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Abstract: Due to unique physico-chemical properties of –SH moiety thiols comprise wide 
group of biologically important compounds. A review devoted to biological functions of 
glutathione and phytochelatins with literature survey of methods used to analysis of these 
compounds and their interactions with cadmium(II) ions and Murashige-Skoog medium is 
presented. For these purposes electrochemical techniques are used. Moreover, we revealed 
the effect of three different cadmium concentrations (0, 10 and 100 μM) on cadmium 
uptake and thiols content in maize plants during 192 hours long experiments using 
differential pulse anodic stripping voltammetry to detect cadmium(II) ions and high 
performance liquid chromatography with electrochemical detection to determine 
glutathione. Cadmium concentration determined in tissues of the plants cultivated in 
nutrient solution containing 10 μM Cd was very low up to 96 hours long exposition and 
then the concentration of Cd markedly increased. On the contrary, the addition of 100 μM 
Cd caused an immediate sharp increase in all maize plant parts to 96 hours Cd exposition 
but subsequently the Cd concentration increased more slowly. A high performance liquid 
chromatography with electrochemical detection was used for glutathione determination in 
treated maize plants after 96 and 192 hours of treatment. The highest total content of 
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glutathione per one plant was 6 μg (96 h, 10 μM Cd) in comparison with non-treated plant 
(control) where glutathione content was 1.5 μg. It can be concluded that electrochemical 
techniques have proved to be useful to analyse plant thiols. 

Keywords: plant, thiol, heavy metal, electrochemistry, interaction. 

Abbreviations: GSH – reduced glutathione; GSSG – oxidized glutathione; PC2 – 
phytochelatin2; M-PC complex – metal-phytochelatin complex; LMW – low molecular 
weight; HMW – high molecular weight; MS medium – Murashige-Skoog medium; HMDE 
– hanging mercury drop electrode; CV – cyclic voltammetry; DPASV – differential pulse 
anodic stripping voltammetry; SH –sulfhydryl group; FIA – flow injection analysis; HPLC 
– high performance liquid chromatography; ED – electrochemical detection. 

 

1. Introduction 

An anthropogenic activity influences directly or indirectly not only an organism but also the whole 
populations and/or communities [1-3]. A technological development improving our living conditions 
also brought a plenty of negative effects on ecosystems. One of these effects is pollution of air, soil 
and water by various types of wastes and undesirable substances such as ash, dust, soot, SO2, CO, 
CO2, NO, NO2, heavy metals and organic compounds (e.g. phenols, dioxines, polycyclic aromatic 
hydrocarbons, pesticides). These compounds could be dispersed by air circulation, where they can 
react with various atmosphere components and fall on the ground, pollute the environment and affect 
the number of organisms [4]. They can be also transformed to metabolites more dangerous than 
primary pollutant in biosphere. In addition the polluted environment can influence negatively not only 
the physiological processes (nutrition uptake, growth, reproduction etc.) of an organism but also 
chemical properties of soil and that way also rate of decomposition processes. 

Heavy metals (ρ > 5 g.cm–3) are one of the most toxic and undesirable compounds polluting 
agricultural products [5-9]. They are natural components of the Earth's crust. To a small extent they 
enter our bodies via food, drinking water and air. As trace elements, some heavy metals (e.g. copper, 
selenium, zinc) are essential to maintain the metabolism of the human body. However, other ones such 
as cadmium, lead, and mercury are toxic at all. At higher concentrations both groups of heavy metals 
(toxic and essential) lead to poisoning. Heavy metals are also dangerous because they tend to 
bioaccumulate [10]. That is why the soil with high in heavy metals pose a threat to living organisms 
[9,11-15]. 

 
1.1 Uptake of heavy metals by plants 

Besides microorganisms and certain animal species, plants are the main group of organism affected 
by heavy metals in the soil. Plants have different strategies for uptake, distribution or redistribution of 
elements, which allow them to maintain stability of the inner environment (homeostasis). It is known 
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that plants increase solubility and mobility of elements such as iron due to easier and better uptake of 
them, which could proceed via roots and/or leaves (Fig. 1). 

The transport of heavy metals inside a plant is affected by number of various mechanisms (Fig. 1). 
A cell wall is the first barrier against heavy metals entering to plant cell. There heavy metals can be 
bound by various types of chemicals, first of all, by polysaccharide substances (pectin etc.). Based on 
the current accepted opinion these interactions are not directly regulated [16]. As for transport of 
heavy metals into a cell, the changes of H+ concentration could be responsible for passing of a heavy 
metal through cytoplasmic membrane. This mechanism is strictly controlled by transferring channels, 
which consume energy and/or use ions gradient. The passing of the metal ions through the membranes 
can also depend on a presence of carboxylic acids (citric or malic acids) and others substances able to 
chelate the ions. Besides passing of heavy metals through cytoplasmic membrane into a cell, 
movement of heavy metals in whole plant is not clear yet. Likely, redistribution of heavy metals occurs 
via xylem or phloem (Fig. 1). Further, plant has a very few possibilities to excrete heavy metals as 
follows: a) exudation of heavy metals via roots, b) deposition of them to trichomes and c) to “the 
oldest” leaves. It clearly follows from these facts that a plant attempts to transport heavy metals on 
places where they do not menace yet (Fig. 1). The ways of maintaining of heavy metal homeostasis in 
plants have been reviewed by Clemens [17], Clemens and Simm [18], di Toppi [19] and Cobbett [20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The basic scheme of maintaining of metals homeostasis and heavy metals distribution at 
plants [19,20]. 
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Figure 2. The scheme of cadmium detoxification by phytochelatins in a plant cell. Cadmium ions are 
transported through proton pump into the vacuole. Here, cadmium ions activate phytochelatin 

synthase, which form with the metals ions the M-PC complex (LMW Cd). This complex is 
consequently transported through tonoplast to vacuole (ATP consumption). Here, low molecular 

complex is transformed to high molecular weight M-PC complex (HMW M-PC) via –S–S– groups 
[17,18]. 

1.2 Response of plant cells on the presence of heavy metals 

When heavy metals pass through the cytoplasmic membrane, they can be bound by sulphur rich 
compounds – metallothionein like proteins, reduced glutathione and phytochelatins (PC), which are 
present in a cytoplasm. GSH belongs to the most abundant intracellular thiol-peptides, reaching up to 
10-3 molar concentrations in certain tissues and organelles [21,22]. As an important antioxidant, GSH 
plays a role in the detoxification of a variety of electrophilic compounds and peroxides via catalysis by 
glutathione S-transferases and glutathione peroxidases [23-25]. In addition, GSH is highly reactive and 
is often found conjugated to other molecules via its sulfhydryl moiety such as NO (S-
nitrosoglutathione) [26-28]. The synthesis of GSH from its constituent amino acids, L-glutamate, L-
cysteine, and L-glycine, involves two ATP-requiring enzymatic steps [29]. GSH serves several vital 
functions, including 1) detoxifying electrophiles; 2) maintaining the essential thiol status of proteins by 
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preventing oxidation of -SH groups or by reducing disulfide bonds induced by oxidative stress; 3) 
scavenging free radicals; 4) providing a reservoir for cysteine; and 5) modulating critical cellular 

processes such as DNA synthesis, microtubular-related processes, and immune function [29,30]. 
Moreover GSH can be used for synthesis of phytochelatins (a basic formula (γ-Glu-Cys)n-Gly (n = 2 to 
11)) participating in the detoxification of heavy metals at plants, because they have the ability to bind 
heavy metal ions via SH groups of cysteine units and consequently transport them to vacuole, where 
an immediate toxicity does not menace yet [31-35]. Complex of PC and a metal ion is called as low 
molecular weight metal-phytochelatin complex (LMW M-PC). After transporting of this complex 
through tonoplast to vacuole low molecular complex is transformed to high molecular weight M-PC 
complex (HMW M-PC) via –S–S– groups. The scheme of detoxification of cadmium in a plant cell is 
shown in Fig. 2. 

The synthesis PC itself involves the transpeptidation of the γ-Glu-Cys moiety of GSH onto initially 
a second GSH molecule to form PC2 or, in later stages of the incubation, onto a PC molecule to 
produce an n + 1 oligomer (Fig. 2). The reaction is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase 
(EC 2.3.2.15), which has been called as phytochelatin synthase [20,31,36]. In vitro the purified 
enzyme was active only in the presence of metal ions. Cadmium was the best activator of 
phytochelatin synthase followed by Ag, Bi, Pb, Zn, Cu, Hg, and Au cations (Fig. 2). 

 
1.3 Analytical instruments used to study of thiols 

Several high-performance liquid chromatographic (HPLC) methods applying different detection 
systems, UV-Vis or fluorescent detector [37-41], electrochemical (ECD) [42-54] and mass 
spectrometric (MS) [43,55-59] detectors, have been developed for the determination of thiols. Nuclear 
magnetic resonance, mass spectrometry and other robust analytical techniques can be used for study of 
interactions of the thiols with metals, however, the high concentrations required for most of the 
standard techniques of structural determination hinder a more exhaustive study of the geometry of 
metal–PC complexes [60]. Among of these robust analytical techniques, electrochemical detection 
(ED) is an attractive alternative method for heavy metal detection, because of its inherent advantages 
of simplicity, ease of miniaturization, high sensitivity and relatively low cost. Polarographic and 
voltammetric techniques, especially in pulse mode, have proved to be useful tools not only for the 
qualitative study of the heavy metal complexes with PC or GSH [61-68], since they provide different 
signals for the free peptide, the free metal ion and the metal bound in different chemical environments, 
but also for direct detection of thiols [69-82]. 

 
1.4 The aims 

In the present work, we aimed on utilizing of various electroanalytical techniques to analyse plant 
thiols. Primarily, we investigated interactions of GSH and PC2 with cadmium(II) ions using both 
stationary and flow electrochemical techniques. Further, we revealed the effect of three different 
cadmium concentrations (0, 10 and 100 μM) on growth of maize plants during 192 hours long 
experiments. Particularly, we determined changes in cadmium concentration in treated maize plants by 
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differential pulse anodic stripping voltammetry and thiol content by high performance liquid 
chromatography with electrochemical detection. 

2. Experimental 

2.1 Chemicals 

All analytical reagents of ACS purity were purchased from Sigma Aldrich Chemical Corp. (St. 
Louis, USA). Murashige-Skoog medium was purchased from Duchefa BV (Netherlands) and its pH 
was adjusted on 9.2. Phytochelatin (γ-Glu-Cys)2-Gly (PC2) was synthesized in Clonestar Biotech; 
purity over 90 % (Brno, Czech Republic). Solutions were prepared using deionised ACS water 
(Sigma). The stock standard solutions of reduced and oxidized glutathione, phytochelatins and 
thiosalicylic acid (TSA) at 1 mg.ml-1 were prepared with ACS water and stored in the dark at -20 °C. 
The working standard solutions were prepared daily by dilution of the stock solutions with ACS water 
and stored in the dark at the temperature of -4 °C. The pH value was measured using WTW inoLab 
(MultiLab Pilot; Weilheim, Germany), controlled by the personal computer program (MultiLab Pilot; 
Weilheim, Germany). The pH-electrode (SenTix-H, pH 0–14/3M KCl) was regularly calibrated by set 
of WTW buffers (Weilheim, Germany). All solutions were filtered through a 0.45 µm Teflon 
membrane filters (MetaChem, Torrance, USA) prior to HPLC separations.  

 
2.2 Electrochemical measurement  

Electrochemical measurements were performed with AUTOLAB Analyser (EcoChemie, 
Netherlands) connected to VA-Stand 663 (Metrohm, Switzerland), using a standard cell with three 
electrodes. A hanging mercury drop electrode (HMDE) with a drop area of 0.4 mm2 was used as 
working electrode, an Ag/AgCl/3M KCl electrode as referent ones and a graphite electrode as the 
auxiliary electrode. For smoothing and baseline correction the software GPES 4.4 supplied by 
EcoChemie was employed. 

 
2.3 Cyclic voltammetry of thiols 

The GSH, GSSG and PC2 were measured using cyclic voltammetry. The supporting electrolyte 
(0.05 M sodium tetraborate, pH 9.2) was used. CV parameters were as follows: the initial potential of 
–0.2 V, the end potential –0.8 V and step potential 5 mV. The samples of the GSH were reduced 
before each measurement by 1 mM tris(2-carboxyethyl)phosphine addition according to [45]. 

 
2.4 Differential pulse anodic stripping voltammetry of cadmium(II) ions 

Acetate buffer pH 5.6 (0.2 M CH3COOH + 0.2 M CH3COONa) was used as a supporting 
electrolyte. The homogenized samples of maize plants and diluted samples of nutrient solution were 
deoxygenated prior to measurements by purging with argon (99.999%) saturated with water for 10 
min. In addition, samples of nutrient solution were diluted in ratio of 1:100 (v/v) by acetate buffer (pH 
5.6). Cadmium concentration was measured by differential pulse anodic stripping voltammetry 
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(DPASV). The cadmium was deposited on HMDE at potential –0.7 V. During the deposition process 
(accumulation time 60 s) the solution was stirred at 1450 rpm at room temperature. The scan was 
initialised at –0.7 V and stopped at 0.0 V. The step potential 5 mV, modulation amplitude 0.05 mV and 
time interval 0.26 s were used. 

 
2.5 Flow injection analysis coupled with CouloChem III electrochemical detector 

A flow injection analysis with electrochemical detection (FIA-ED) system consisted of solvent 
delivery pump operating in range of 0.001-9.999 ml/min (Model 583 ESA Inc., Chelmsford, MA, 
USA), a guard cell (Model 5020 ESA, USA), a reaction coil (1 m) and an electrochemical detector. 
The electrochemical detector (ED) includes one low volume flow-through analytical cell (Model 5040, 
ESA, USA), which consists of a glassy carbon working electrode, a reference palladium electrode and 
an auxiliary carbon electrode, and CouloChem III as a control module. The obtained data were treated 
by CSW 32 software (Version 1.2.4, Data Apex, Czech Republic). The experiments were carried out at 
room temperature. Guard cell potential was 0 V. Britton-Robinson buffer (pH = 2.0) was used as the 
mobile phase. The sample (5 μl) was injected manually.  

A glassy carbon electrode was polished mechanically by 0.1 μm of alumina (ESA Inc., USA) and 
sonicated at the laboratory temperature for 5 min using a Sonorex Digital 10 P Sonicator (Bandelin, 
Berlin, Germany) at 40 W. 

 
2.6 High performance liquid chromatography coupled with CoulArray electrochemical detector 

A high performance liquid chromatography with electrochemical detection (HPLC-ED) system 
consisted from two solvent delivery pumps operating in the range of 0.001-9.999 ml.min-1 (Model 582 
ESA Inc., Chelmsford, MA), a Metachem Polaris C18A reversed-phase column (150.0 × 2.1 mm, 5 
μm particle size; Varian Inc., CA, USA) and a CoulArray electrochemical detector (Model 5600A, 
ESA, USA). The electrochemical detector includes two flow cells (Model 6210, ESA, USA). Each cell 
consists of four analytical cells containing working carbon porous electrode, two auxiliary and two 
reference electrodes. Both the detector and the reaction column were thermostated. The sample (5 µl) 
was injected manually. Thiosalicylic acid (TSA) was used as internal standard for determination the 
thiol compounds. HPLC-ED conditions as follows – mobile phase: 80 mM trifluoroacetic acid and 
methanol with a gradient profile starting at 97:3 (TFA:methanol) kept constant for first 8 min, then 
decreasing to 85:15 during one minute and kept constant for 8 min, and finally increasing linearly up 
to 97:3 from 17 to 18 min. Flow rate 0.8 ml.min-1, column and detector temperature 25 °C and 
electrode potential 900 mV were set [44,47]. 

 
2.7 Plant material 

Maize (Zea mays L.) F1 hybrid Gila was used in our experiments. Maize kernels germinated on wet 
filter paper in the vessels at 23 ± 2 °C in the dark. When the roots reached approximately 2 cm, the 
twenty five seedlings were placed into vessels contained 8 l modified aerated Richter′s nutrient 
solution [83]. The concentrations of macroelements per 1 l were 0.5 g Ca(NO3)2, 0.2 g KNO3, 0.2 g 
KH2PO4, 0.25 g MgSO4.7 H2O [83]. Iron in the form of Fe-EDTA was added to the nutrient solution 
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(10 mg Fe per 1 l). Microelements were added to the nutrient solution in the form of Hoagland′s AZ 
solution [84]. Plants were cultivated in a greenhouse in April 2006, in daylight (maximal light intensity 
was about 200 µEm-2s-1), at a temperature 23.5–25 °C and humidity 71–78 % (Fig. 3A). After 14 days, 
when the plants had developed five leaves, CdCl2 was added to the nutrient solution at a final 
concentration of 10 or 100 µM, respectively. Plants cultivated without the presence of CdCl2 served as 
a control. The maize plants placed in the vessels that contained modified aerated Richter′s nutrient 
solution with addition of CdCl2 (0, 10 and 100µM) were cultivated during the time of 192 hours. Ten 
plants were harvested at certain time intervals (0, 24, 48, 96 and 192 h) during the experiment and its 
roots were rinsed (three times) in distilled water and 0.5 M EDTA. In addition, each harvested plant 
was divided into leaves, shoot and root (Fig. 3B). Five plants were used for the determination of GSH 
content and fresh weight and another five plants were used for the determination of dry weight and 
cadmium concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Experimental scheme of maize plant used for cadmium and thiols determination (A). Total 
transpiration of control plants; transpiration was calculated according the procedure given in Material 

and methods. In inset: dependence of temperature and humidity during maize cultivation in greenhouse 
(0 – 22 days); the arrow indicates cadmium addition (B). 

2.8 Sample preparation for cadmium determination 

Plant parts (0.4 g of fresh plant material) were digested by an ETHOS SEL microwave digestion 
furnace (Milestone S.r.l, Italy) using a MDR 300/10 module. A three step procedure (i. 120 s, 250 W; 
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ii. 120 s, 0 W (120 °C); iii. 10 min 250 W (180 °C) with addition of 5 ml 65% HNO3 and 3 ml H2O 
was used. The clear digest was quantitatively transferred into a volumetric flask and diluted up to 25 
ml with water. 

 
2.9 Preparation of plant tissues for determination of thiols 

Weighed plant tissues (approximately 0.2 g) were transferred to a test-tube. Then, liquid nitrogen 
was added to the test-tube, and the samples were frozen. The frozen sample was transferred to mortar 
and spread for 1 min. Then exactly 1 000 μl of 0.2 M phosphate buffer (pH 7.2) was added to mortar, 
and the sample was spread for following 5 min. The homogenate was transferred to a new test-tube. 
The mixture was homogenised by shaking on a Vortex–2 Genie (Scientific Industries, New York, 
USA) at 4 °C for 30 min. The homogenate was centrifuged (14 000 g) for 30 min at 4 °C using a 
Universal 32 R centrifuge (Hettich-Zentrifugen GmbH, Tuttlingen, Germany). Before the analysis the 
supernatant was filtered through a membrane filter (0.45 μm Nylon filter disk, Millipore, Billerica, 
Mass., USA). 

2.10 Transpiration 

Transpired amounts of water were determined on the basis of nutrient solution mass decrease and 
according to the increase of fresh weight of three plants. Sartorius scale was used for measurement of 
fresh weight. For other details see in Ref. No. [85]. 

2.11 Statistical analysis 

STATGRAPHICS® (Statistical Graphics Corp®, USA) was used for statistical analyses. Results 
are expressed as mean ± S.D. unless noted otherwise. Differences with p < 0.05 were considered 
significant. 

3. Results and Discussion 

Due to increasing production and consumption of plant food it is necessary to control amounts of 
undesirable chemical compounds. The chemicals come into agro-ecosystem especially from fertilizers, 
pesticides and industrial toxic products containing heavy metals and toxic organic substances. In 
addition it is well known that heavy metals markedly influence growth of plants. That is why the study 
of plant response to heavy metals stress is especially important for the understanding of many 
biological processes [77,86-88]. Cadmium (Cd) is a toxic nonessential heavy metal that can be taken 
up by organisms [89]. It has been designated as a human carcinogen and in some cases a potent multi-
tissue animal carcinogen [89]. In plants Cd is also recognized to be one of the most phytotoxic metal 
pollutants. An excess of Cd typically causes a number of hallmarks of heavy metal poisoning, such as 
growth retardation, leaf chlorosis, changes of enzyme activities, altered stomatal function etc. [90]. 
Moreover, Cd itself can affect photosynthesis, transpiration and nutrient accumulation. Its presence in 
plant cell could also trigger programmed cell death [87,91,92]. Transport of Cd through plant organism 
may be influenced by different factors, such as transpiration [85], plant chelators [31,93] and Cd 
uptake by the roots [86,94]. The molecular mechanisms of Cd toxicity are not precisely known but SH-
groups of proteins and competition with Ca2+ ions are two possible targets of Cd2+ ions in cells [95]. 
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3.1 Investigation of interaction between heavy metals and thiols 

3.1.1 Phytochelatin and cadmium(II) ions 

To analyse thiols a battery of analytical instruments can be used as mentioned in “Introduction” 
section. Electrochemical techniques measuring redox or catalytic signals are suitable not only for 
detection of thiols but also for study of their interactions with various substances. It is a common 
knowledge that PC is able to bind heavy metals [20,96]. Thus, we were interested in the issue if we 
would be able to observe the interaction of PC2 with cadmium(II) ions by cyclic voltammetry. We 
added cadmium(II) ions to PC2 solution, then, the mixture was vortexed on a Vortex–2 Genie 
(Scientific Industries, New York, USA) at room temperature for 15 min. Phytochelatin without any 
heavy metal ions gives a typical cyclic voltammogram shown in Fig. 4A. We found out that reductive 
signal of phytochelatin2 decreased and signal corresponding to phytochelatin – cadmium(II) complex 
increased with increasing concentration of the heavy metal (Fig. 4A,B,C). The dependence obtained 
exponentially decreased according to the equation: y = 90.383e-0.0067x; R2 = 0.9924 and could be 
divided into two dependences: i) sharp decrease (y = -0.3473x + 83.666; R2 = 0.9799; Fig. 4Ca) and ii) 
more gradual decrease (y = -0.0745x + 37.649; R2 = 0.9566; Fig. 4Ba). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Interaction of phytochelatin with cadmium measured with Autolab Analyser. (A) Cyclic 
voltammograms of phytochelatin (10, 50 and 100 μM). (B) Influence of phytochelatin additions (0 – 

500 μM) on cadmium signals (150 μM). Arrows indicate changes of cadmium signals with increasing 
phytochelatin concentration. (C) Dependence of decrease of cadmium signal (150 μM of cadmium(II) 
ions) on phytochelatin additions (0 – 500 μM), changes within the range of (a) 0 – 150 μM and (b) 150 

-500 μM. Peak height of 100% corresponds to 717 nA. CV parameters were as follows: the initial 
potential of –0.2 V, the end potential –0.8 V and step potential 5 mV.  
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3.1.2 Glutahione and Murashige-Skoog medium 

Further, we utilized CV to analyse interaction of other biologically important thiol, glutathione, 
with more complex mixture – plant cultivation medium. Optimal composition of cultivation media for 
plants has been investigated and tested for many years. Media for plant cultivation contain macro- and 
microelements, phytohormones, vitamins, carbon sources and osmotic potential in the best balanced 
ratio. The influence of individual components on plant growth is still not clear due to a number of 
reactions between certain components and, most probably, between organism metabolites and 
components of the medium. Murashige-Skoog (MS) medium is most commonly used for in vitro plant 
cultivation. A number of experimental works have been devoted to the study of the influence of both 
organic and inorganic components of this medium on cell cultures [97,98]. Several authors described 
the influence of GSH added to cultivation medium on cell cultures [97]. GSH is a highly reactive 
molecule and, thus, has the ability to bind different ions, functional groups and/or toxic compounds via 
their SH group and to influence composition of the medium. By means of these interactions the 
concentration of reduced glutathione could be decreased. GSH (100 µM) was added to borate buffer 
with increasing volume of MS medium. The typical dependence of signal height on the volume of 
added MS medium is shown in Fig. 5A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. (A) Changes in concentration of “free” GSH with increasing concentration of MS medium to 
supporting electrolyte, time of interaction 4 min, stirring 1400 rpm and deoxygenating by argon. (B) 

Dependence of GSH concentration on time of interaction with ½ MS medium; in inset: typical 
voltammograms of GSH measured in ½ MS medium at 0, 4 and 8 h long interaction. GSH 
concentration 100 µM, temperature 25 °C. Peak height of 100 % corresponds to 390 nA. 

The slow decrease of the signal up to 70 % (v/v) content of the medium in supporting electrolyte 
was observed. When the concentration increased above 70%, the decrease of the glutathione signal 
was sharper. At the highest amounts of MS medium the glutathione signal was 11 % of original value 
and the concentration of free GSH was about 10 µM, what is ten times lower than initially added 
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amount of GSH. The time of the interaction was 4 minutes with intensive stirring and deoxygenating 
with argon. This time of the interaction was relatively short. Thus we studied the interaction of GSH 
and MS in the time scale up to eight hours. The obtained experimental dependence of the glutathione 
concentration on the time of interaction is shown in Fig. 5B. The GSH amount decreased more than 30 
% during the experiment. This means that the decreasing correlation between the time of interaction 
and GSH content resulted (y = -4.0508x + 98.252). Based on the results obtained we assumed that 
GSH interacted with inorganic components of MS medium, most of all, with metal ions such as 
zinc(II), copper(II), cobalt(II) [99,100]. 

 
3.1.3 Thiols and cadmium(II) ions 

Moreover, we attempted to utilize flow injection analysis with electrochemical detection (FIA-ED) 
to study interactions between thiols (GSH, GSSG and PC2) and cadmium(II) ions. Therefore, we had 
to characterize the thiols by means of FIA-ED, while glassy carbon electrode served as working one. 
The most suitable flow rate of mobile phase (Britton-Robinson, pH 2.0) for determination of the thiols 
was 1 ml/min. The typical hydrodynamic voltammograms of GSH, GSSG and PC2 are shown in Fig. 
6A.  

We studied the current responses of the thiols with the range from 500 to 1,000 mV. The current 
responses increased with increasing potential. The maximal responses for GSH and PC2 were obtained 
within potential from 750 to 900 mV, whereas GSSG gave the highest signal at the highest applied 
potential. The highest current responses give GSH (three times higher in comparison with GSSG 
signals), whereas the lowest responses give PC2 (inset in Fig. 6A). The differences in the current 
responses are probably associated with size of the molecules analysed and with accessibility of their 
electroactive moieties to be oxidized on the surface of the working electrode. Moreover, we studied the 
influence of thiols concentration on their signals. The signals obtained were well developed and 
symmetric (inset in Fig. 6A).  

As soon as we have characterized the behaviour of thiols measured by FIA-ED, we aimed on 
studying their interactions with heavy metals. We were interested in the issue if we can observe 
interactions between PC2 and cadmium(II) ions using FIA-ED as we were able, when we utilized CV 
for the same purposes (described above). It is clear from the results obtained that we were able to 
follow the interaction using FIA-ED. Particularly, decrease in PC2 signal with increasing concentration 
of cadmium(II) ions was observed in the flow-amperometric record (Fig. 6Ba). 

To our knowledge, free –SH moieties in PC2 molecule not only have the highest affinity to heavy 
metals but also show the highest electroactivity. PC2 signal decreased markedly with increasing 
cadmium(II) concentration up to 40 µM. This sudden decrease is probably associated with binding of 
cadmium(II) into all free –SH moieties of phytochelatins (Fig. 6Bb). In addition, the PC2 signal 
decreased with cadmium(II) dose higher than 50 µM more gradually, which can be associated with 
interactions of cadmium(II) ions with other free moieties in PC2 molecule (e.g. –NH). 



Sensors 2007, 7                            
 

 

944

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. (A) Hydrodynamic voltammograms of GSH, GSSG and PC2 (1 μM), temperature 25 °C; 
inset: comparison of peak heights of GSH, GSSG and PC2 and flow-amperometric responses of PC2 

(0.5, 1 and 1.5 µM). Peak height of 100 % corresponds to 890 µA. (Ba) Flow-amperometric record of 
interaction of PC2 (14 µM) with cadmium(II) ions (0, 20, 40, 65, 88 and 110 µM). (Bb) Dependence of 

PC2 peak height on increasing concentration of cadmium(II) ions. Potential: 900 mV. 

3.2 Effect of cadmium(II) ions on growth of maize plants 

After we have investigated the interaction between thiols and cadmium ions, the influence of 
cadmium(II) ions on maize plants was studied. After 14 days long cultivation the maize plants were 
used for the study of the influence of three different cadmium concentrations (0, 10 and 100 µM) on 
their growth during 192 hours long treatment. Ten maize plants were harvested in certain time 
intervals (0, 24, 48, 96 and 192 h). The harvested plants were divided into leaves, stems and roots and 
the obtained plant parts were homogenised and analysed. Five plants were used for the determination 
of GSH content and fresh weight and the other five for the determination of dry weight and Cd 
concentrations. The next important factor that influenced plant growth is transpiration. Transpiration 
was determined on the basis of nutrient solution mass decrease and according to the increase of fresh 
weight of plants according to Zaidi et al. [85]. Results of nutrient solution mass decrease were re-
calculated on 1 g fresh weight of plant (Fig. 3B). 

In the certain experimental time intervals (0, 24, 48, 96, and 192 h) plant samples were used to 
construct growth curves. Significant inhibition of plant growth was not observed at 10 µM Cd in 
nutrient solution in comparison with the control plant (Fig. 7). On the other hand, in nutrient solution 
containing 100 µM Cd significant growth depression of leaves, stems and roots was observed. The 
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plants cultivated at the highest Cd concentration (100 µM) had brown leaves tips and very poorly 
developed root systems. The morphological differences between control plants and plants treated by 
100 µM Cd were observed already after 24 h (not shown). Growth curves for fresh and dry weights of 
treated maize plants are shown in Figs. 7A,B, respectively. Both, dry and fresh weights of maize plants 
cultivated at 10 µM Cd increase almost linearly with time (Figs. 7A,B) on the contrary to 100 µM Cd 
dosage where maize plants growth reached a maximum after 96 hours (Fig. 7A,B) and then growth 
depression probably followed. Even after 48 hours, differences of plant growth curves for both 
cadmium concentrations were significant. Similar differences were also described in chickpea root and 
tobacco [101-103]. Growth curves for fresh and dry weights of non-treated maize plants are shown in 
Fig. 7A,B and are almost similar to growth curves of maize plants treated by 10 µM Cd. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Dependences of fresh weight: FW (A), and dry weight: DW (B) of maize plant parts on 
cadmium treatment time. Maize plants (hybrid Gila) were cultivated hydroponically for 192 h and the 

roots were treated with or without 10 and 100 µM Cd. Data are expressed as means (n = 5). 

3.3 Cadmium concentration changes in nutrient solution  

Primarily we focused on determination of cadmium concentration changes in nutrient solution 
during 196 h long experiment. These changes could be used to evaluate the plant`s ability to uptake Cd 
from the nutrient solution. Electrochemical determination of cadmium in nutrient solution was 
accomplished by differential pulse anodic stripping voltammetry (DPASV). The typical 
voltammograms of simultaneous determination of zinc(II), cadmium(II), lead(II) and cupper(II) (5, 10, 
20 and 39 nM) are shown in inset in Fig. 8A. The calibration curves in acetate buffer (Fig. 8A) is 
strictly linear with R2 = 0.99. The detection limits for the heavy metals as 3 S/N were evaluated as 
units and tens of pM. This very sensitive detection method was used due to precise detection of very 
small cadmium concentration changes in nutrient solution. 
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Figure 8. Electrochemical determination of zinc, cadmium, lead and copper by DPASV; calibration 
curve of heavy metals in acetate buffer (pH 5.6) (A); tA 60 s at –0.7 V; Estart –0.7 V; Estop 0 V, step 

potential 5 mV, modulation amplitude 0.05 mV, time interval 0.26 s; changes of cadmium content in 
nutrient solution during cultivation of plants (B); initial concentration of cadmium was taken as 100 %. 

Exactly 10 ml of nutrient solution were taken from cultivating vessels during the experiment at 
specified time intervals (0, 24, 48, 96 and 192 h). Each sample was diluted in ratio of 1:100 (v/v) by 
acetate buffer (pH 5.6) before analysis. Cadmium concentration in nutrient solution without maize 
plants that was determined by DPASV was not changed during 192 h (deviation around 5 %, not 
shown). We did not want to change any experimental parameters so we did not add any new nutrient 
solution during the cultivation. That is why we were sure that the water volume in nutrient solution in 
vessels had fallen and, simultaneously, Cd concentration had changed according to transpiration. After 
re-estimating of cadmium(II) concentration on the transpired amount of water the concentration in 
nutrient solution was decreasing faster at dosage 10 µM than 100 µM (Fig. 8B) [85]. The 
concentration of cadmium in cultivating vessels decreased up to about 20/60 % of initially applied 10/ 
100 µM Cd, respectively, at the end of experiment (Fig. 8B). 

 
3.4 Cadmium concentration changes in plants  

In addition we electrochemically determined concentration of cadmium in different parts (leaves, 
stems and roots) of maize plants by DPASV (Fig. 9). We found out very interesting trend in Cd uptake 
by plants. Cadmium concentration was very low in all parts of maize plants cultivated in nutrient 
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solution containing 10 µM Cd for 96 hours of treatment and then the concentration of Cd in all studied 
plant parts markedly increased (Fig. 9). This sudden increase probably relates with failure of root 
protective mechanisms that can prevent in uptake of heavy metals by plant [17,104]. Marked decrease 
of cadmium concentration in nutrient solution with initially 10 µM Cd concentration is shown in Fig. 
8B. On the other hand maize plants did not almost receive any cadmium from nutrient solution during 
first 96 hours of treatment (Fig. 9). The disproportion probably relates with cadmium adsorption on 
surface of roots and, consequently, the adsorbed cadmium was cleared away using EDTA before 
analysis [77]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Dependences of cadmium contents in leaves (A), stem (B), and root (C) on cadmium 
treatment time. 

On the contrary, the dosage of 100 µM Cd caused the immediate and sharp increase of cadmium 
concentration in stems and leaves to 96 hours of treatment but after that the Cd concentration in stems 
and leaves increased more slowly (Fig. 9). Concentration of cadmium in roots of maize plants exposed 
by the highest cadmium concentration (100 µM Cd) markedly increased to 48 hours, between 48 and 
96 hours of treatment increased very slowly but from 96 to 192 hours concentration of cadmium again 
markedly increased. Protective mechanisms contained in roots, which obstruct in uptake of heavy 
metals by plant, were probably damaged due to high and toxic cadmium concentration (100 µM Cd) 
already in the beginning of the experiment. That is why cadmium was easily transported to the plant by 
root immediately in the beginning of experiment. Increase of cadmium concentration in all parts of 
plants to 96 hours of treatment probably relates with active transport of nutrients from roots to above-
ground parts of plants [105]. After 96 hours of treatment, the transport pathways were probably 
damaged by cadmium presence and its concentration increase only in roots (Fig. 9). Due to damaging 
of the transport pathways, the transport of nutrients from roots to other parts of plants were insufficient 
and consequently we observed the growth depression (Fig. 7) [105-108]. The highest concentrations of 
Cd were determined in roots in comparison with other studied parts of plants treated by 10 and/or 100 
µM Cd. Approximately the same concentrations of cadmium were detected in leaves and stems of 
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plants treated by 10 and/or 100 µM Cd. The same results were obtained in oilseed rape and tomato 
[109,110]. 

 
3.5 Electrochemical determination of thiols 

3.5.1 Cyclic voltammetry of the thiols 

Electrochemical behaviour of certain thiols measured on the surface of mercury electrode in the 
presence of phosphate buffer has already been described [73]. On the other hand, the behaviour in the 
presence of other supporting electrolytes can differ seriously. Here we analysed three thiols (reduced 
GSH and oxidized GSSG glutathione, and phytochelatin PC2) in the presence of 0.05 M sodium 
tetraborate (pH 9.6). We chose this buffer because it belongs to the most commonly used buffers in 
electroanalysis. Cyclic voltammograms were recorded within the potential range from -0.2V to -0.8 V, 
whereas potential of -0.8 V was vertex potential. The typical voltammogram of certain compounds of 
interest has been obtained (Fig. 10A). GSH gave signal at potential PGSH (–0.44 V), GSSG peak PGSSG 
(–0.69 V) and PC2 peak PPC2 (–0.62 V). As for GSH, there are evident both reductive and oxidative 
signals [26]. The reductive signal corresponds to reduction of GS-Hg complex. In addition oxidative 
signal probably relates with oxidizing of GSH to GSSG [76] (Fig. 10Aa). Similar mechanisms could 
be expected for analysis of phytochelatin (Fig. 10Ac). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Electrochemical behaviour of reduced (GSH) and oxidized glutathione (GSSG) and 
phytochelatin2 (PC2). (A; a,b,c) Chemical formulas of GSH, GSSG and PC2, and their typical cyclic 
voltammograms. Thiol concentration 200 μM and scan rates (5, 25 and 50 mV/s). Dependence of (B) 

height and (C) potential of thiols signals on concentration (0 – 20 μM). Scan rates: 20 mV/s. 
Supporting electrolyte (0.05 M Na2B4O7, pH 9.2). CV parameters were as follows: step potential 5 

mV, start potential –0.2 V, vertex potential –0.8 V, deoxygenating by argon for 140 s. 
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On the other hand, GSSG is probably reduced on the surface of HMDE with consequent GSH 
formation. The formed GSH molecules could be oxidized. Voltammograms obtained by analysis of 
GSSG confirm these presumptions because they consist from several processes (there are three well 
observable signals, Fig. 10Ab). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Glutathione contents and cadmium concentrations in maize plants after treating 10 µM Cd 
(A) 100 µM Cd (B). Sample was collected at the time 0, 96 and 192 h. 

We found out that processes taking place on a surface of working electrode are strongly influenced 
by a supporting electrolyte and its pH [111]. We assume that a thiol would firstly be adsorbed on a 
surface of working electrode and then a compound of the thiol with mercury would be formed. After 
that electrode reaction of the thiol-mercury compound would take place. 

In our following experiments, we investigated the influence of scan rates (10, 20, 40, 80, 160, 320 
and 640 mV/s) on reductive signals of the thiols. We observed that the height of the analysed thiols 
signals increased proportionally with increasing scan rate (GSH, R2 = 0.98; GSSG, R2 = 0.87; and PC2 
R2 = 0.99). The potentials of the peaks shifted about 0.8 mV per 100 mV/s to more positive potentials. 
In addition we investigated dependence of thiols signals on their concentration (0 – 20 μM). The 
dependences were obtained at scan rate of 20 mV.s-1 by dilution of stock solutions of thiols and were 

G
SH

 c
on

te
nt

/fr
es

h
w

ei
gh

t(
μg

/g
 F

W
)

A

B

10 μM CdTime after Cd addition:

G
SH

 c
on

te
nt

/fr
es

h
w

ei
gh

t(
μg

/g
 F

W
)

100 μM CdTime after Cd addition:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L1 L2 L3 L4 L5 stem root

0.00

0.50

1.00

1.50

2.00

2.50

3.00

L1 L2 L3 L4 L5 stem root

0

200

400

600

800

1000

1200

L1 L2 L3 L4 L5 stem root

0

5

10

15

20

25

30

L1 L2 L3 L4 L5

0

400

800

1200

1600

2000

2400

L1 L2 L3 L4 L5 stem root

0

20

40

60

80

100

120

L1 L2 L3 L4 L5

10 µM Cd / 96 h

10 µM Cd / 192 h

control

100 µM Cd / 192 h

100 µM Cd / 96 h

control

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

10 µM Cd / 96 h

10 µM Cd / 192 h

control

100 µM Cd / 192 h

100 µM Cd / 96 h

control

G
SH

 c
on

te
nt

/fr
es

h
w

ei
gh

t(
μg

/g
 F

W
)

A

B

10 μM CdTime after Cd addition: 10 μM CdTime after Cd addition:

G
SH

 c
on

te
nt

/fr
es

h
w

ei
gh

t(
μg

/g
 F

W
)

100 μM CdTime after Cd addition: 100 μM CdTime after Cd addition:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L1 L2 L3 L4 L5 stem root

0.00

0.50

1.00

1.50

2.00

2.50

3.00

L1 L2 L3 L4 L5 stem root

0

200

400

600

800

1000

1200

L1 L2 L3 L4 L5 stem root

0

5

10

15

20

25

30

L1 L2 L3 L4 L5

0

400

800

1200

1600

2000

2400

L1 L2 L3 L4 L5 stem root

0

20

40

60

80

100

120

L1 L2 L3 L4 L5

10 µM Cd / 96 h

10 µM Cd / 192 h

control

100 µM Cd / 192 h

100 µM Cd / 96 h

control

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

C
ad

m
iu

m
co

nc
en

tr
at

io
n

(µ
g.

g-1
 D

W
)

10 µM Cd / 96 h

10 µM Cd / 192 h

control

100 µM Cd / 192 h

100 µM Cd / 96 h

control

100 µM Cd / 192 h

100 µM Cd / 96 h

control



Sensors 2007, 7                            
 

 

950

linear (GSH, y = 0.4431x + 0.0054, R2 = 0.9999; GSSG, y = 0.3189x - 0.0486, R2 = 0.9965; and PC, y 
= 0.2311x - 0.0085, R2 = 0.9933) with R.S.D. 6.5% (Fig. 10B). When we analysed thiols in the 
concentration range from 0 to 1,000 μM, we found out that the GSH signal shifted to a more negative 
potential and the potentials of GSSG and PC2 to more positive ones with their decreasing 
concentration. If the concentration of thiols decreased below 10 μM, they gave reductive signal at the 
same potential (–0.53 V), Fig. 10B. 

 
3.5.2 Changes in content of thiols in maize plants 

Detoxification mechanisms based on the synthesis of phytochelatins is the most probable 
explanation of the observed plant response at Cd presence. Many authors have observed that the most 
expressed effect of heavy metals in plants is easily observable in roots [101,102,112-116]. Roots are 
the most important gates for heavy metals uptake and that is why non-protein thiol compounds 
synthesised from glutathione as a response to stress factors are mainly presented in roots [104]. Thus, 
we analysed the level of glutathione in various maize parts (including roots) by optimised HPLC-ED 
method optimized by Petrlova et al. [44] and Potesil et al. [47]. GSH contents and cadmium 
concentrations in individual parts of plants exposed to Cd (0, 10 and 100 µM Cd) after 96 and 192 h of 
treatment are shown in Fig. 11A,B. The relatively high GSH content in the leaf L1 and the stem are the 
most interesting findings. The content of GSH decreased from the oldest to the youngest leaves. 
Observed changes in GSH content according to time of exposition were also very interesting. The 
GSH content maximum was reached close to 96 h and then the amount of GSH gradually decreased in 
plants exposed to 10 µM Cd. 

In plants exposed to cadmium dosage 100 µM, on the other hand, amounts of GSH increased 
continuously till the end of the experiment. The highest GSH contents were detected in stem, root and 
leaf L1. Again the tendency to a decrease in GSH content is evident in younger leaves (Fig. 11B). 
Number of authors has also observed changes in glutathione content during exposition by different 
stress factors [112,117,118]. On the other hand, a recent study of the regulation of phytochelatin 
synthesis in marine green alga has been published, where the authors have shown that glutathione 
content was constant [119]. 

We obtained surprising results for the total concentrations of Cd and GSH in a whole plant (Fig. 
12). Concentration of Cd in one plant according to treatment time is shown in Fig. 12A. Cadmium 
concentration in plants treated by 100 µM Cd increased almost linearly according to treatment time. 
On the other hand, Cd concentration in plants cultivated in nutrient solution containing 10 µM Cd 
markedly increased after 96 h of exposition. In addition, we determined cadmium concentrations in 
individual parts of maize plants (Fig. 12B). Finally we showed GSH content per a plant (Fig. 12C), 
because we attempted to observe the heavy metal stress response in whole organism exposed to the 
heavy metal. GSH content in roots did not change according to time of exposition and Cd 
concentration (Fig. 12C). This trend could suggest that protection mechanisms in roots are triggered by 
very low concentrations of a heavy metal. The maximal concentration of GSH was determined in the 
leaves of plants exposed to a lower cadmium dosage (10 µM Cd). The higher Cd dosage caused 
significant depression of GSH concentration that is probably related to phytochelatin synthesis 
[44,101,112]. 
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Figure 12. Cadmium concentration in one whole maize plant (A); cadmium concentration (B) and 
glutathione content (C) in individual parts of maize plants.  

Conclusion 

As we have shown, electroanalytical techniques enable easy and rapid analysis of thiols. Moreover, 
these techniques could be utilized to study interactions between thiols and metals. 
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