Michael Reactions of Arylidenesulfonylacetonitriles. A New Route to Polyfunctional Benzo[a]quinolizines

Tayseer. A. Abdallah, Hyam. A. Abdelhadi, Huwida M. Hassaneen and Hamdi M. Hassaneen*.
Department of Chemistry, Faculty of Science, Cairo University, Giza, 1263, Egypt.

*Author to whom correspondence should be addressed; e-mail: tiseer123@hotmail.com

Received: 29 January 2002; in revised form: 10 July 2002 / Accepted: 11 July 2002/ Published: 31
July 2002

Abstract

Arylidenesulfonylacetonitriles react in acetonitrile with 1-methylisoquinoline and isoquinolin-1-yl-acetonitrile in the presence of piperidine to give benzo[a]quinolizines $\mathbf{6 , 9}$ and $\mathbf{7 , 1 0}$, respectively. The structures of the products were established on the basis of elemental and spectral analyses and their chemical reactivity.

Keywords: Arylidenesulfonylacetonitriles, 1-methylisoquinoline, isoquinolin-1-ylacetonitrile, benzo[a]quinolizines.

Introduction

High yielding syntheses of polyfunctional benzo[a]quinolizines are well documented [1-9]. As a continuation of our work on the use of isoquinoline and its derivatives for the synthesis of fused heterocyclic compounds [10,11], we now report a new and general one step route affording polyfunctional substituted benzo[a]quinolizines in good yield from readily available inexpensive starting materials, which competes favorably with the methods previously reported for the preparation of the title compounds.

Results and Discussion

Treatment of 1-methylisoquinoline (1) [12] with arylidenesulfonylacetonitriles 3a-c [13] in boiling acetonitrile in the presence of an equimolar amount of piperidine leads, in each case, to the formation of only one product 6a-c, as indicated by TLC and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analyses (Scheme 1).

Scheme 1

5

6

7

3a, 6a,7a: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
3b, 6b, 7b: $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
3c, $\mathbf{6 c}, 7 \mathrm{c}: \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

The structures of the products 6a-c were established on the basis of their elemental analyses and spectral data (IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{MS}$). For example, the IR spectrum of compound $\mathbf{6 a}$ shows a stretching frequency at $3350 \mathrm{~cm}^{-1}(\mathrm{NH})$ in addition to characteristic bands at 1315 and $1155 \mathrm{~cm}^{-1}$ (asymmetric and symmetric stretching vibrations of a SO_{2} group). Its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum reveals a singlet at $\delta=6.9$ assignable to the $\mathrm{C}-1$ proton and a singlet at $\delta=8.8$, which disappears upon deuterium exchange, assignable to the NH proton, in addition to the typical signals of the isoquinoline moiety. The formation of $\mathbf{6}$ may be explained by cyclization of the initially formed Michael addition product $\mathbf{4}$ to the unisolated product 5. Subsequent autoxidation of the latter leads to the final product $\mathbf{6}$ (cf. Scheme 1). When the reaction of $\mathbf{1}$ with $\mathbf{3 a - c}$ was carried out in the presence of excess piperidine (2 moles) then the products $\mathbf{7 a} \mathbf{a} \mathbf{c}$ were formed directly. The structures of the products $\mathbf{7}$ were also inferred from their elemental analyses and spectral data. For example, the IR spectra show a characteristic peak near $3320 \mathrm{~cm}^{-1}$ due to a NH group. The mass spectra of the products also show a molecular ion peak of high intensity, and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and chemical reactivity also support the proposed structures of the products. In light of the previous results, it may be suggested that the unisolated products $\mathbf{5}$ afford the end products 7 via loss of benzenesulfinic acid (Scheme 1). Similarly, isoquinolin-1-yl-acetonitrile (2) [14] reacts with $\mathbf{3 a , b}$ to give $\mathbf{9 a}, \mathbf{b}$ (cf. Scheme 2). The structures of the latter products were confirmed by elemental analysis and spectroscopic data. Upon treatment of p-nitrobenzylidene phenylsulfonylacetonitrile $\mathbf{3 c}$ in this fashion a product $\mathbf{1 0} \mathbf{c}$ was formed directly due to elimination of benzenesulfinic acid from the intermediate $\mathbf{8}$ (Scheme 2). The structure of the product 10c was confirmed by its independent synthesis via reaction of $\mathbf{2}$ with $\mathbf{1 1}$ (Scheme 3).

Scheme 2

Scheme 3

10

The structures of 10b,c were also confirmed by their chemical reactions as described in Scheme 4. For example, acylation of $\mathbf{1 0 b}, \mathbf{c}$ with acetic anhydride or benzoylation with benzoyl chloride in pyridine affords the corresponding N -acetylimino or N -benzoylimino compounds $\mathbf{1 2 b}, \mathbf{c}$ and $\mathbf{1 3 b}, \mathbf{c}$, respectively. Nitrosation of $\mathbf{1 0} \mathbf{c}$ with sodium nitrite in acetic acid gives the corresponding N -nitroso compound $\mathbf{1 4 c}$. Thermolysis of $\mathbf{1 4 c}$ in xylene gives the carbonyl compound $\mathbf{1 5 c}$. The structure of $\mathbf{1 5 c}$ was confirmed by its alternative synthesis by hydrolysis of $\mathbf{1 0} \mathbf{c}$ with dilute hydrochloric acid. Also, hydrolysis of $\mathbf{1 0 b}$ with dilute hydrochloric acid leads to the formation of $\mathbf{1 5 b}$. Their elemental analyses and spectral data (cf. Table 1 and 2) confirmed the structures of 12, 13, 14 and 15.

Scheme 4

12b,c
13b,c

Experimental

General

All melting points were determined on an Electrothermal melting point apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions on a Varian Gemini 200 MHz spectrometer and chemical shifts are expressed in δ units using TMS as internal reference. Mass spectra were recorded on a Shimadzu GCMS-QP1000 EX mass spectrometer, operating at 70 eV . Elemental analyses were carried out at the Microanalytical Center of the University of Cairo, Giza, Egypt. The analytical and spectral data of the compounds prepared is summarized in Tables 1 and 2.

Synthesis of 2-aryl-6,7-dihydro-9,10-dimethoxy-4-imino-2-phenylsulphonyl-benzo[a]quinolizines $\mathbf{6}$ and 9.

Piperidine ($0.5 \mathrm{~mL}, 0.005 \mathrm{~mol}$) was added at room temperature to a solution of arylidenesulfonylacetonitriles $\mathbf{3}(0.005 \mathrm{~mol})$ and 1-methylisoquinoline (1) ($1.02 \mathrm{~g}, 0.005 \mathrm{~mol}$) or isoquinolin-1-yl-acetonitrile (2) ($1.15 \mathrm{~g}, 0.005 \mathrm{~mol}$) in acetonitrile (40 mL). The reaction mixture was refluxed for 8 h. The solvent was evaporated under reduced pressure and the residue was triturated with methanol (10 mL) whereupon it solidified. The crude product was collected and crystallized from DMF.

Synthesis of 2-aryl-6,7-dihydro-9,10-dimethoxy-4-iminobenzo[a]-quinolizines $\mathbf{7}$ and $\mathbf{1 0}$

These compounds were prepared by the same procedure described for the synthesis of compounds 6 and 9 using ($1 \mathrm{~mL}, 0.01 \mathrm{~mol}$) of piperidine. The precipitated compounds were crystallized from DMF.

Nitrosation of 10c.

Cold sodium nitrite solution (0.7 g in 10 mL water) was added dropwise to a stirred solution of $\mathbf{1 0 c}$ $(2.01 \mathrm{~g}, 0.005 \mathrm{~mol})$ in acetic acid $(30 \mathrm{~mL})$. The mixture was left in an ice bath for 4 h ., then the reddish solid that precipitated was collected. Crystallization of the crude product from DMF gave the corresponding N -nitroso derivative $\mathbf{1 4 c}$.

Thermolysis of $\mathbf{1 4 c}$.

The N-nitroso compound $14 \mathrm{c}(2.16 \mathrm{~g}, 0.005 \mathrm{~mol})$ was refluxed in xylene $(20 \mathrm{~mL})$ until its red color disappeared (ca. 20 min). The reaction mixture was then cooled, the crude product was collected, washed with water and crystallized from DMF.

Acylations of 10b,c.

A solution of 10b,c $(0.005 \mathrm{~mol})$ in acetic anhydride $(25 \mathrm{~mL})$ was refluxed for 1 h . The solvent was removed under reduced pressure and the residue was triturated with water. The solid formed was collected, washed with water and crystallized from ethanol to give N -acetylimino derivatives $\mathbf{1 2 b}, \mathbf{c}$.

Treatment of $\mathbf{1 0 b} \mathbf{c} \mathbf{c}(0.005 \mathrm{~mol})$ with benzoyl chloride ($0.58 \mathrm{~mL}, 0.005 \mathrm{~mol}$) in pyridine (30 mL) at reflux for 30 min . and workup of the reaction mixture in usual way gave the corresponding N -benzoylimino derivatives 13b,c.

Hydrolysis of $\mathbf{1 0} \mathbf{b , c}$.

A suspension of $\mathbf{1 0} \mathbf{b , c}(2.01 \mathrm{~g}, 0.005 \mathrm{~mol})$ in 10% hydrochloric acid (20 mL) was refluxed for 30 min. The reaction mixture was cooled and the solid that precipitated out was collected and crystallized from DMF to give $\mathbf{1 5 b}, \mathbf{c}$.

Table 1. Analytical data of the synthesized compounds

Compd.			m.p. ${ }^{\circ} \mathrm{C}$	Mol. formula	\%	lysis C	d. (F	nd)
no.		\%	solvent	Mol. Wt.	C	H	N	S
6 a	yellow	80	225-226	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	68.64	5.08	5.93	6.78
			DMF	472.23	(68.72)	(5.02)	(5.83)	(6.66)
6b	dark	82	264-266	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SCl}$	63.96	4.54	5.53	6.32
	yellow		DMF	506.72	(64.23)	(4.44)	(5.52)	(6.38)
6 c	orange	78	276-277	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$	62.67	4.45	8.12	6.19
			DMF	517.23	(62.52)	(4.24)	(8.03)	(6.08)
9 a	dark	84	258-259	$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	67.61	4.63	8.45	6.44
	yellow		DMF	497.23	(67.43)	(4.52)	(8.62)	(6.27)
9b	bright	77	320-322	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SCl}$	63.22	4.14	7.90	6.02
	brown		DMF	$531 . .72$	(63.04)	(4.03)	(7.84)	(6.14)
7 a	yellow	81	329-331	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$	75.90	6.02	8.43	-
			DMF	332.19	(75.63)	(6.14)	(8.63)	-
7b	yellow	85	206-207	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	68.76	5.18	7.64	-
			DMF	366.68	(68.64)	(5.02)	(7.83)	-
7c	yellow	88	214-215	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$	66.84	5.04	11.14	-
			DMF	377.19	(66.90)	(5.13)	(11.24)	-
10a	dark	86	214-216	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	73.95	5.32	11.76	-
	yellow		DMF	357.19	(73.63)	(5.21)	(11.54)	-
10b	bright	79	223-224	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$	67.43	4.60	10.73	-
	brown		DMF	391.68	(67.13)	(4.73)	(10.94)	-

10c	$\begin{aligned} & \text { dark } \\ & \text { yellow } \end{aligned}$	89	$\begin{gathered} 275-277 \\ \text { DMF } \end{gathered}$	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \\ 402.19 \end{gathered}$	$\begin{gathered} 65.67 \\ (65.51) \end{gathered}$	$\begin{gathered} 4.48 \\ (4.32) \end{gathered}$	$\begin{gathered} 13.93 \\ (13.83) \end{gathered}$	-
12b	dark	84	153-155	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$	66.44	4.61	9.69	-
	yellow		EtOH	$433 . .70$	(66.12)	(4.51)	(9.82)	-
12c	dark	78	150-151	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$	64.86	4.50	12.61	-
	yellow		EtOH	444.21	(64.84)	(4.32)	(12.41)	-
13b	dark	77	241-242	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$	70.23	4.44	8.48	-
	yellow		DMF	495.72	(70.13)	(4.24)	(8.21)	-
13c	brown	79	260-262	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$	68.77	4.35	11.07	-
			DMF	506.23	(68.63)	(4.11)	(10.90)	
14c	red	81	250-251	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$	61.25	3.94	16.24	-
			DMF	431.19	(61.21)	(3.67)	(16.42)	
15b	yellow	78	294-295	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$	67.26	4.33	7.13	-
			DMF	392.67	(67.13)	(4.12)	(7.34)	-
15c	yellow	83	244-246	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$	65.51	4.22	10.42	-
			DMF	403.17	(65.23)	(4.12)	(10.35)	-

Table 2. IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic data

Compd. no.	$\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$	${ }^{1} \mathrm{H}$ NMR ($\boldsymbol{\delta} \mathbf{~ p p m}$)	\mathbf{M}^{+}
6 a	$\begin{aligned} & 3350 \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 2.6(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 6.9(\mathrm{~s}, 1 \mathrm{H}) ; 7.0- \\ & 7.7(\mathrm{~m}, 10 \mathrm{H}) ; 7.8(\mathrm{~s}, 1 \mathrm{H}) ; 7.9(\mathrm{~s}, 1 \mathrm{H}), 8.8(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	472
6b	$\begin{aligned} & 3380 \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 3.0(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 6 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 7.0(\mathrm{~s}, 1 \mathrm{H}) \text {; } \\ & 7.2-7.6(\mathrm{~m}, 10 \mathrm{H}) ; 7.9(\mathrm{~s}, 2 \mathrm{H}) \text {. } \end{aligned}$	507
6 c	$\begin{aligned} & 3446 \\ & (\mathrm{NH}) \end{aligned}$	$3.1(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 6 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 6.9(\mathrm{~s}, 1 \mathrm{H}) ; 7.1-8.5(\mathrm{~m}$, $12 \mathrm{H})$.	517
9a	$\begin{gathered} 2216(\mathrm{CN}), \\ 3417(\mathrm{NH}) \end{gathered}$	$\begin{aligned} & 3.0(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 6 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 6.9(\mathrm{~s}, 1 \mathrm{H}) ; 7.0-7.6(\mathrm{~m}, \\ & 11 \mathrm{H}) ; 7.7(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	497
9b	$\begin{aligned} & 2219(\mathrm{CN}), \\ & 3415(\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 2.8(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 7.2(\mathrm{~s}, 1 \mathrm{H}) ; 7.3- \\ & 7.7(\mathrm{~m}, 10 \mathrm{H}) ; 7.9(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	532
7a	$\begin{aligned} & 3386 \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.3(\mathrm{~s}, 3 \mathrm{H}) ; 3.4(\mathrm{~s}, 3 \mathrm{H}) ; 3.8(\mathrm{~m}, 2 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 6.8 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 6.9(\mathrm{~s}, 1 \mathrm{H}), 7.1(\mathrm{~s}, 1 \mathrm{H}) 7.2-7.6(\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$	332
7b	$\begin{aligned} & 3252 \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 6.3(\mathrm{~s}, 1 \mathrm{H}) ; 6.4 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 7.1(\mathrm{~s}, 1 \mathrm{H}) ; 7.4-7.8(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	367
7c	$\begin{aligned} & 3323 \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.2(\mathrm{~m}, 2 \mathrm{H}) ; 6.4(\mathrm{~s}, 1 \mathrm{H}) ; 6.5 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}), 6.9(\mathrm{~s}, 1 \mathrm{H}) 7.1-7.6(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	377
10a	$\begin{aligned} & 2221(\mathrm{CN}), \\ & 3316(\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) ; 6.3(\mathrm{~s}, 1 \mathrm{H}) ; 6.4 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 7.2-7.6(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	357

10b	$\begin{gathered} 2225(\mathrm{CN}), \\ 3420(\mathrm{NH}) \end{gathered}$	$\begin{aligned} & 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) ; 6.8(\mathrm{~s}, 1 \mathrm{H}) ; 6.9 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 7.1(\mathrm{~s}, 1 \mathrm{H}) ; 7.4-8.2(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	392
10c	$\begin{gathered} 2200(\mathrm{CN}), \\ 3307(\mathrm{NH}) \end{gathered}$	$\begin{aligned} & 2.8(\mathrm{~m}, 2 \mathrm{H}) ; 3.6(\mathrm{~s}, 3 \mathrm{H}) ; 3.7(\mathrm{~s}, 3 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) ; 6.4(\mathrm{~s}, 1 \mathrm{H}) ; 6.9 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 7.1(\mathrm{~s}, 1 \mathrm{H}) ; 7.4-8.2(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	402
12b	$\begin{aligned} & 1656(\mathrm{CO}), \\ & 2217(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & 2.8(\mathrm{~m}, 2 \mathrm{H}) ; 3.7(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 6 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 7.0 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 7.4-8.2(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	434
12c	$\begin{aligned} & 1658(\mathrm{CO}), \\ & 2210(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & 2.0(\mathrm{~s}, 3 \mathrm{H}) ; 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.9(\mathrm{~s}, 6 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) \\ & 6,5(\mathrm{~s}, 1 \mathrm{H}) ; 6.8(\mathrm{~s}, 1 \mathrm{H}) ; 7.4-7.6(\mathrm{~m}, 4 \mathrm{H}) ; 7.9(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	444
13b	$\begin{aligned} & 1654(\mathrm{CO}), \\ & 2211(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & 2.9(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 7.3- \\ & 8.2(\mathrm{~m}, 11 \mathrm{H}) \end{aligned}$	496
13c	$\begin{gathered} 1672(\mathrm{CO}), \\ 2210(\mathrm{CN}) \end{gathered}$	$\begin{aligned} & 3.0(\mathrm{~m}, 2 \mathrm{H}) ; 3.9(\mathrm{~s}, 6 \mathrm{H}) ; 4.6(\mathrm{~m}, 2 \mathrm{H}) ; 6.8(\mathrm{~s}, 1 \mathrm{H}), 7.3(\mathrm{~s}, 1 \mathrm{H}) ; 7.4- \\ & 8.2(\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$	506
14c	$2218(\mathrm{CN})$	$\begin{aligned} & 2.7(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 6 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 6.8(\mathrm{~s}, 1 \mathrm{H}) ; 7.4- \\ & 8.2(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	431
15b	$\begin{aligned} & 1659(\mathrm{CO}), \\ & 2216(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & 2.8(\mathrm{~m}, 2 \mathrm{H}) ; 3.7(\mathrm{~s}, 3 \mathrm{H}) ; 3.9(\mathrm{~s}, 3 \mathrm{H}) ; 4.0(\mathrm{~m}, 2 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 6.8 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 7.4-8.2(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	393
15c	$\begin{aligned} & 1666(\mathrm{CO}), \\ & 2218(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & 2.7(\mathrm{~m}, 2 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 4.0(\mathrm{~s}, 3 \mathrm{H}) ; 4.1(\mathrm{~m}, 2 \mathrm{H}) ; 6.7(\mathrm{~s}, 1 \mathrm{H}) ; 6.9 \\ & (\mathrm{~s}, 1 \mathrm{H}) ; 7.4-8.2(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	403

Compound 10c: ${ }^{13} \mathrm{C}-\mathrm{NMR} 27.54,41.51,56.78,56.92,100.73,112.06,113.92,118.62$, $119.82,120.05,123.40,124.31,130.70,133.72,135.31,139.32,142.12,147.82,148.65$, 157.69.

Compound 9a: ${ }^{13} \mathrm{C}-\mathrm{NMR} 28.95,47.44,58.31,58.39,95.67,108.45,112.09,114.03$, $115.60,119.22,119.72,126.32,130.29,130.79,130.96,132.51,133.62,136.76,150.08$, 152.21, 155.38, 155.94, 157.48, 158.58.

References

1. Saraf, S. Heterocycles 1981, 16, 803.
2. Gootjes, J.; Nauta, W.Th. Rec. Trav. Chim. 1965, 84, 1183.
3. Saito, S.; Tanaka, T.; Kotera, K.; Nakai, H.; Sugimoto, N.; Horii, Z.; Ikeda, M.; Tamura Y. Chem. Parm. Bull. (Tokyo), 1965, 13, 614.
4. Pecherer, B.; Humiec, F.; Brossi, A. Syn. Commun. 1972, 2, 315.
5. Kametani, T.; Surgenor, S.; Fukumoto, K. Heterocycles 1980, 14, 303.
6. Meredith, R.F.K.; Ritchi, A.C.; Walker, T.; Whiting, K.D.E. J. Chem. Soc. 1963, 2672.
7. Kappe, T.; Linnau, Y. Monatshefte Chem. 1963, 100, 1726.
8. Akiba, K.; Nakatani, M.; Wada, M.; Yamamoto, Y. J. Org. Chem. 1985, 50, 63.
9. Benevsky, P.; Stille, JR. Tetrahedron Lett. 1997, 38, 8475.
10. Elwan, N.M.; Abdelhadi, H.A.; Abdallah, T.A.; Hassaneen, H.M. Tetrahedron 1996, 52, 3541.
11. Abdelhadi, H.A.; Elwan, N.M.; Abdallah, T.A.; Hassaneen, H.M. J. Chem. Res. (S), 1996, 292.
12. Spath, E.; Polgar, N. Monatshefte Chem. 1929, 51, 190.
13. Balasubramanian, M.; Baliah, V. J. Indian. Chem. Soc. 1955, 32, 493.
14. Openshaw, H.T.; Whittaker, N. J. Chem. Soc. 1961, 4939.

Sample Availability: Available from the authors.
© 2002 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

