpm and λti, and hence the total thermal conductivity decrease with the increase of x.
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tion

Introduction

The first computer simulation study for the equation of

state of an equimolar binary mixture of nearly equal hard

spheres was carried out by Rotenberg in the 1960s using

Monte Carlo method.1 An extensive series of computations

for Lennard-Jones mixtures followed in the 1970s to

determine the excess thermodynamic functions of mixing.2,3

After that, a number of molecular dynamics studies on the

transport coefficients in binary fluid mixtures have been

reported.4-6 There was good agreement among these studies,

and therefore it can be said that the basic method to calculate

the transport coefficients by MD simulations has been

established.

Transport coefficients - self-diffusion coefficient, D, shear

viscosity, η, and thermal conductivity, λ- of pure fluids can

be calculated from equilibrium molecular dynamics

simulation by the infinite time integral of an equilibrium

correlation function of the form known as the Green-Kubo

formulas.7-9 Associated with any expression of the Green-

Kubo formulas there is also the Einstein formula to calculate

the transport properties. In recent years, non-equilibrium

molecular dynamics (NEMD) simulations have emerged as

a powerful tool for the study of transport coefficients of both

simple and molecular fluids.10-12

There has only been slow progress in simulating the

transport coefficients of fluid mixtures. This in part due to

uncertainty concerning the statistical mechanical expre-

ssions for the transport coefficients.13-15 Mixtures have the

transport coefficients of D, η, and λ as for a single com-

ponent fluid.15-23 There are also additional transport coeffi-

cients that have no counterpart in the single component

fluids. These include the cross transport coefficients, DT,

thermal diffusion (the Soret effect) and the diffusion thermo-

effect (the Dufour effect) which are numerically identical in

the linear response regime according to the Onsager

reciprocal relation. Molecular dynamics simulation has been

used to calculate these.13-17

Simulation has also been used to determine the effects of

mass and well-depth ratios on the thermal conductivity and

shear viscosity of model binary mixtures. Evans and Hanley

computed the shear viscosity of binary SS mixtures for

several size and mass ratios.24,25 They proposed a conformal-

solution theory of shear viscosity, which was very successful

for combined mass and well-depth ratios up to ~5. This

treatment has been extended with similar success to thermal

conductivity and again for shear viscosity.26 

In the present paper, we perform equilibrium molecular

dynamics (EMD) simulations of pure argon, pure krypton,

and their mixtures. The goal of this paper is to elucidate the

dependence of transport properties of Ar-Kr mixtures on

mole fraction of krypton, x. 

This paper is organized as follows: We present the

molecular models and details of MD simulation methods in

next section, theories for dynamic properties in Section III,

our simulation results in Section IV, and concluding remarks

in Section V.

Molecular Models and NpT MD Simulation Methods

We begin by considering a mixture of argon and krypton

at two states of constant temperatures and pressures - state

A: 94.4 K and 1 atm, and state B: 135 K and 39.5 atm. For

the study of mixture properties, the Lennard-Jones (LJ)

potential is used for the Ar-Ar, Ar-Kr, Kr-Kr potentials. The

LJ potential parameters for these potentials are given in

Table 1 and are derived on the basis of liquid state thermo-

dynamic properties.2,3,27 The potential curves are depicted in

Figure 1. The cross interaction parameters between Ar and

Kr are calculated from the simple Lorentz-Berthelot rules:



1690     Bull. Korean Chem. Soc. 2007, Vol. 28, No. 10 Sun Hong Min et al.

 (1)

The use of the LJ potential is motivated by the extensive

existing published results on the transport properties of the

LJ fluid, as well as the ease with which it can be extended to

more complex systems by the addition of dipolar and

quadrupolar interactions. 

The equations of motion in NpT ensemble are given by

 (2a)

 (2b)

and

, (2c)

where ri, mi, and pi are the position, mass, and momentum,

respectively, of molecule i, Fi is the force exerted by the

other molecules on molecule i, and a is the thermosttating

constant, given by

. (3)

The effect of the thermosttating term involving api in Eq.

(2b) is to hold the translational kinetic energy constant. The

functional form of this term is derived by Gauss's principle

of least constraint.28 The momenta in Eqs. (2a) and (2b) are

measured with respect to the streaming velocity of the fluid

and are known as peculiar momenta. In similar fashion to the

thermosttating constant, the dilation rate  controls

the volume of the system in order to constrain the pressure p.

The pressure is one third of the trace of the pressure tensor P,

which is expressed in terms of molecular quantities by

, (4)

where V is the volume of the system, rij=ri−rj is the vector

joining the centers of molecular i and j, and Fij is the force

between them. The equation of motion for the dilation rate

for a pure fluid is given by Hood et al.29 The extension to

mixtures is straightforward and the dilation rate is given by

(5)

where Φij is the interaction potentials between molecular i

and j. Putting =0 in Eqs. (2) recovers the NVT ensemble.

The preliminary canonical ensemble (NVT fixed) EMD

simulation of 1728 argon atoms was started in the cubic box

of length L=4.3696 nm, of which the density is equal to

1.374 g/cm3 at 94.4 K and 1 atm. The inter-atomic potential

was truncated at 2.25 σKr, which is the cutoff distance used

in many other simulations. Long range corrections to the

energy, pressure, etc. due to the potential truncation were

included in these properties by assuming that the pair distri-

bution function was uniform beyond the cutoff distance.30

Initially the equations of motion were solved using the

velocity Verlet algorithm31 with a time step of 10−14 second,

but later it was switched to a fifth-order predictor-corrector

Gear integration32 for NpT EMD simulation. The systems

were fully equilibrated and the equilibrium properties were

averaged over five blocks of 100,000 time steps (1 nano-

second). The brief summary of thermodynamic averages for

pure Ar and Kr liquids at two states are given in Tables 2 and

3. The configurations of argon atoms were stored every time

step for further analysis. 

Green-Kubo Formula

As dynamic properties, we consider diffusion constant

(D), shear viscosity (η), and thermal conductivity (λ) of Ar-

Kr mixture systems. Diffusion constant can be obtained

through two routes: the Green-Kubo formula from velocity

auto-correlation functions (VAC):

. (6a)

and the Einstein formula from mean square displacements

(MSD):

.  (6b)

Shear viscosity is calculated by the modified Green-Kubo

εi j = εiεj( )1/2 and σij = 
σi σj+
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Table 1. Lennard-Jone parameters for Ar/Ar, Kr/Kr, and Ar/Kr
interactions

 Interaction σ (nm) ε/kB(K)

 Ar-Ar 0.3405 119.8

 Kr-Kr 0.3633 167.0

 Ar-Kr 0.3519 141.4

Figure 1. Lennard-Jones potentials for Ar-Ar, Kr-Kr, and Ar-Kr as
a function of  inter-particle distance.
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formula for better statistical accuracy33:

,  (7)

where 

with aβ = xy, xz, yx, yz, zx, and zy. 

Thermal conductivity is also calculated by the modified

Green-Kubo formula for better statistical accuracy33:

,  (8)

where a = x, y, and z. The heat flux by each molecule is

.

 (9)

Here, the energy of molecule i is given by

.  (10)

The heat flux by each molecule, Eq. (9), with the energy of

molecule, Eq. (10), consists of three contributions:

,  (11)

where 

,  (12)

,  (13)

and

,  (14)

 and  are the translational and the potential energy

transport, respectively, due to molecular motion and  is

the translational energy transfer due to molecular interaction.

Hence, the thermal conductivity, Eq. (8), consists of three

contributions:

.  (15)

Results and Discussion

We begin by reporting thermodynamic properties for pure

liquids using the LJ potentials in NpT ensembles. The

thermodynamic properties at two states [(A) T = 94.4 K and

p = 1 atm; (B) T = 135 K and p = 39.5 atm] are summarized

in Table 2 for pure Ar and in Table 3 for pure Kr. For both Ar

and Kr, it is clear that the EMD simulation results predict the

density and energy very accurately [within 1.1% (state A)

and 4.4% (state B) of the Ar density and 0.7% (state B) of

the Kr density, and within 0.1% (state B) of the Ar energy

and 2.2% of the Kr energy]. The pressures for state A are

negative and are less accurately predicted. However,

pressure as measured in molecular simulations exhibits

considerable sensitivity to the details of the cutoff procedure,

so that the error in the pressure for state A can be regarded as

quite small.

Volume, LJ and total energies, increasing in steps of 1/6 in

the Kr mole fraction x, are given in Table 2 for state A (T =

94.4 K and p = 1 atm) and in Table 3 for state B (T = 135 K

and p = 39.5 atm). Note that the volume for pure Kr is less

than that for pure Ar at state B probably due to the high

pressure (39.5 atm). The experimental volumes for pure

liquids give the same trend (110.8 nm3 for pure Ar and 103.9

nm3 for pure Kr). The composition dependencies of the

volume and energies are also shown in Figures 2 and 3. For

ideal liquid mixtures, one would expect that each of the

properties would depend linearly on composition, i.e.,

,  (16)

where Y is a property. The linear model for each property is

shown in the figures as a solid line. Clearly, the volume at

η = 
V

kT
------  

0

∞

∫ dt  
i
∑ Piαβ 0( ) Piαβ t( )⋅〈 〉

Piαβ t( ) = 
1

V
--- mviα t( ) viβ t( ) +  

j i≠
∑ riα t( ) fiβ t( )⋅⋅[ ]

λ = 
V

kT
2

--------  
0

∞

∫ dt  
i
∑ q· iα 0( ) q· iα t( )⋅〈 〉

q· iα t( ) = 
1

V
--- εi t( ) viα t( )⋅  + 

1

2
---  

j i≠
∑ rijα t( ) [vi t( ) fi j⋅ ⋅ t( )]

⎩ ⎭
⎨ ⎬
⎧ ⎫

εi t( ) = 
1

2
---mivi t( )2  + 

1

2
---  

j i≠
∑ Φ rij t( )[ ]

q· iα = q· iα
tm

 + q· iα
pm

 + q· iα
ti

q· iα
tm

 = 
1

V
---

1

2
---mivi

2
viα

q· iα
pm

 = 
1

V
---

1

2
---  

j i≠
∑ Φ rij( ) viα

q· iα
ti

 = 
1

V
---

1

2
---  

j i≠
∑ rijα vi fij⋅( )

q· iα
tm

q· iα
pm

q· iα
ti

λtot = λtm + λpm + λt i

Y = 1 x–( )Yar + xYKr

Table 2. Pure argon system at two states [(A) T = 94.4 K and p = 1 atm; (B) T = 135 K and p = 39.5 atm] in NpT ensembles. LJ energy (ELJ

in kJ/mol), total energy (Etot in kJ/mol), density (ρ in g/cm3) and pressure (p in atm). Uncertainties in the last reported digit(s) are given in
parenthesis

 States A (94.4 K and 1 atm) B (135 K and 39.5 atm)

Property p ρ -ELJ -Etot p ρ -ELJ -Etot

Expt. 1 1.374 − − 39.5 1.034 − 2.432

Npt EMD −0.542(4) 1.359(16) 5.400(5) 4.222(5) 39.02(1) 1.079(21) 4.118(7) 2.434(7)

Table 3. Pure krypton system at two states [(A) T = 94.4 K and p = 1 atm; (B) T = 135 K and p = 39.5 atm] in NpT ensembles. LJ energy
(ELJ in kJ/mol), total energy (Etot in kJ/mol), density (ρ in g/cm3) and pressure (p in atm). Uncertainties in the last reported digit(s) are given
in parenthesis

 States A (94.4 K and 1 atm) B (135 K and 39.5 atm)

Property p ρ -ELJ -Etot p ρ -ELJ -Etot

Expt. 1 − − − 39.5 2.315 − 5.563

Npt EMD −1.734(3) 2.607(18) 8.517(4) 7.339(4) 37.83(5) 2.331(20) 7.371(9) 5.687(9)
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state A is close to the linear model, while that at state B

differs noticeably from the linear model. On the other hand,

the energies at both states show a perfect linear model. 

Figures 4 and 5 show the radial distribution functions for

pure liquids and the Ar-Kr mixture (x = 2/3) in NpT

ensembles. The radial distribution function, g(r), is defined

as

 (17)

where ρo is the bulk density, N(r,Δr) is the number of

molecules in a shell which is between r − Δr/2 and r + Δr/2

from the center of a molecule with Δr = 0.002 nm, V(r,Δr) is

the volume of the shell, and <…> indicates the correspond-

ing ensemble average. In the radial distribution functions for

pure liquids at both states as shown in Figure 4, the positions

and the heights of the first peaks reflect the magnitude of the

LJ parameters σ and ε, respectively. That is, the smaller σ is,

the closer molecules come, and the larger ε is, the more

molecules come. Switching from state A to state B causes to

decrease the heights of the first peaks keeping the positions

of the first peaks same. This implies that the temperature

effect dominates over the pressure effect. 

Figure 5 shows the radial distribution functions for the Ar-

Kr mixture (x = 2/3) at state A. The first peak of g11 is higher

than that of g(r) for pure Ar and the first peak of g22 is lower

than that of g(r) for pure Kr. The is a mixing effect. The

height of the first peak of g12 is between those of g11 and g22.

Switching from state A to state B for the Ar-Kr mixture

(x = 2/3) lowers only the heights of the radial distribution

functions (data not shown).

Diffusion constants and viscosities for pure liquids and

Ar-Kr mixtures through the Green-Kubo formulas (Eqs. 6(a)

g r( ) = 
1

ρ
0

-----
Nr,Δr

Vr,Δr
---------------〈 〉

Figure 2. Volume (nm3) as a function of krypton mole fraction, x,
at state A (94.4 K and 1 atm) and at state B (135 K and 39.5 atm) in
NpT ensemble. ●: volume of state A, ■ : volume of state B.

Figure 3. LJ and total energies (ELJ and Etot in kJ/mol) as a function
of krypton mole fraction, x, at state A (94.4 K and 1 atm) and at
state B (135 K and 39.5 atm) in NpT ensemble. ●: LJ energy of
state A, ■ : total energy of state A, ○: LJ energy of state B, and □ :
total energy of state B.

Figure 4. Radial distribution functions of pure argon and pure
krypton systems at state A (94.4 K and 1 atm) and at state B (135 K
and 39.5 atm) in NpT ensemble.

Figure 5. Radial distribution functions of an Ar-Kr mixture system
(x = 2/3) at state A (94.4 K and 1 atm) in NpT ensemble.
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and (7)) in NpT ensembles obtained from our EMD

simulations are listed in Table 4 for stat A (T = 94.4 K and p

= 1 atm) and in Table 5 for state B (T = 135 K and p = 39.5

atm), respectively. The calculated diffusion coefficient and

shear viscosity for pure liquids at both states are close to the

experimental measures (D = 2.43 × 10−5 cm2/sec at 90 K and

1.374 g/cm3 for pure Ar,34 η = 1.97 mp at state A for pure

Ar,35 0.740 mp at state B for pure Ar,36 and 3.016 mp at state

B for pure Kr36). The viscosities for pure liquids at state B

obtained by non-equilibrium molecular dynamics (NEMD)

simulations using the same LJ and the highly accurate

Barker-Fisher-Watts (BFW) potentials are superior to our

EMD results (0.885 mp and 0.780 mp for the LJ and BFW

potentails, respectively, for pure Ar, and 3.425 mp and 3.146

mp for pure Kr).37

The composition dependencies of the diffusion coefficient

(D), shear viscosity (η), and D*η are also shown in Figure 6

for state A and Figure 7 for state B. The linear model for

ideal liquid mixtures, Eq. (16), for each property is shown in

the figures as a solid line. Clearly, the diffusion coefficient

Table 4. Volume (V in nm3), LJ and total energies (ELJ and Etot in kJ/mol), diffusion constant (D in 10−5 cm2/sec, Eq. (6a)), shear viscosity (η
in mp), and thermal conductivities (λ in 10−4 cal/Kcmsec) of mixtures of argon and krypton at state A (T = 94.4 K and p = 1 atm) as a
function of krypton mole fraction, x. Uncertainties in the last reported digit(s) are given in parenthesis

 x V -ELJ -Etot D  η λtm λpm λti λtot 

 0 84.32(7) 5.400(5) 4.222(5) 2.560(87) 3.097(31) 0.1466(40) 0.8079(31) 0.7915(65) 1.746(14)

1/6 85.15(4) 5.924(7) 4.747(7) 2.003(49) 4.004(56) 0.1174(18) 0.7535(20) 0.7498(78) 1.621(12)

1/3 86.23(8) 6.449(6) 5.272(6) 1.616(42) 5.122(36) 0.0953(21) 0.7067(19) 0.7247(92) 1.527(13)

1/2 87.52(6) 6.969(6) 5.792(6) 1.249(27) 6.507(27) 0.0765(14) 0.6292(23) 0.7016(66) 1.407(10)

2/3 89.02(5) 7.483(6) 6.305(6) 1.032(27) 8.048(66) 0.0638(15) 0.5883(16) 0.6925(89) 1.345(12)

5/6 90.49(5) 8.010(7) 6.833(7) 0.779(45) 9.916(86) 0.0508(22) 0.5036(29) 0.6814(67) 1.236(12)

 1 92.24(6) 8.517(4) 7.339(4) 0.613(23) 11.92(13) 0.0416(18) 0.4406(17) 0.6807(87) 1.163(12)

Table 5. Volume (V in nm3), LJ and total energies (ELJ and Etot in kJ/mol), diffusion constant (D in 10−5 cm2/sec), shear viscosity (η in mp),
and thermal conductivities (λ in 10−4 cal/Kcmsec) of mixtures of argon and krypton at state B (T = 135 K and p = 39.5 atm) as a function of
krypton mole fraction, x. Uncertainties in the last reported digit(s) are given in parenthesis

 x V -ELJ -Etot D  η λtm λpm λti λtot 

 0 106.2(8) 4.118(7) 2.434(7) 8.254(63) 1.456(12) 0.3336(32) 0.5857(87) 0.4729(50) 1.392(17)

1/6 103.3(6) 4.697(9) 3.013(9) 6.404(66) 1.838(5) 0.2713(38) 0.6092(93) 0.4926(37) 1.373(16)

1/3 101.9(7) 5.256(9) 3.573(9) 5.151(79) 2.202(19) 0.2251(45) 0.6178(80) 0.5002(77) 1.343(19)

1/2 101.5(9) 5.796(7) 4.112(7) 4.202(66) 2.604(14) 0.1896(26) 0.6140(60) 0.5106(29) 1.314(12)

2/3 101.6(7) 6.335(4) 4.651(4) 3.471(30) 3.072(14) 0.1569(17) 0.6082(68) 0.5190(52) 1.284(14)

5/6 102.3(7) 6.851(4) 5.167(4) 2.827(57) 3.640(30) 0.1298(18) 0.5774(96) 0.5304(81) 1.238(20)

 1 103.2(8) 7.371(9) 5.687(9) 2.220(29) 4.472(40) 0.1078(15) 0.5480(63) 0.5503(32) 1.206(11)

Figure 6. Diffusion constant (D in 10−5 cm2/sec), shear viscosity (η
in mp), and D*η as a function of krypton mole fraction, x, at state
A (94.4 K and 1 atm) in NpT ensemble.

Figure 7. Diffusion constant (D in 10−5 cm2/sec), shear viscosity (η
in mp), and D*η as a function of krypton mole fraction, x, at state
B (135 K and 39.5 atm) in NpT ensemble. □ : the viscosities
obtained by non-equilibrium molecular dynamics (NEMD)
simulations37 using the same LJ potentials at state B.
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and shear viscosity at both states differs noticeably from the

linear model. In Figures 6 and 7, an exponential model,

given by

, (18)

is also shown. This model is an engineering correlation

recommended for predicting liquid mixtures in the absence

of mixture property data. It is superior to the simple linear

model because it is clear that this correlation predicts

accurately the diffusion coefficients at both states and the

shear viscosity at state B except that it underpredicts the

shear viscosity at state A. The product D*η is expected to be

constant at all the Kr mole fractions, and it is almost constant

at state A, while it decreases with increasing x at state B. In

Figure 7, the viscosities obtained by non-equilibrium mole-

cular dynamics (NEMD) simulations37 using the same LJ

potentials at state B are compared with our EMD results.

The NEMD results are superior to our EMD results when

compared experimental viscosities at x = 0 and x = 1 (0.740

mp and 3.016 mp, respectively). 

Thermal conductivities for pure liquids and Ar-Kr mix-

tures through the Green-Kubo formula (Eq. (8)) in NpT

ensembles obtained from our EMD simulations are listed in

Table 4 for stat A (T = 94.4 K and p = 1 atm) and in Table 5

for state B (T = 135 K and p = 39.5 atm), respectively. The

only available experimental thermal conductivity is 2.74 ×
10−4 cal/Kcmsec at state A for pure Ar,35 which is close to

that from our EMD result. Switching from state A to state B

causes to decrease the total thermal conductivity for pure Ar

but to increase it for pure Kr. Note that switching from state

A to state B causes to increase the diffusion conductivity and

to decrease the shear viscosity for both pure liquids.

The composition dependencies of the thermal conduc-

tivities are also shown in Figure 8 for state A and Figure 9

for state B. The straight lines for each property in Figures 8

and 9 represent the linear model for ideal liquid mixtures,

Eq. (16), and each property hardly deviates from the linear

model behaviour. Clearly, the total thermal conductivities at

both states A and B obtained from our EMD simulations

decrease with the increase of the Kr mole fraction x. 

Generally speaking, energy transported via molecular

motion governs heat conduction in gases, while energy

transfer between molecules due to molecular interaction is a

dominant factor in heat conduction in liquids. Liquid mole-

cules transport energy by molecular motion and transfer

their energy to other molecules by molecular interaction.

Accordingly, λtm and λpm are the thermal conductivities by

the translational and the potential energy transport,

respectively, due to molecular motion, and λti is that by the

translational energy transfer due to molecular interaction. In

Figure 8, all three components of thermal conductivity at

state A and hence the total thermal conductivity decrease

Y = exp 1 x–( )lnYAr + x ln YKr[ ]

Figure 8. Thermal conductivities (λ in 10−4 cal/K·cm·sec) as a
function of krypton mole fraction, x, at state A (94.4 K and 1 atm)
in NpT ensemble.

Figure 9. Thermal conductivities (λ in 10−4 cal/Kcmsec) as a
function of krypton mole fraction, x, at state B (135 K and 39.5
atm) in NpT ensemble.

Figure 10. Speed distribution for Ar-Kr mixtures as a function of
krypton mole fraction, x, at state A (94.4 K and 1 atm) in NpT
ensemble.
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with the increase of the Kr mole fraction x. The change in

λpm is dominant over those in λpm and λti. At state B, in

Figure 9, λtm decreases, λti increases, and λpm increases and

decreases with x. The change in λtm is dominant over those

in λpm and λti, and hence the total thermal conductivity

decrease with the increase of the Kr mole fraction x. At both

states λpm or λtm overrules λti in contrast with the general

trend in heat conduction in liquid.

In Figure 10, we plot speed distribution for Ar-Kr

mixtures as a function of krypton mole fraction, x, at state A

in NpT ensemble. The speed distribution shifts to lower

speed as the Kr mole fraction x increases due to the heavier

Kr mass. The heat flux by molecular motion of translational

energy, Eq. (12), and hence the thermal conductivities by the

translational energy transport due to molecular motion, λtm,

decrease with the increase of the Kr mole fraction x as

shown in Figures 8 and 9.

In Figure 11, we also plot the Lennard-Jones potential

energy distribution for Ar-Kr mixtures as a function of

krypton mole fraction, x, at state B in NpT ensemble. The

energy distribution shifts to higher energy as the Kr mole

fraction x increases. The heat flux by molecular motion of

potential energy, Eq. (13), has two opposite components -

speed and energy, in which the former decreases and the

latter increases with increasing x. The thermal conductivities

by the potential energy transport due to molecular motion,

λpm, decreases with increasing x as shown in Figure 8, but

increases and decreases with increasing x in Figure 9.

The translational heat flux by molecular interaction, Eq.

(14), involved with two terms - velocity and interatomic

force, which are not easily analyzed. It may be only deduced

that the interatomic forces are more contributed to λti in

smaller volume change in state B than in state A with

increasing x from that the thermal conductivities by the

translation energy transfer due to molecular interaction, λti,

decreases with increasing x as shown in Figure 8 (state A),

but increases with increasing x in Figure 9 (state B).

Conclusion

We presents new results for transport properties of argon-

krypton mixtures at two liquid states (94.4 K and 1 atm; 135

K and 39.5 atm) by equilibrium molecular dynamics (EMD)

simulations using modified Green-Kubo formulas. Volume

at state A as a function of the Kr mole fraction, x, is close to

the linear model for ideal liquid mixtures, while that at state

B differs noticeably from the linear model probably due to

the high pressure. On the other hand, the energies at both

states show a perfect linear model. 

In the radial distribution functions for pure liquids at both

states, the positions and the heights of the first peaks reflect

the magnitude of the LJ parameters σ and ε, respectively.

Switching from state A to state B causes to decrease the

heights of the first peaks keeping the positions of the first

peaks same. In the radial distribution functions for the Ar-Kr

mixture (x = 2/3) at state A, he first peak of g11 is higher than

that of g(r) for pure Ar and the first peak of g22 is lower than

that of g(r) for pure Kr. The is a mixing effect. 

The diffusion coefficient and shear viscosity at both states

differs noticeably from the linear model for ideal liquid

mixtures. An exponential model of engineering correlation

is superior to the simple linear model because it is clear that

this correlation predicts accurately the diffusion coefficients

at both states and the shear viscosity at state B except that it

underpredicts the shear viscosity at state A. Thermal con-

ductivity consists of three contributions by the translational

(λtm) and the potential energy transport (λpm), respectively,

due to molecular motion, and by the translational energy

transfer due to molecular interaction (λti). All three compo-

nents of thermal conductivity at state A and hence the total

thermal conductivity decrease with the increase of x. At state

B, λtm decreases, λti increases, and λpm increases and

decreases with x. The change in λtm is dominant over those

in λpm and λti, and hence the total thermal conductivity

decrease with the increase of x.
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