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Abstract: Embedded systems are playing an increasingly important role in control 

engineering. Despite their popularity, embedded systems are generally subject to resource 

constraints and it is therefore difficult to build complex control systems on embedded 

platforms. Traditionally, the design and implementation of control systems are often 

separated, which causes the development of embedded control systems to be highly time-

consuming and costly. To address these problems, this paper presents a low-cost, reusable, 

reconfigurable platform that enables integrated design and implementation of embedded 

control systems. To minimize the cost, free and open source software packages such as 

Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The 

drivers for interfacing Scilab with several communication protocols including serial, 

Ethernet, and Modbus are developed. Experiments are conducted to test the developed 

embedded platform. The use of Scilab enables implementation of complex control 

algorithms on embedded platforms. With the developed platform, it is possible to perform 

all phases of the development cycle of embedded control systems in a unified environment, 

thus facilitating the reduction of development time and cost.  

Keywords: Embedded systems, real-time control, Scilab, Linux, development. 
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1. Introduction 

With the availability of ever more powerful and cheaper products, the number of embedded devices 

deployed in the real world has been far greater than that of the various general-purpose computers such 

as desktop PCs.  The evidence includes the fact that of the 9 billion processors manufactured in 2005, 

less than 2% were used in PCs, Macs, and Unix workstations, while the remainder went into embedded 

systems [1]. An embedded system is an application-specific computer system that is physically 

encapsulated by the device it controls. It is generally a part of a larger system and is hidden from end 

users. There are a few different architectures for embedded processors, such as ARM, PowerPC, x86, 

MIPS, etc. Some embedded systems have no operating system, while many more run real-time 

operating systems and complex multithreaded programs. Nowadays embedded systems are used in 

numerous application areas, for example, aerospace, instrument, industrial control, transportation, 

military, consumer electronics, and sensor networks. In particular, embedded controllers that 

implement control functions of various physical processes have become unprecedentedly popular in 

computer-controlled systems [2-4]. The use of embedded processors has the potential of reducing the 

size and cost, increasing the reliability, and improving the performance of control systems.  

The majority of embedded control systems in use today are implemented on microcontrollers or 

programmable logic controllers (PLC). Although microcontrollers and programmable logic controllers 

provide most of the essential features to implement basic control systems, the programming languages 

for embedded control software have not evolved as in other software technologies [4,5]. A large 

number of embedded control systems are programmed using special programming languages such as 

sequential function charts (SFC), function block languages, or ladder diagram languages, which 

generally provide poor programming structures. On the other hand, the complexity of control software 

is growing rapidly due to expanding requirements on the system functionalities. As this trend 

continues, the old way of developing embedded control software is becoming less and less efficient.  

There are quite a lot of efforts in both industry and academia to address the above-mentioned 

problem. One example is the ARTIST2 network of excellence on embedded systems design 

(http://www.artist-embedded.org). Another example is the CEmACS project (http://www.hamilton.ie/ 

cemacs/) that aims to devise a systematic, modular, model-based approach for designing complex 

automotive control systems. From a technical point of view, a classical solution for developing 

complex embedded control software is to use the Matlab/Simulink platform that has been 

commercially available for many years. For instance, Bucher and Balemi [6] developed a rapid 

controller prototyping system based on Matlab, Simulink and the Real-Time Workshop toolbox; 

Chindris and Muresan [7] presented a method for using Simulink along with code generation software 

to build control applications on programmable system-on-chip devices. However, these solutions are 

often complicated and expensive. Automatic generation of executable codes directly from 

Matlab/Simulink models may not always be supported. It is also possible that the generated codes do 

not perform satisfactorily on embedded platforms, even if the corresponding Matlab/Simulink models 

are able to achieve very good performance in simulations on PC. Consequently, the developers often 

have to spend significant time dealing with such situations. As computer hardware is becoming 

cheaper and cheaper, embedded software dominates the development cost in most cases. In this 
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context, more affordable solutions that use low-cost, even free, software tools rather than expensive 

proprietary counterparts are preferable.  

The main contributions of this paper are multifold. First, a design methodology that features the 

integration of controller design and its implementation is introduced for embedded control systems. 

Secondly, a low-cost, reusable, reconfigurable platform is developed for designing and implementing 

embedded control systems based on Scilab and Linux, which are freely available along with source 

code. Finally, a case study is conducted to test the performance of the developed platform, with 

preliminary results presented. 

The platform is built on the Cirrus Logic EP9315 (ARM9) development board running a Linux 

operating system. Since Scilab was originally designed for general-purpose computers such as PCs, we 

port Scilab to the embedded ARM-Linux platform. To enable data acquisition from sensors and control 

of physical processes, the drivers for interfacing Scilab with several communication protocols 

including serial, Ethernet, and Modbus are implemented, respectively. The developed platform has the 

following main features: 

� It enables developers to perform all phases of the development cycle of control systems within a 

unified environment, thus facilitating rapid development of embedded control software. This 

has the potential of improving the performance of the resulting system.  

� It makes possible to implement complex control strategies on embedded platforms, for 

example, robust control, model predictive control, optimal control, and online system 

optimization. With this capability, the embedded platform can be used to control complex 

physical processes.  

� It significantly reduces system development cost thanks to the use of free and open source 

software packages. Both Scilab and Linux can be freely downloaded from the Internet, thus 

minimizing the cost of software.  

While Scilab has attracted significant attention around the world, limited work has been conducted 

in applying it to the development/implementation of practically applicable control applications. Bucher 

et al. [8] presented a rapid control prototyping environment based on Scilab/Scicos, where the 

executable code is automatically generated for Linux RTAI. The generated code runs as a hard real-

time user space application on a standard PC. The changes in the Scilab/Scicos environment needed to 

interface the generated code to the RTAI Linux OS are described. Hladowski et al. [9] developed a 

Scilab-compatible software package for the analysis and control of repetitive processes. The main 

features of the implemented toolkit include visualization of the process dynamics, system stability 

analysis, control law design, and a user-friendly interface. Considering a control law designed with 

Scicos and implemented on a distributed architecture with the SynDEx tool, Ben Gaid et al. [10] 

proposed a design methodology for improving the software development cycle of embedded control 

systems. Mannori et al. [11] presented a complete development chain, from the design tools to the 

automatic code generation of stand alone embedded control and user interface program, for industrial 

control systems based on Scilab/Scicos. 

The rest of this paper is organized as follows. In the next Section, we introduce the primary software 

tool used, i.e., Scilab. Section 3 discusses the software design lifecycle in embedded control systems 

and presents the design methodology adopted in this paper. In Section 4, the implementation of the 
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platform is described. Details of three major components, i.e., hardware, software, and interfaces, are 

given. The developed system is tested in Section 5 using an illustrative example. Experimental results 

are presented. We conclude the paper in Section 6.  

2. The Scilab/Scicos Environment 

Scilab (http://www.scilab.org) [12, 13] is a free and open source scientific software package for 

numerical computations, which provides a powerful open computing environment for engineering and 

scientific applications. It has been developed by researchers from INRIA and ENPC, France, since 

1990 and distributed freely and in open source via the Internet since 1994. It is currently the 

responsibility of the Scilab Consortium, whch was launched in 2003. Scilab is becoming increasingly 

popular in both educational/academic and industrial environments worldwide.  

Scilab provides hundreds of built-in powerful primitives in the form of mathematical functions. It 

supports all basic operations on matrices such as addition, multiplication, concatenation, extraction, 

and transpose, etc. It has an open programming environment in which the user can define new data 

types and operations on these data types. In particular, it supports a character string type that allows the 

online creation of functions. It is easy to interface Scilab with Fortran, C, C++, Java, Tck/Tk, LabView, 

and Maple, for example, to add interactively Fortran or C programs. Scilab has sophisticated and 

transparent data structures including matrices, lists, polynomials, rational functions, linear systems, 

among others. It includes a high-level programming language, an interpreter, and a number of 

toolboxes for linear algebra, signal processing, classic and robust control, optimization, graphs and 

networks, etc. In addition, a large (and increasing) number of contributions can be downloaded from 

the Scilab website. The latest stable release of Scilab (version 4.1.2) can work on GNU/Linux, 

Windows 2000/XP/VISTA, HP-UX, and Mac OS.  

Figure 1. A screen shot of Scilab/Scicos on a PC.  
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Scilab includes a graphical system modeler and simulator toolbox called Scicos 

(http://www.scicos.org), which corresponds to Simulink in Matlab. Scicos is particularly useful in 

signal processing, systems control, and study of queuing, physical, and biological systems. It enables 

the user to model and simulate the dynamics of hybrid dynamical systems through creating block 

diagrams using a GUI-based editor and to compile models into executable codes. There are a large 

number of standard blocks available in the palettes. It is possible for the user to program new blocks in 

C, Fortran, or Scilab Language and construct a library of reusable blocks that can be used in different 

systems. Scicos allows running simulations in real time and generating C code from Scicos model 

using a code generator. Scilab/Scicos is the open source alternative to commercial software packages 

for system modeling and simulation such as Matlab/Simulink. Figure 1 gives a screen shot of the 

Scilab/Scicos package.  

 
3. Embedded Control Systems Design 
 

3.1. Architecture 

 

As control systems increase in complexity and functionality, it becomes impossible in many cases to 

use analog controllers. At present almost all controllers are digitally implemented on computers. The 

introduction of computers in the control loop has many advantages [2]. For instance, it makes possible 

to execute advanced algorithms with complicated computations, and to build user-friendly GUI. The 

general structure of an embedded control system with one single control loop is shown in Figure 2. The 

main components consist of the physical process being controlled, a sensor that contains an A/D 

(Analog-to-Digital) converter, an embedded computer/controller, an actuator that contains a D/A 

(Digital-to-Analog) converter, and, in some cases, a network. 

Figure 2. General structure of embedded control systems.  

Network
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The most basic operations within the control loop are sensing, control, and actuation [3]. The 

controlled system is usually a continuous-time physical process, e.g. DC motor, inverted pendulum, etc. 

The inputs and outputs of the process are continuous-time signals. The A/D converter transforms the 

outputs of the process into digital signals at sampling instants. It can be either a separated unit, or 

embedded into the sensor. The controller takes charge of executing software programs that process the 

sequence of sampled data according to specific control algorithms and then produce the sequence of 
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control commands. To make these digital signals applicable to the physical process, the D/A converter 

transforms them into continuous-time signals with the help of a hold circuit that determines the input to 

the process until a new control command is available from the controller. The most common method is 

the zero-order-hold that holds the input constant over the sampling period. In a networked environment, 

the sequences of sampled data and the control commands need to be transmitted from the sensor to the 

controller and from the controller to the actuator, respectively, over the communication network. The 

network could either be wireline (e.g. fieldbus, Ethernet, and Internet) or be wireless (e.g. WLAN, 

ZigBee, and Bluetooth). In a multitasking/multi-loop environment, as illustrated in Figure 3, different 

tasks will have to compete for the use of the same embedded processor on which they run concurrently.  

Figure 3. A multitasking embedded control system. 

Control Task 1

Embedded Processor

...

Process 1

...

Control Task N Process N

Scheduler

 

3.2. Design Methodology 

There is no doubt that embedded control systems constitute an important subclass of real-time 

systems in which the value of the task depends not only on the correctness of the computation but also 

on the time at which the results are available [3]. From a real-time systems point of view, the temporal 

behaviour of a system highly relies on the availability of resources. Therefore, it is compulsory for the 

system to gain sufficient resources within a certain time interval in order that the execution of 

individual tasks can be completed in time. Unfortunately, most embedded platforms are suffering from 

resource limitations, which is in contrast to general-purpose computer systems. There are many reasons 

behind. For instance, embedded devices are often subject to various limitations on physical factors 

such as size and weight due to the stringent application requirements. In this context, care must be 

taken when developing embedded control systems such that the timing requirements of the target 

application can be satisfied. 

Traditionally, the development cycle of a control system consists of two main steps: controller 

design and its implementation. These two steps are often separated [4, 14], as shown in Figure 4, where 

the so-called V-model is given. While the controller design is usually done by control engineers, the 

implementation is the responsibility of system (software) engineers. In the first step, the control 

engineers model the physical processes using mathematical equations. According to the requirements 

specification, the control engineers then design the control algorithms. The parameters of the control 

algorithms are often determined through extensive simulations to achieve the best possible 

performance. A widely used tool in this step is Matlab/Simulink that supports modeling, synthesis, and 

simulation of control systems. In this environment the physical processes are usually modeled in 
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continuous time while the control algorithms are discretized to facilitate digital implementation. In the 

second step, the software engineers produce the programs executing the control algorithms with the 

parameters designed in the first step. There are a number of mature programming languages available 

for the implementation. The system will be tested, possibly many times before the satisfactory 

performance is achieved.  

Figure 4. Traditional development process of control software. 
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The traditional development process features separation of control and scheduling. The control 

engineers pay no attention to how the designed control algorithms will be implemented, while the 

software engineers have no idea about the requirements of the control applications with respect to 

temporal attributes. In resource-constrained embedded environments, the traditional design 

methodology cannot guarantee that the desired temporal behavior is achieved, which may lead to much 

worse-than-possible control performance. Furthermore, the development cycle of a system that can 

deliver good performance may potentially take a long time, making it difficult to support rapid 

development that is increasingly important for commercial embedded products.  

Figure 5. Integrated design and implementation on a unified platform. 

Integrated Platform

Design     Implementation

 
 

In this paper we adopt a design methodology that bridges the gaps between the traditionally-

separated two steps of the development process. As shown in Figure 5, we develop an integrated 

platform that provides support for all phases of the whole development cycle of embedded control 

systems. With this platform, the modeling, synthesis, simulation, implementation, and test of control 



Sensors 2008, 8                            

 

 

5508

software can be performed in a unified environment. Thanks to the seamless integration of the 

controller design and its implementation, this design methodology enables rapid development of high-

quality embedded controllers that can be used in real-world systems.  

4. Platform Implementation 

In this section, we describe the implementation of the above-mentioned platform for developing 

embedded control systems. As shown in Figure 6, this platform is composed of three main 

components: hardware, software, and interfaces. In the following, details of each component are given, 

respectively.  

Figure 6. Layered architecture of the developed embedded platform. 
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4.1. Hardware 

The development board used in this work is based on the EP9315 processor from Cirrus Logic, as 

shown in Figure 7. The EP9315 [15] is a highly integrated system-on-chip processor for consumer and 

industrial electronic products. It features an advanced 200 MHz ARM920T processor design with a 

memory management unit, separate 16KB instruction cache, 16KB data cache, 64MB SDRAM, and 

32MB flash memory. Linux, Windows CE and many other embedded operating systems are supported. 

The ARM920T has a 32-bit microcontroller architecture, along with a five-stage pipeline, and is 

capable of delivering impressive performance at very low power.  

The ARM920T core is augmented by the MaverickCrunch coprocessor. This coprocessor greatly 

accelerates the ARM920T's single- and double-precision integer and floating-point processing 

capabilities. The board includes a 10/100 Mbps Ethernet media access controller (MAC), a three-port 

USB 2.0 host, running at 12 Mbps, three UARTs, and external interfaces to SPI, AC97, IIS audio, 

PCMCIA, Raster/LCD, IDE storage peripherals, keypad and touchscreen, etc. In addition, a LG-Philips 

LB064V02-TD01 LCD is used to achieve user-friendly display.  
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Figure 7. The development board used. 

 

4.2. Software 

The key software packages used include Linux, TinyX, JWM, and Scilab/Scicos. All these tools can 

be freely downloaded from the Internet, see Table 1. Linux is a clone of the Unix OS and is most 

widely used as an operating system in embedded systems. Linux has almost all the features of a 

modern Unix system. The flexibility, scalability, reliability, and free nature of Linux have made it an 

increasingly popular platform for a large number of applications. The users can easily remove or 

modify components of the system that are not needed for a specific embedded system. Linux can run 

on many different types of processor architectures. While real-time versions of Linux have been 

available, the standard Linux is adopted in this work primarily because there is no need of writing 

kernel code. More discussion of the advantages and limitations of using standard Linux for real-time 

applications can be found in [16]. 

Table 1. Websites for software packages. 

Software URL 

Linux www.linux.org 

Scilab www.scilab.org 

Scicos www.scicos.org 

TinyX www.xfree86.org 

JWM www.joewing.net 

 

TinyX is a family of X servers designed to be particularly small, which is well suited for embedded 

systems. TinyX tends to avoid large memory allocations at runtime, and tries to perform operations on-

the-fly whenever possible. Unlike the usual XFree86 server, TinyX does not require any configuration 

files, and will function even if no on-disk fonts are available. With TinyX, the users can easily build 

their own GUI applications. JWM is a window manager for the X11 window system. It is written in C 

and uses only Xlib at a minimum.  
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4.2.1. Embedding Scilab 

Scilab/Scicos was originally designed for PC-based systems but not embedded ARM-Linux 

systems. Therefore, it is necessary to port Scilab/Scicos onto the embedded platform. Since the 

majority of core codes of Scilab are written in Fortran, we first build a cross-compiler for g77 in order 

to support cross-compilation of GUI, for example. The GUI system of Scilab/Scicos is based on X11, 

and therefore the X11 server TinyX is included. To reduce runtime overheads, we optimize/modify 

some programs in Scilab/Scicos.  

We have successfully ported Scilab/Scicos to the ARM-Linux system (see Figure 10). To achieve 

this goal, a number of files in Scilab and Linux have been modified. The main tasks involved in this 

process are as follows: 

� Port Linux to the ARM platform; 

� Port TinyX to ARM-Linux; 

� Port JWM to ARM-Linux; 

� Port Scilab/Scicos to ARM-Linux; 

� Configure and optimize the embedded Scilab/Scicos. 

For the first three tasks, technical instructions are available in the literature (see also websites listed 

in Table 1). Described below are some examples of modifications made for the purpose of porting 

Scilab/Scicos to ARM-Linux. Detailed programming operations are omitted here for simplicity.  

� The configure file: on Line 5900, insert 

int main () 

{ 

return 0; 

} 

� The configure file: on Lines 31696 and 31725, delete 

{ (exit 1); exit 1; }; 

� /scilab/routines/xsci/wf_f_util.c: change Line 76 to 

extern char *getcwd(); 

� /scilab/routines/xsci/x_misc.c: insert 

int sys_nerr; 

char *sys_errlist[]; 

4.2.2. Building Control Software in Scilab 

Since the source codes of Scilab and Scicos are independent of the underlying system platforms, on 

the ARM-Linux system it will still be feasible to use programs, blocks, and toolboxes produced on 

PCs. Scilab has a variety of powerful primitives for programming control applications. Most of them 

can be found in toolboxes such as general systems and control and robust control toolbox. There are 

several different ways to realize a control algorithm in the Scilab/Scicos environment. For instance, it 

can be programmed as a Scilab .sci file written in the Scilab language, or visualized as a Scicos 

block linked to a specific function/program written in Fortran or C.  
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Figure 8. A PID controller in Scicos. (a) Block. (b) Parameter setting dialog box. (c) 
Subsystem. 

(a)

(b)
(c)

 
 

As a simple example, Figure 8 shows the implementation of a PID controller in Scicos [17]. The 

PID control algorithm involves three critical parameters, i.e., the Proportional, Integral and Derivative 

values. The proportional component determines the response to current error. The integral component 

determines the response with respect to the sum of recent errors. The derivative component determines 

the response to the change rate of the error. The user can set these three parameters on the dialog box 

shown in Figure 8(b). The algorithm can be implemented as a (basic) block, see Figure 8(a), or a 

subsystem that is composed of a number of interconnected blocks, see Figure 8(c). 

4.3. Interfaces 

Scilab supports several ways to interface external code such as Fortran and C programs. One way to 

call external programs is, for example, to dynamically link the user-developed program with Scilab 

using the link primitive and then to interactively call the linked routine by the call primitive. This 

facilitates the use of specific code, which may be available already from another system or perform 

better in execution efficiency, in user-defined control software.  

In addition to software interfaces, embedded controllers must also provide support for interfacing 

Scilab with hardware I/O ports. At run time, an embedded controller needs to sample via sensors the 

output/state of the controlled physical process so as to compute the control command. The 

corresponding operations will then be performed on the physical process through using actuators. 

Therefore, Scilab has to communicate with other components in the embedded control system. To 

address this issue, we developed the drivers, as .so files, for interfacing Scilab with serial port, 

Ethernet, and Modbus on the embedded Linux system. The user interfaces for configuration of the 

connections are also implemented. These developed I/O interfaces enable not only the basic operations, 

i.e., sensing and actuation, within control systems, but also the construction of networked, possibly 
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large-scale and complex, control systems. As an illustrative example, Figure 9 describes the procedures 

for retrieving data from the serial port.  

Figure 9. Procedures to retrieve data from serial port. (a) Flow chart; (b) Code. 

Initialize pointers, buffer, etc.

START

Open serial port

Specify parameters

Any data
available?

Retrieve data from buffer

END

Y

N

int main(int argc, char 
**argv){
  int *port=1; 
  int *serialspeed=38400;
  int *databits=8;
  int *stopbits=1; 
  int *parity=0;
  int *handlevalue;
  int *fd;
  char buff[512];
  *fd =   opencom(port,
  serialspeed, databits,
  stopbits, parity,
  handlevalue);

  while (1) 
  {   
    Serialread(fd,buff);
    Serialwrite(fd,buff);
  }
  close(fd);  
  exit (0);
}

(a) (b)  

Figure 10. The embedded system developed. 

 
 

A snapshot of the real system we developed is shown in Figure 10. More details about the 

implementation of this system can be found in [18]. 
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5. Experimental Test 

In this section we conduct experiments on the developed embedded control platform. A water tank 

controller is implemented. The setup of the experimental system is shown in Figure 11. For simplicity 

the water tank is simulated by a PC running Scilab/Scicos. The PC and the embedded controller are 

connected using Ethernet. The Scicos models of the water tank running on the PC and the controller 

running on the ARM-Linux system are depicted in Figures 12 and 13, respectively.  

Figure 11. Experiment system. 

 

Figure 12. Model of water tank. 

 

Figure 13. Controller on the embedded platform. 
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Figure 14. Control performance of the experiment system. (a) System output (h = 0.1s); 
(b) System output (h = 0.5s). 

 

 

 (a)      (b) 

 

The control performance of the system is shown in Figure 14, where the system output (denoted y) 

is given for different sampling periods, i.e., h = 0.1s and 0.5s, respectively. It is seen that the control 

system delivers quite good performance, especially when the sampling period is 0.1s. In both cases, the 

water level successfully reaches the desired value (i.e. 10 in the experiment) and remains steady after a 

transient process. 

6. Conclusions 

In this paper we have developed an embedded platform that can be used to design and implement 

embedded control systems in a rapid and cost-efficient fashion. This platform is built on free and open 

source software such as Scilab and Linux. Therefore, the system development cost can be minimized. 

Since the platform provides a unified environment in which the users are able to perform all phases of 

the development cycle of control systems, the development time can be reduced while the resulting 

performance may potentially be improved. In addition to industrial control, the platform can also be 

applied to many other areas such as optimization, image processing, instrument, and education. Our 

future work includes test and application of the developed platform in real-world systems where real 

sensors and actuators are deployed.  
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