Enantioselective Addition of Grignard Reagents to Aldehydes

Pablo Englebienne, Hernan Schulz and Norma Nudelman

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II, Piso 3. Ciudad Universitaria. 1428. Buenos Aires, Argentina E-mail: nudelman@qo.fcen.uba.ar

Abstract: The addition of Grignard reagents to aldehydes in the presence of chiral aminoalcohols shows a moderate enantioselectivity. The study carried out with a series of ligands allows the correlation between the structural characteristics and their reactivity.

Introduction

The use of chiral aminoalcohol to lead asymmetrically nucleophilic additions of organometallics to carbonyl compounds is a field of great potentiality in synthesis [1]. It is based on the coordination of amines and ethers to organolithium and Grignard reagents; the efficiency of the asymmetric induction depends, among other factors, on the characteristics of the metal [2], its aggregation state [3] and on the chiral ligand structure [4].

Experimental

General Procedure

To a mixture of 1 mmol of aldehyde and the corresponding amount of chiral ligand in the reaction solvent, 1.7 mL of a 0.6M of PrMgBr in the same solvent were added at -78°C. The quenching was carried out using 1 mL of HCl 5%. The products in the reaction mixture were investigated by GC and polarimetry.

Results and Discussion

The addition of PrMgBr to 3-phenylpropanal, **1**, and benzaldehyde, **2**, was carried out in the presence of asymmetric ligands derived from 2-aminobutanol and ephedrine in different solvents and reagent:ligand:substrate ratio (see Table). Several new ligands were designed and synthesized.

Chiral	Alde-	Reagent:Ligand:	Solvent	Yield	Absolute Con-	%
Ligand ^a	hyde	Aldehyde ratio		(%)	figuration	ee
3	1	1.2:0.2:1.0	toluene	77	S-(+)	5
4	1	2.0:0.5:1.0	ether	98	R-(-)	2
5	1	1.2:0.2:1.0	toluene	98	S-(+)	5
	1	1.2:0.2:1.0	ether	100	S-(+)	7
6	2	4.0:2.0:1.0	THF	98	R- (+)	3
7	1	4.0:2.0:1.0	THF	90	S-(+)	8
_	1	6.0:2.0:1.0	toluene	85	S-(+)	29
	2	6.0:2.0:1.0	toluene	51	S-(-)	40
8	2	4.0:2.0:1.0	THF	60	R-(+)	9
9	1	3.0:1.0:1.0	toluene	96	R-(-)	2

Table. Reactions of PrMgBr with 3-phenylpropanal, 1, and benzaldehyde, 2, in the presence of chiralligands.

^a $\mathbf{3} = (-)-2$ -dipropylaminobutanol, $\mathbf{4} = (-)-(1$ -benciloxymethylpropyl)-dipropylamine, $\mathbf{5} = (-)-4$ -ethyl-2,2-dimethyl-oxazolidine, $\mathbf{6} = (-)$ -ephedrine, $\mathbf{7} = (-)$ -pseudoephedrine, $\mathbf{8} = (-)-2,2,3,4$ -tetramethyl-5-phenyl-oxazolidine, $\mathbf{9} = (-)$ -N-propylephedrine.

Several conclusions can be extracted from this table:

- Donor solvents influence negatively the effectivity of the asymmetric catalysis, likely because these solvents compete in the coordination of the attacking reagent.
- The ligands with two asymmetric centers have higher effect in the asymmetric addition. The substitution by bigger groups in the nitrogen leads to lower selectivities.
- The use of oxazolidines does not lead to fine enantiomeric excess, probably due to the conformational rigidity.
- The asymmetric induction in the formation of aromatic secondary alcohols is more pronounced than in the aliphatic secondary alcohols.

Acknowledgements: H.S. is a grateful recipient of a fellowship from the Universidad de Buenos Aires. Financial support from the UBA, CONICET, ANPCyT and the CEE is gratefully acknowledged.

References and Notes

- 1. Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282.
- 2. Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723.
- 3. Nudelman, N. S.; Schulz, H. G.; García, G. V. J. Phys. Org. Chem. 1998, 11, 722.
- 4. Prasad, K. R. K.; Joshi, N. N. J. Org. Chem. 1997, 62, 3770.