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Abstract: Finite Element Method (FEM) is a well known technique extensively studied 
for spatial and temporal modeling of environmental processes, weather prediction 
computations, and intelligent signal processing for wireless sensors. The need for huge 
computational power arising in such applications to simulate physical phenomenon 
correctly mandates the use of massively parallel computers to distribute the workload 
evenly. In this study, a novel heuristic algorithm called Line Graph Bisection which 
partitions a graph via vertex separators so as to balance the workload amongst the 
processors and to minimize the communication overhead is proposed. The proposed 
algorithm is proved to be computationally feasible and makes cost-effective parallel 
implementations possible to speed up the solution process. 

Keywords: Graph partitioning; Vertex separator; Heuristic algorithm. 
 

1. Introduction 

Finite Element Methods (FEM) and repeated solutions of linear systems of equations for different 
right-hand side vectors in the form of Ax=b where A is, often, a sparse matrix, and x and b represent 
the unknown solution and mismatch vectors respectively have been used extensively for spatio-
temporal modeling of solar radiation [1], climate [2,3,4], environmental [5] and biogeochemical 
changes [6], as well as in diverse fields such as Simultaneous Localization and Mapping (SLAM) [7,8] 
and VLSI design [9]. The need for huge computational power arising in such applications to simulate 
complicated physical phenomenon accurately, on the other hand, demands the use massively parallel 
computer architectures. These architectures with many nodes capable of performing computations 
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autonomously have a versatility of design alternatives as to the topology of the network amongst 
individual nodes for communication. A balanced distribution of the total workload imposed by such an 
application amongst the available processors of a parallel computer has been shown to be the key 
element in achieving high speed-ups. 

The issue of distributing the overall workload evenly amongst a set of processors has been widely 
studied [9-18] as a graph partitioning problem. This, in its general form, requires dividing the set of 
nodes of a weighted graph into disjoint sets such that the sum of weights of nodes in each subset is 
almost the same and the total weight of all of the edges connecting nodes in different partitions is 
minimized. The constraint of balancing over all subsets of the total weights corresponding to 
individual workloads of processors provides for a higher degree of parallelism, and hence, a minimized 
overall completion time, while the latter helps to decrease the amount of interprocessor 
communications by minimizing the sum of edge weights amongst different partitions. Depending on 
the type of the applications, partitioning is performed by a removal of either a small set of edges or a 
small set of nodes.  

In this paper, a novel heuristic algorithm called Line Graph Bisection to partition a graph by the 
latter approach, namely, node separators, is developed. The proposed algorithm is shown to be readily 
applicable within existing frameworks of graph partitioning, and also, proven to be computationally 
feasible. The paper is organized as follows: Section 2 presents a formal description of the nodal graph 
partitioning problem. Survey of the related work, and motivations that led to the development of the 
algorithm developed in this study are given in Section 3. Section 4 describes the proposed algorithm in 
detail and proves that it is computationally feasible. In Section 5, a comparative analysis is performed 
on the qualitative grounds and based on some test cases. A mapping scheme for parallelization is 
presented in Section 6. The paper is, finally, concluded and also some future research directions are 
specified in Section 7. 

2. Nodal Graph Partitioning 

Given an undirected graph G = (N,E) where N is the set of nodes, and E denotes the set of edges 
linking nodes, this study aims at partitioning it into clusters with vertex separators between them, and 
later, assigning each cluster to a processor such that the overall simulation time is minimized. Without 
loss of generality, the graph G is assumed to be connected. A vertex separator is defined to be a set of 
nodes GS ⊆  whose removal divides the graph into two disconnected components. Both the 
computational and communicational load in each processor must be optimized to achieve this goal. To 
this end, this study states two important optimization criteria: (1) load balancing and (2) separator 
minimization. The latter helps to minimize the interprocessor communication while increasing the 
amount of parallelism and reducing the number of sequential operations needed in the separator. 
Finding minimal size vertex separators was shown to be NP-Hard even in graphs with nodes having a 
maximum degree of three [19]. Since finding an optimum partitioning for a given graph is an 
intractable problem, this study proposes a novel heuristic approach called Line Graph Bisection (LGB) 
algorithm. 
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3. Related Work and Motivations 

There has been tremendous research on graph partitioning in the literature. Liu and Ashcraft [21] 
have classified them into two different categories: (1) direct approaches which construct partitions and 
(2) iterative approaches which improve them. Direct approaches include nested dissection algorithm 
[13,15] based on alternating level structures and spectral methods [22].  Kernighan-Lin algorithm [9] 
and its variant [11] use, on the other hand, an iterative approach by either swapping vertices between 
the existing partitions or moving a vertex from one partition to the other. Another example of an 
iterative approach is given in Liu’s work [16] based on bipartite graph matching. This work has later 
been extended by Liu and Ashcraft [21] using a method that very much resembles to a version of 
Kernighan-Lin algorithm that operates directly on a vertex separator by moving nodes to and from the 
corresponding partitions this time. 

There exist some other algorithms which have relied on the underlying characteristics of the 
problem domain. One such algorithm that arises in applications where the graph is planar was studied 
by Lipton and Tarjan [23]. As planarity of the graphs representing different problem domains is not 
often preserved, such existing methods are not normally expected to produce good load-balanced 
partitions with minimal separator size. Duff et al. [12] have provided an interesting discussion of an 
automatic partitioning in the context of reordering and pointed out that there are no partitioning 
algorithms that are presently in common use with a sparse matrix package. 

It is emphasized in [24] by Hendrickson and Rothberg that finding an edge separator first, and then, 
trying to obtain a vertex separator from it typically based on a matching technique are only indirectly 
related to the quantity that should actually be minimized. A combination of local improvement 
techniques is, however, noted to be more effective [24]. Pothen, in [25], describes the use of 
Kernighan-Lin algorithm in the post processing stage of different implementations as a good 
refinement policy. Karypis and Kumar [26] have used a variant of Kernighan-Lin for refining the 
results obtained by a multilevel partitioning scheme and proved that it was effective. Gupta [10] has 
presented another example of a partitioning framework which incorporates Kernighan-Lin algorithm in 
its refinement phase. Gupta [10] has also reported that the assumption of the size of a node separator 
being proportional to the size of the edge separator containing it was often incorrect, especially, for 
highly unstructured linear programming matrices. 

Kernighan-Lin algorithm as an edge separator minimizing bisection algorithm can be seen to find 
its niche in refining results obtained via a versatility of algorithms and frameworks proposed in the 
literature. This observation coupled with the fact that constructing vertex separators from edge 
separators is not always effective forms the primary sources behind the motivation for LGB algorithm 
devised in this study. LGB is, hence, developed to obtain vertex separators directly, and yet, has the 
same characteristics as does Kernighan-Lin (KLB) algorithm so that it is readily applicable to domains 
where KLB is currently being used. The objective stated may as well hint to the idea behind LGB. If 
KLB could be somehow modified without imposing any constraints on the way it operates in such a 
way that it would be possible to treat the nodes as if they were edges, LGB would find its uses in graph 
partitioning through vertex separators both as a better replacement for KLB when used in the 
refinement phase and as a standalone heuristic algorithm which may be coupled with other 
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combinatorial techniques to produce more powerful schemes to better suit the needs of different 
domains.  

4. Line Graph Bisection Algorithm 

Line Graph Bisection algorithm has been inspired from the well-known Kernighan-Lin [9] graph 
bisection algorithm (KLB) by incorporating some novel modifications so as to make finding vertex 
separators possible. KLB finds small edge separators in )log( 2 nnΟ time where n denotes the number 
of nodes in the graph. Fiduccia and Mattheyses [11] improved this running time to )( EΟ . Before the 

details of LGB algorithm that finds small vertex separators directly are given, some new terminologies 
used throughout the paper are first introduced briefly. 

4.1 Terminology 

Definition 4.1: A Line Graph L(G) (also called an interchange graph) of a graph G is obtained by 
associating a vertex with each edge and connecting two vertices with an edge if and only if the 
corresponding edges of G meet at one of the either nodes that are endpoints. 

Let us assume that we have a graph of which all the nodes are numbered and all the edges are 
labeled distinctly. In this case its line graph is the graph obtained by replacing each edge with a 
corresponding single node and each node with some number of edges proportional to the degree of the 
respective node. An example graph G and its corresponding line graph L(G) are depicted in Figure 1. 

As can be seen from Figure 1, since there exists at most one edge between two different nodes in 
the original graph G, every node in L(G) will have edges emanating from it labeled by one of the two 
distinct labels corresponding to the two nodes it connects in G. Let us consider the edge labeled 3-4 in 
G in Figure 1a. It can be seen that all the edges incident on node 3-4 of L(G) in Figure 1b are labeled 
by either 3 or 4 which are the nodes linked by the corresponding edge in G. 

Terminal nodes in the original graph, on the other hand, with a degree of one will be edges in the 
line graph represented with one of their end points as a non-existent artificial node. It should also be 
noted that artificial nodes in L(G) (see Figure 1) are just for the sake of completeness and do not have 
a corresponding edge in the original graph G. 

Definition 4.2: Labeled degree of a node in a line graph L(G) is defined as the total number of the 
distinct labels of the edges incident on this node. 

Theorem 4.3: The labeled degree of each node that is not artificial is exactly two in the line graph. 
Proof: It follows easily from the definition of line graph and Definition 4.2. Each node n with the 

exception of artificial nodes in L(G) corresponds to a unique edge e connecting nodes x1 and x2 in the 
original graph G. The only possibility for node n to be connected to other nodes in L(G) is therefore 
through edges labeled either x1 or x2 which correspond to nodes x1 or x2, respectively in G. □ 

It can easily be derived from Theorem 4.3 that there exists no degree one vertex in a line graph with 
the exception of artificial nodes. This fact is presented in Lemma 4.4. 

Lemma 4.4: There exists no degree one vertex in a line graph. 
Proof: Q.E.D by the above stated fact. □ 

Having introduced the terminology, the KLB algorithm whose understanding is crucial to the 
development of the proposed (LGB) algorithm can be described now. 
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Figure 1. A graph and its corresponding line graph. 

4.2 A Close Look at the KLB Algorithm 

The Kernighan-Lin algorithm [9] is a well-known graph bisection heuristic and finds small edge 
separators in )log( 2 nnΟ time where n is the number of nodes in G. Succeeding discussions in this 
section of the paper refer to a more efficient version of KLB described in [11] where Fiduccia and 
Mattheyses improved the running time to )( EΟ , since the proposed LGB algorithm is also based on 

that version of KLB implementation found in [11]. 
In order to partition a graph into two clusters such that the total weight of the edges in the cut, i.e., 

between the two partitions, will be minimized, and the sum of the node weights in each of the two 
partitions will only differ by a tolerance factor, the graph is initially partitioned into two randomly 
chosen sub-graphs. Then, by a number of moves originating from the partition with more total weight 
to balance the load implicitly, the cut size (the sum of the weights of edges from one partition to the 
other partition) is tried to be made smaller. To perform such a task, the node to be selected in each 
move should be the one which has the maximum gain. The gain of a node in the KLB algorithm is 
defined as the total weight of edges by which the cut size would increase or decrease if this node were 
to be moved to the other partition. Each node in a given configuration has some internal and external 
edges (i.e., some link to those vertices in the same partition, and others to those in the other partition, 
respectively). The gain of a node ni, say in partition A, to be moved to partition B is thus defined as 
follows: 
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(a) A graph G with 6 nodes. (b) Corresponding line graph L(G).
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where w(i, j) denotes the weight of an edge between nodes ni and nj. This is exactly equivalent to the 
total weight of external edges minus the total weight of internal edges incident on node ni. An initial 
partition by KLB is shown in Figure 2, with all the gain values already calculated. For the sake of the 
ease of representation in Figures 2 and 3, it is assumed in this example that all the edges have a weight 
of one. This causes the gain calculations to be reduced to be simply the difference of the number of 
external and internal edges. Since partition B has more number of nodes as shown in Figure 2, a node 
with the maximum gain value belonging to this partition is chosen. If there are multiple candidates 
with same gain value, the tie can arbitrarily be broken. After the move is performed, the gains of other 
nodes need to be updated to account for the displacement caused by this move. The reason that this 
process is quite straightforward in KLB is two folded: First, calculating the gains of just the adjacent 
nodes is sufficient since they are the only ones affected by the move. Second, the gains of the adjacent 
nodes need not be computed from scratch as they can easily be updated based on the knowledge of 
prior gain values. Each neighbor nj of the moved node ni if external now has a gain of gainold + 2w(i, j), 
and those which are in the same partition now have a new gain equal to gainold – 2w(i, j) where w(i, j) is 
the weight of the edge between nodes ni and nj.  The moved node is, finally, locked not to be moved 
once again. Figure 3 depicts the configuration reached after node 7 after it is moved to partition A and 
locked there. 

Figure 2. An example initial partition for KLB algorithm. 

The process continues until all the nodes are locked. To prevent the procedure from getting stuck at 
a local maximum, the sequence of moves that gives the maximum total decrease in the cut size is 
chosen afterwards. This, in turn, means that some intermediary individual moves that may even 
worsen the cut size are allowed. All the nodes are unlocked at the end of the iteration, and the 
sequence of moves minimizing the cut size is actually performed this time, thus resulting in a new 
configuration, and the algorithm is restarted with this new initial configuration. The overall procedure 
may be repeated so long as either the cut size decreases or the load balance is improved. 
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Figure 3. An example move by KLB. 

Figure 4 lists the moves performed by KLB for the example initial configuration given in Figure 2 
and iterated in Figure 3. Cut size is initially equal to 2 as can be seen in Figure 2. Moves 1 through 5 
are performed to maximize the total gain resulting in a cut size of 1. This algorithm as described is 
simple and fast. 

 
Move # Node moved New Partition Gain 

1 7 A -1 

2 2 B -1 

3 10 A +1 

4 1 B +1 

5 11 A +1 

6 3 B 0 

7 8 A -1 

8 5 B -1 

9 9 A -1 

10 4 B +1 

11 6 A +1 

Figure 4. Moves performed by KLB. 

In the next section, how the proposed algorithm, LGB, has evolved will be explained, and it will be 
presented in detail.  

4.3 LGB Detailed 

The trick which makes the LGB algorithm possible is to convert the original graph G into its 
corresponding line graph L(G). The property that the edges of the line graph correspond to the nodes of 
the original graph enables us to design a new heuristic algorithm which once more finds small edge 
separators but in the line graph this time. This, in effect, allows us to directly obtain vertex separators 
for the corresponding original graph. 
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Figure 5. Original graph G. 

The LGB algorithm is, in essence, a modified version of KLB in that both the characteristics of the 
line graph such as the existence of edges, now, that needs to be treated as one and the requirements 
imposed by the original problem such as the necessity to keep track of the loads of the respective 
partitions in terms of the weights of the edges rather than nodes are neatly taken into account so as to 
efficiently compute small edge separators. Assuming that such small edge separators can feasibly be 
found in the line graph through an algorithm which is going to be described in full detail shortly, it is 
trivial to derive the corresponding nodal partition induced in the original graph which corresponds 
exactly to the minimum cut partition obtained by LGB in the line graph. 

An example graph G for which a small size vertex separator is sought and its corresponding line 
graph L(G) are depicted in Figures 5 and 6, respectively. The numbers shown next to each edge in 
Figure 5 are used to uniquely identify them. All the nodes are assumed to be associated with a weight 
of one for the example graph G given in Figure 5. The dotted line in red seen in Figure 6 represents the 
bisection of L(G) computed by the LGB algorithm. There are a total of four edges in the cut in Figure 
6. These edges have been all labeled the same (i.e., 3 corresponding to node 3 in Figure 5). It can 
easily be seen from Figure 6 that nodes 1, 2, 4 and 7 shaded in grey together with edges 1, 2, 3, 6, and 
9 of L(G) to the left of the dotted line in red are all pinned in a separate partition. These grey-shaded 
nodes 1, 2, 4, and 7 in Figure 6 are actually the edges labeled as 1, 2, 4, and 7 again, respectively in 
Figure 5. The edge separator and the partitioning scheme in Figure 6 obtained by the LGB algorithm, 
thus, induce the nodal partitioning specified by the configuration of Figure 5 in which only node 3 
ends up in the separator. While nodes in grey (1, 2, 6, 9) are assigned to a partition, nodes in yellow (4, 
5, 7, 8) are placed in another which turns out, in this case, to be an optimal vertex partition with 
respect to both the separator size minimization (just node 3) and the load balance (each have 4 nodes) 
constraints. It should, however, be noted at that point that the cut size has been treated as one in Figure 
6 by counting only the number of distinct labels of weight one as specified by the example at the cut. 
As it is quite clear from the discussion of the example, LGB is a modified KLB applied to the line 
graph. The only modifications needed, apparently, are those which stem from the fact that a number of 
edges having the same label in the line graph have to be treated as a single edge and the fact that the 
partition weights implicitly used to control the quality of load balance are, now, a function of the edge 
weights rather than the node weights. The existence of multiple edges having the same labels in the 
line graph as seen in Figure 6 has a direct effect on the way the gain of a node is calculated and 
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updated in the line graph. The efficiency of the proposed LGB algorithm heavily depends on 
preserving the locality of updates in LGB as is the case in KLB. 

Figure 6. Example line graph L(G) of G. 

In light of the previous discussion, the overall procedure for partitioning a graph via vertex 
separators may be formulated as listed in Figure 7. 

 
Procedure 4.1: Nodal Graph Partitioning via LGB 
Input: Original graph G, and tolerance factor ε  for load balance. 
Output: Vertex separator S and the partitions A, B which are the two disconnected set of connected 
components that have no edges whatsoever that connects one partition to the other in G after the 
removal of the nodes in separator S such that S  is minimized and the load is evenly distributed 

amongst partitions A and B such that ε≤− 2/)( BAabs where ε  is the tolerance factor specified. 

(1) L(G) ←Convert the original graph G into its corresponding line graph; 
(2) Partitions P1, P2 ←  LGB(L(G), ε ); 
(3) Recover the nodal partitions A, B, and separator S in G induced by P1, P2 of L(G); 

Figure 7. Computing vertex separators. 

For computing vertex separators as outlined in Figure 7, the original graph G is first transformed 
into its line graph equivalent L(G). The LGB algorithm is, then, applied to obtain the partitions P1 and 
P2 similar to the KLB algorithm. The only exception is, this time, that gain value calculations and 
updates take place with respect to the labeled edges grouped into two for each node. The vertex 
separator and the corresponding partitions are, finally, recovered in G as dictated by the partitioning 
scheme induced by P1 and P2 of L(G) obtained by an application of LGB. As the corresponding line 
graph of the original graph has now been partitioned into clusters such that the sum of the weights of 
the edges with distinct labels across clusters is minimized and the load of each cluster is balanced up to 
a tolerable amount, the total weight of the vertices in the separator of the original graph corresponding 
to the distinct labels of the edges in the cut of its line graph have also been minimized effectively. A 
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similar argument holds with respect to the balancing of load over the partitions so long as a 
modification is incorporated into LGB such that the sum of all the individual weights of the labels in 
the set of distinct labels of edges instead of the total weight of nodes in respective partitions of L(G) at 
any time is used to keep track of the individual weights of the partitions. Such a modification, which 
certainly frees us from assuming that the number of edges and vertices in the original graph are 
linearly proportional, is possible as will be explained shortly. The load is, therefore, balanced by LGB 
up to an amount specified by the tolerance factorε . 

The individual steps of Procedure 4.1 for computing vertex separators given in Figure 7 are detailed 
next in the following subsections. 

4.3.1 Converting the Original Graph into its Line Graph 

An algorithm to convert a given graph G into its corresponding line graph L(G) is sketched in [20]. 
The fact stated in Lemma 4.5 hints to the implementation of the line graph conversion algorithm used 
in step (1) of Procedure 4.1. 

Lemma 4.5: The incidence matrix CG of a given graph G and the adjacency matrix JL(G) of its line 
graph L(G) are related by ICCJ G

T
GGL 2)( −= where I is the identity matrix [20]. 

Lemma 4.6 given below is used to show the time complexity of the line graph conversion algorithm 
used. 

Lemma 4.6: The line graph L(G) of a graph G with n nodes, e edges, and vertex degrees di contains 

en =′  nodes and ede
n

i
i −=′ ∑

=1

2

2
1  edges [20]. 

Lemma 4.7: The running time complexity of the algorithm to find L(G) is O(e2) in the worst-case 
scenario and it is optimal. 

Proof: The first for loop for labeling the edges takes [ ] ed
n

i
i =∑

=1
2/  iterations where di is the degree 

of node i ∈  {1..n}. The second for loop for constructing the same labeled edges, on the other hand, is 

repeated as long as [ ] 2

1
2/)1(* edd

n

i
ii ≤+∑

=

 times in the worst case. Thus, the algorithm has a running 

time proportional to O(e2) which completes the proof of the first part. The latter expression is simply 
the number of edges in L(G) given in Lemma 4.6. Hence, the number of edges in L(G) forms clearly a 
lower bound on the algorithm’s time complexity. This, in turn, renders the algorithm optimal. □ 

4.3.2 LGB Algorithm and the Data Structures 

The LGB algorithm used in step (2) of Procedure 4.1 to find small vertex separators for partitioning 
a graph is listed in Figure 8. Both the data structures used and the algorithm itself are described next in 
the execution order as explanations are provided in detail. 

The input to the Algorithm 4.2 listed in Figure 8 is the line graph L(G) of the original graph G. L(G) 
is represented as an array of size e which corresponds to the number of edges in G. 
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Algorithm 4.3: LGB 
Input: Adjacency matrix JL(G) of the graph L(G) JL(G) corresponding to the line graph of G with n nodes 
and e edges and a tolerance factorε . 
Output: Partitions P1, P2 with possibly a minimum labeled cut size, namely, sum of the weights of the 
labels in the set of distinct labels of all the edges in the cut that link the respective partitions of L(G). 

(1) obtain an initial partition P1 and P2 of L(G) with ⎣ ⎦21 eP =  and 12 PeP −= ; 

(2) compute L[1]s, L[1]o and L[2]s, L[2]o for labels L[1]n and L[2]n of each node in L(G) respectively; 
(3) for each label k ∈  {1, 2} of each node ni ∈  {1..e} in L(G) 
(4)     if ni.L[k]o > 0 then L[k]n is at the cut else if ni.L[k]s > 0 then L[k]n is in the same partition as ni;  
(5) initialize wP1 and wP2 to the sum of the weights of the labels in the set of distinct labels of all 

the edges in P1 and P2 respectively; 
(6) originalwP1 = wP1; originalwP2 = wP2; 
(7) unlock all nodes in L(G); initialize the gains of all the nodes in L(G) to zero; 
(8) loopno = 0; loadDiff = abs(originalwP1 -  originalwP2); 
(9) do { loopno++; 

9.1 make a temporary copy tempL(G) of L(G); 
9.2 initialize bins and bin pointers so that nmaxgain can be found in O(1) time (see Figure 14); 
9.3 calculate gains for all nodes in tempL(G) and insert them in the bins (see Figure 15 and 16); 
9.4 prevLoadDiff = loadDiff; seqno = 0; 
9.5 do { seqno++; 

9.5.1 if (wP1 > wP2) then {srcP=P1; dstP=P2;} else { srcP=P2; dstP=P1;}; 
9.5.2 found=FALSE; gain=Lowest; 
9.5.3 if ( ngainmax in the bins ≠ NULL and unlocked) then {found=TRUE;} 

9.5.3.1 if (found) then { 
9.5.3.2 update wP1  and wP2; loadDiff = abs(wP1- wP2); 
9.5.3.3 record this move[seqno], with gain and loadDiff values; 
9.5.3.4 update the gains of ni ∈Adj(ngainmax) in tempL(G) and adjust bins; 
9.5.3.5 delete ngainmax from the bins; lock it; put it in dstP; 
9.5.3.6 adjust label counts of nodes ∈  Adj(ngainmax) in tempL(G) ; } 

9.6 } while (found) ; 
9.7 find kmax∈  {1..seqno} such that gainmax = gainmove[1]+...+gainmove[k] is maximum; 
9.8 wP1 = originalwP1; wP2 = originalwP2; 
9.9 if ((cutsize smaller) or (loadbalance better)) then perform all move[j] with j∈{1..kmax} in L(G); 

9.9.1 update wP1  and wP2; 
9.9.2 adjust label counts of nodes ∈  Adj(nmove[j]) in L(G); 

9.10  originalwP1 = wP1; originalwP2 = wP2; 
(10) }  while (((gainmax>0) or ((gainmax=0) and (prevLoadDiff > loadDiff))) and (loopno<LIMIT)); 

Figure 8. LGB Algorithm. 

Each slot of the array as shown in Figure 9 stores information for the corresponding node ni of 
L(G), such as its degree di; the partition it belongs to which may be either 1 or 2 at any instant 
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corresponding to the two partitions P1 and P2, respectively; its gain value; whether it is locked or not at 
any instant; its L[1]n and L[2]n which stand for the names of the two distinct labels of the edges incident 
on this node; its L[1]s and L[2]s which denote the number of adjacent nodes connected with an edge 
labeled either L[1]n or L[2]n respectively that belong exactly to the same partition as the node under 
consideration; and L[1]o and L[2]o which are the number of adjacent nodes connected with an edge 
labeled either L[1]n or L[2]n, respectively, that are, on the other hand, located in the other partition with 
respect to the node at hand. Each node ni also points to an array of length di where a sequence of pairs 
in the form of (n(i,j), l(i,j)) where n(i,j) is an adjacent node and l(i,j) is the label of the corresponding edge 
are stored as shown in Figure 9. 

 

Figure 9. Record structure for nodes in L(G). 

Upon getting the input, LGB obtains an initial partition P1 and P2 at step (1) of the Algorithm 4.2. 
Depending on the initial partition, the number of external and internal edges for each of the two 
distinct labels, namely, L[1]o, L[2]o, L[1]s, and L[2]s, are calculated next by a single pass over the line 
graph L(G). Steps (3) and (4) detect the set of distinct labels in the cut as well as in partitions P1 and 
P2. This is, in effect, equivalent to finding the vertex separator S and partitions A and B of G induced 
by the partitioning of L(G) obtained initially. It is now time to calculate the initial weights of the 
partitions P1 and P2 and store them as original weights as outlined in steps (5) and (6) before the 
iterations start. In step (7), all the nodes are marked as unlocked so that they will have a chance of 
being moved and their gains are all initialized to zero. The initial load difference corresponding to the 
initial partition is stored at step (8) and the main outer loop starts at step (9) of the algorithm which can 
be iterated so long as the limit specified by LIMIT in line (10) is not exceeded and either the cut size or 
the load balance can be improved upon. LGB is just like Fiduccia and Mattheyses modified KLB, 
running with the exception that edges with the same label are treated as a single edge with the 
specified weight with respect to both the cut size and gain calculations performed. At step 9.1 of the 
outer loop between (9) and (10), a temporary copy of L(G)’s header section excluding the adjacent 
nodes shown in Figure 13 is created so that the results of intermediate moves can be recorded. Step 9.2 
initializes the bins used for sorting the gain values of the nodes to make it possible to find maximum 
gain values in both partitions P1 and P2 in O(1) time via a process called bin sorting. 

 

ni of 
L(G) di Partition Gain Locked? L[1]n L[2]n L[1]o L[1]s L[2]o L[2]s 

),( )1,()1,( ii ln ... ),( ),(),( ii didi ln
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Figure 10. Bin data structures. 

A doubly linked list data structure, Binspack, shown in Figure 10 has a slot for every node of the 
L(G). It has some fields in every slot for maintaining the current gain values of the corresponding 
nodes and two pointers named previous and next as shown in Figure 10 which point to the previous 
and the next nodes with the same gain values, respectively. If there is no previous node, however, 
previous is assigned the negative of the bin number pointing to this specific node whose gain value is 
directly related to the bin number in Binsptr data structure also shown in Figure 10. Binsptr[gv][2] 
data structure is used to store the pointers to the first node in Binspack with a gain value equal to gv for 
each different gain value gv that can possibly be attained by the nodes in P1 as well as in P2 at all times 
during the algorithm. These two data structures enable us to find the node with the maximum gain 
value in each partition and also update the gains of the adjacent nodes that are affected from a move at 
each iteration in O(1) time by keeping the bins sorted. In case it is assumed that the nodes of G have all 
a unit weight equal to one, the corresponding edges of L(G) would, accordingly, have labels whose 
weights are also one. This would specifically induce a set of five possible gain values in the range of -
2 through 2 since each node of L(G) has two distinct labels and the move of such a node may either 
increase or decrease the cut size by none, one or both of the labels depending on the current 
configuration. Binsptr[i][j], assumingly, would point to a node in the Binspack data structure with a 
corresponding gain value of (i-3) when i can take on values in the range 0 through 4. However, it 
should be noted at this point that in the general case where nodes in G=(N, E) may have different 
weights, possible integral values can be in the range specified by [-gv, +gv] where 

})(max{2 Nnnweightg iiv ∈= . 

Initial gains are calculated for all nodes in tempL(G) and inserted into the bins at step 9.3 right before 
the inner loop 9.5 - 9.6 of the algorithm starts moving the nodes. Since each node in L(G) has a labeled 
degree of two (see Theorem 4.3), the edges emanating from a node can virtually be grouped into two 
distinctly labeled sets: (1) those labeled by L[1]n and (2) the rest labeled by L[2]n, respectively. 
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Figure 11. Visualizing the edges emanating from a node in L(G). 

Each set of edges naturally connects to some adjacent nodes that are either in the same partition 
called s or in the other partition called o as seen in Figure 11 with respect to the node whose gain value 
is to be calculated. 

Definition 4.8: The set of the distinct labels of the edges whose endpoints are not both in the same 
partition is called the labeled cut set denoted byℜwithin the context of LGB. 

Definition 4.9: The sum of the weights of labels inℜ at any time is called the labeled cut size and 
denoted byΓ . 

Definition 4.10: Gain of a node at any instant of LGB algorithm is defined as the change in the 
labeled cut size when the node is moved to the other partition. 

The Algorithm 4.3 for calculating the initial gain of a node is given in Figure 12. There are only 
three cases to be considered for each node whose gain value is to be calculated. The fact that there are 
actually no more than only three cases can easily be deduced based on Property 4.11. 

Property 4.11: If i is a node in the original graph and its degree is k, then k nodes in its line graph 
will be fully connected by the i labeled edges forming a clique. So the total number of the nodes in a 
clique connected by the same labeled edges are exactly k*(k-1)/2 in the line graph. This, in turn, 
implies that if there is an edge labeled  between nodes t1 and t2, and t3 has an edge also labeled  
incident either on t1 or t2, then there must exist other  labeled edges from t3 to both t1 and t2. 

 
Algorithm 4.3: Calculate the initial gains 
Input: A node ni of L(G). 
Output: 

ingain  of node ni in L(G). 

ingain  = 0; 

for each k ∈  {1, 2} of node ni ∈  L(G) 
     if (L[k]s = 0 and L[k]o > 0) then 

ingain  = 
ingain  + 1 * weight(L[k]n) ; 

     else if (L[k]s > 0 and L[k]o = 0) then 
ingain  = 

ingain  - 1 * weight(L[k]n); 
     else if (L[k]s > 0 and L[k]o > 0) then 

ingain  = 
ingain ; 

Figure 12. Initial gain calculations. 

The term weight(L[k]n) in Figure 12 refers to the weight of a node in G which labels the 
corresponding edges in L(G). 

ni of 
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After recording the previous load balance difference at step 9.4, the inner loop that performs a 
sequence of moves from the source partition to the destination partition which has less weight until all 
the nodes are marked as locked is executed at steps 9.5 through 9.6. For each prospective move found, 
respective weights of the partitions are updated at step 9.5.3.2 of Algorithm 4.2 as detailed by 
Algorithm 4.4 shown in Figure 13. 

 
Algorithm 4.4: Updating partition weights in the inner loop 
Input: partition weights wsrcP and wdstP and node ni of L(G) to be moved. 
Output: new partition weights wsrcP and wdstP. 
for each k ∈  {1, 2} of node ni ∈  L(G) 
     if ( L[k]o > 0 ) then  // L[k]n in the cut 
           if ( L[k]s > 0 ) then // in the cut after the move 
                 wsrcP= wsrcP; wdstP= wdstP; 
           else if ( L[k]s = 0 ) then 
                 wsrcP= wsrcP; wdstP= wdstP + 1 * weight(L[k]n); 
     else if ( L[k]o = 0 ) then // L[k]n  not in the cut 
            wsrcP= wsrcP - 1 * weight(L[k]n); wdstP= wdstP; 

Figure 13. Updating partition weights. 

Having recorded the move together with its sequence number, gain and the new load difference 
value between the partitions at step 9.5.3.3, it is time for updating the gains affected by this move at 
step 9.5.3.4. Fortunately, the nodes whose gains need to be updated are only those adjacent to the node 
just moved. Additionally, the updates are local in that the distinct labels in the cut need not be searched 
for updates to be done accurately. 

Lemma 4.12: There is no need to keep track of the labels in the cut so as to figure out which labels 
are in the cut after a legal move in L(G). 

Proof: The existence of a label in the cut can be instantly discovered according to Property 4.11 
when both the number of edges linking to nodes in the same and the other partition are known a priori. 
The latter is ensured by a local process repeated to adjust the label counts which takes time 
proportional to the degree of a node in L(G). □ 

This property is exploited for minimizing the number of cases to perform fast updates and 
minimizes the storage required. 

As can be seen from Figures 14 and 15, updating the gain of each of the adjacent nodes can be 
performed in O(1) time. The algorithmic representation corresponding to Figures 14 and 15 is listed in 
Figure 16. After updating the gains of the adjacent nodes, changes are reflected in the bins. The moved 
node is then locked so that it cannot be moved again and placed in the destination partition. The 
configuration resulting from this move is finally reflected in tempL(G) by adjusting the label counts of 
all the nodes adjacent to the moved node. This is a simple process in which each adjacent node is 
visited and the number of edges to the same partition and the number of edges to the other partition for 
each label are either incremented or decremented depending on whether the adjacent nodes are 
actually in the same or other partition, respectively. 
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when m and x are in different partititons 

 

  

Figure 14. Update of gain values when in different partitions. 

 
when m and x are in the same partititon 

 

 
 

Figure 15. Update of gain values when in the same partition. 

The inner loop is exited to step 9.7 when all the nodes are marked as locked where a sequence 
number maximizing the expression gainmove[1]+...+gainmove[k] is found. Such a strategy avoids getting 
stuck at local maxima in that it allows for intermediate moves that may cause an increase in the cut 
size which can be later outscored by better moves. The LGB algorithm, then, realizes the sequence of 
moves if they are proven to be improving either the cut size or the load balance between the partitions. 
The next iteration of the outer loop starts at step (9) again with the initial configuration resulting from 
the previous pass of LGB, and this continues as far as either the quality of the partitioning is improved 
or a limit to the number of iterations is reached in which case the algorithm stops. 
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Algorithm 4.5: Updating the gains of adjacent nodes after a move 
Input: partition weights wP1 and wP2 and node ni of L(G) to be moved. 
Output: new partition weights wP1 and wP2. 
for each node x ∈  Adjacency(m) in L(G) 
c = label of the edge between m and x; 
if m and x are in different partitions /* m did not move yet */ 
    CASE i:   (cs = 0 and co = 1) then gainx = gainx – 2*weightc; 
    CASE ii:  (cs = 0 and co > 1) then gainx = gainx – 1*weightc; 
    CASE iii: (cs > 0 and co = 1) then gainx = gainx – 1*weightc; 
    CASE iv: (cs > 0 and co > 1) then gainx = gainx; 
else 
    CASE i:   (cs = 1 and co = 0) then gainx = gainx + 2*weightc; 
    CASE ii:  (cs > 1 and co = 0) then gainx = gainx + 1*weightc; 
    CASE iii: (cs = 1 and co > 0) then gainx = gainx + 1*weightc; 
    CASE iv: (cs > 1 and co > 0) then gainx = gainx; 

Figure 16. Algorithm for updating the gains of adjacent nodes after a move. 

Lemma 4.13: The proposed LGB algorithm takes O(ne) time and O(ne) space, where n is the 
number of nodes and e is the number of edges in G. 

Proof: The line graph L(G) has, then, e nodes and n labels. Referring to the pseudo code in Figure 
8, at each iteration of the inner loop at most e nodes are locked, and these sub-iterations may be 
repeated as long as the cut size decreases. At the slowest rate, it may decrease by one per iteration of 
the outer loop. If the balancing iterations are not allowed, this may be repeated for O(ne) iterations at 
most. □ 

It can easily be seen that a single pass of LGB algorithm takes O(e) time just as Fiduccia and 
Mattheyses modified KLB. Hence, it may be claimed that LGB is fast and has the same characteristics 
as does KLB. Step 3 of Procedure 4.1 for recovering the corresponding partitions A, B and the vertex 
separator S in G induced by P1 and P2 of L(G) will be skipped since it has already been covered 
implicitly. 

5. A Comparison Study on Qualitative Grounds 

In this section, some test cases are provided to compare LGB to methods that use KLB either 
indirectly to obtain vertex separators from edge separators or modify KLB based on some 
combinatorial techniques such as bipartite graph matching. As Hendrickson and Rothberg [24] 
mentioned, a different objective that is only indirectly related to our objective function can be 
minimized when KLB is used to obtain vertex separators. Therefore, it is not fair to compare the 
performance of KLB which tries to find minimal edge separators to the LGB algorithm which is 
designed to find vertex separators directly. Having been derived from KLB, LGB has the same 
characteristics as KLB and operates on a line graph yet. This is what enables LGB to operate directly 
on vertices so as to minimize the vertex separator by taking into account distinctly labeled edges in a 



Sensors 2008, 8                            
 

 

652

line graph. It is, therefore, expected that some templates of graphs can trivially be sketched that would 
render the approach of using KLB indirectly to obtain vertex separators incompetent. An observation 
which readily supports that type of a statement is the fact from graph theory that while a set of as many 
as k edges in a cut may allow for a vertex separator of size with as few as just k nodes to be specified, 
there may, on the other hand, exist other bisections in the same graph with a much larger cut size of as 
many as k(k-1)/2 edges formed by a clique which still induces a separator of the same size with as few 
as k nodes. As graphs with increasing average degrees are considered, number of such examples 
increase exponentially.  

 

Figure 17. A graph for comparing KLB and LGB. 

In Figure 17, an example graph with 40 nodes and 96 edges is depicted. KLB when presented with 
that input finds the minimum cut of size 8 which happens to be the optimal solution in that case as 
shown in dotted red line in Figure 17. This may be used to obtain the vertex separator including nodes 
33, 34, 35, 36, 37, 38, 39, and 40. LGB, on the other hand, when supplied with this specific example 
graph finds a vertex separator with nodes 17, 18, 19, and 20 of size 4 which is half the size of that 
found by KLB. In order for KLB to obtain that solution, it would have to overlook the optimal and be 
content with a sub optimal solution of size 12. There exists a proliferation of such cases that clearly 
justifies the need for LGB.  

Another algorithm which finds alternating level structures by augmenting paths is described by Liu 
[16]. For the initial partition, the algorithm [16] uses a minimum degree ordering. At each iteration of 
the algorithm, separator size is tried to be decreased by one using bipartite graph matching. For the 
example graph of Figure 17, if it is presented with an initial configuration where the vertex separator is 
obtained indirectly as either 1, 2, 3, 4, 13, 14, 15, and 16 or 33, 34, 35, 36, 37, 38, 39, and 40 induced 
by the optimal output from the run of KLB as shown in Figure 17, it gets stuck since no improvement 
from that local minimum is possible via bipartite graph matching. However, another initial 
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configuration where the vertex separator is populated with nodes 5, 6, 7, 8, 9, 10, 11, and 12 allows 
bipartite graph matching to come up with a result which happens to be the optimal solution in this 
case. 

 

Figure 18. A configuration where bipartite graph matching gets stuck at a local minimum. 

Other cases, however, may be plotted where bipartite graph matching cannot escape from local 
minima as depicted in Figure 18. An optimal solution for the graph presented in Figure 18 would have 
a single node, namely, 9 in the vertex separator. Bipartite graph matching, when applied from the 
initial configuration depicted in Figure 18, nevertheless, cannot find a set of nodes in either partition 
whose size is smaller than the set of adjacent nodes in the separator. 

However, it should be noted that combinatorial techniques such as bipartite graph matching and 
LGB can very well be used together in combination without any sacrifice. It is actually the nature of 
NP-Hard problems that urges a constant search in need of newer heuristics with a potential of 
domination when used in combination with others. The LGB algorithm is orthogonal in that respect, 
and hence, can be coupled with any method developed within the context of vertex separators. 

6. Mapping of Separators and Partitions to Processors 

A separator S with two roughly equal-sized sets A and B has the desirable effect of dividing the 
independent work evenly between two processors. Moreover, a small separator implies that the 
remaining work load in computing S is relatively small. A recursive use of separators can provide a 
framework suitable for parallelization using more than two processors. 

In this section, the LGB algorithm presented is applied recursively to obtain H= max2d  subgraphs 
which can be later assigned to a set of processors numbered from 0 to max2d  - 1 in an effort to 
exemplify a scheme for parallelization in a hypercube multicomputer [27]. A mechanism can easily be 
devised so that the LGB algorithm is recursively called to partition a graph G into H subgraphs as 
depicted in Figure 19. 

The algorithm, Recursive LGB, shown in Figure 19 is called with the depth parameter equal to zero 
initially. While the global depth parameter dmax controls the number of recursions, the global variable 
separator is for numbering the separators found sequentially. Given this simple framework to apply 
LGB recursively, a possible algorithm to map the partitions to processors is presented in Figure 20. In 
Algorithm 6.2, the subgraphs are all assigned initially to processor number 0. Then, at the ith iteration 
each subgraph is assigned to its current processor number with its ith bit set or reset depending on 
whether it is in partition two or one, respectively. 
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Algorithm 6.1: Recursive LGB 
Input: graph L(G), maximum depth dmax, and separator = 0 initially. 
Output: max2d  partitions. 
RecursiveLGB (L(G), depth){ 
     if (depth == dmax) then return; 
     else depth++; 
     LGB(L(G), depth); 
     separator++; 
     L(G)1, L(G)2 = remove all edges whose labels happen to be marked as at the cut; 
     RecursiveLGB(L(G)1, depth); 
     RecursiveLGB(L(G)2, depth);} 

Figure 19. Recursive LGB. 

Algorithm 6.2: Mapping partitions 
Input: partitions L(G)0 through L(G)H-1. 
Output: a mapping processor[] from partitions to processors.  
processor[ L(G)p] = 0 }1..0{ −∈∀ Hp  ; 
for i = 0 to logH-1 
     for all L(G)p  }1..0{ −∈ Hp  ;  
          if partition( L(G)p ) = 2 then 
                processor[ L(G)p ] = processor[ L(G)p ] ⊕  2i; //where ⊕ is bitwise or operator 

Figure 20. Mapping partitions to processors. 

Lemma 6.1: If the graph is partitioned into 2p subgraphs, then there will be a total of (2p – 1) 
separators. 

Proof: Follows directly from the algorithm Recursive LGB. □ 
For assigning the separators, a similar strategy is followed. Each separator is assigned the processor 

which is either one of the two processors involved while this separator emerges and the one that has 
not been already assigned a separator before. To speed up the procedure, separator 1 is assigned the 
processor number 0, and the processor number 1 is never used while assigning separators to the 
processors. This algorithm, presented in Figure 21, maps the separators so that when a variable in the 
separator is needed it can be reached in one step of communication at most. Under such a scheme of 
parallelization, the number of iterations required for processing a total of p separators is reduced from 
O(p) to O(log p). 

Procedures CreateTree and traceSeparator called in Figure 21 are listed in Figure 22 separately. 
These two recursive routines simply create and visit respectively a balanced binary tree whose depth 
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first traversal corresponds exactly to the scheme used in numbering the separators as they are formed 
on the course of the recursive LGB algorithm. 

 
Algorithm 6.3: Mapping separators 
Input: separators 1 through H-1. 
Output: a mapping processor[] from separators to processors. 
processor[1] = 0; 
separator = 2; 
tree.node = 0;tree.right=tree.left=NULL; 
call createTree (tree, 1, logH); 
call traceSeparator (tree.right); 
for (i = 1; i < H/2; i++) 
       processor[i + H/2] = processor[i+1]+1; 

Figure 21. Algorithm to map separators. 

Procedure CreateTree Procedure traceSeparator 
procedure createTree (p, depth, dmax) { 
    if (depth > dmax)  return; 
    else { 
        depth++; 
        temp1.node = 2depth-2 + p.node; 
        p.left = temp1; 
        temp2.node = 2depth-1 + p.node; 
        p.right = temp2; 
        createTree (p.left, depth); 
        createTree (p.right, depth); 
    } 
} 

procedure traceSeparator ( p) { 
    if ((p.left=NULL) and (p.right=NULL))  return;
    else { 
        processor[separator] = p.node; 
        separator++; 
        traceSeparator (p.left); 
        traceSeparator (p.right); 
   } 
} 

Figure 22. Procedures used in mapping separators. 

7. Conclusions and Future Directions 

In this study, a novel heuristic which performs fast was developed, and it has been shown to be 
superior to the method of obtaining vertex separators indirectly from edge separators. When coupled 
with appropriate combinatorial methods such as bipartite graph matching, it is conjectured to be the 
best viable heuristic that can be used in the refinement phase of multilevel nodal graph partitioning 
schemes. Although it is generally conjectured that problems on vertex separators are harder than the 
corresponding problems on edge separators [28], this study has managed to transform Kernighan-Lin 
heuristic, a well-known bisection algorithm on edge separators, to an easily and efficiently usable form 
on vertex separators. 
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Some difficult issues remain to be explored such as the optimality bounds for the separator size to 
be investigated, and modification and testing of LGB in different problem domains. Another area of 
future research is the investigation of the intrinsic characteristics of line graphs which would lead to 
the development of more efficient heuristic algorithms. A thorough experimental evaluation of the 
algorithm with respect to different types of randomly generated graphs is considered to be of great 
value in that respect. Another further improvement on LGB may be to apply a look-ahead type of bin 
search so that insertion to the bins may also take into account another criterion so as to favor nodes 
with more number of edges labeled the same. This is expected to help enhance the elasticity of the 
moves such that more number of nodes (due to connectivity) will have the capability to move freely. 
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