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Abstract: In this paper we present results obtained in the framework of a regional-scale 

analysis of the carbon budget of poplar plantations in Northern Italy. We explored the 

ability of the process-based model BIOME-BGC to estimate the gross primary production 

(GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. 

We firstly present a version of BIOME-BGC coupled with the radiative transfer models 

PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the 

BIOME-BGC description of the radiative transfer regime within the canopy and ii) 

allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS 

NDVI, into the model. Secondly, we present a two-step model inversion for optimization 

of model parameters. In the first step, some key ecophysiological parameters were 
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optimized against data collected by an eddy covariance flux tower. In the second step, 

important information about phenological dates and about standing biomass were 

optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC 

allowed simulation of MODIS NDVI with good accuracy and that we described better the 

canopy radiation regime. The inverse modeling approach was demonstrated to be useful for 

the optimization of ecophysiological model parameters, phenological dates and parameters 

related to the standing biomass, allowing good accuracy of daily and annual GPP 

predictions. In summary, this study showed that assimilation of eddy covariance and 

remote sensing data in a process model may provide important information for modeling 

gross primary production at regional scale. 

Keywords: Gross Primary Production; Phenology; BIOME-BGC; PROSPECT, SAILH; 

Poplar plantations. 

 

 

1. Introduction 

 

Terrestrial ecosystems play an important role in the global carbon cycle due to their capacity to 

sequester part of the fossil carbon emitted by anthropogenic activities. Such a capacity is of great 

interest in order to comply with the commitments of the Kyoto Protocol. 

In the context of global climate change and sustainable development, agro-forestry management 

activities play a key role through mitigation. However, agro-forestry ecosystems are also affected by 

climate change and their contribution to carbon sequestration may be influenced by stresses (e.g. heat-

waves, drought, diseases and natural disturbances) [1]. Fast growing forests [2], and in particular 

poplar plantations, are a typical land-use in the Lombardy region (Northern Italy) covering about 4.5% 

of the agricultural area and 6.5% of the forestry area [3]. It is therefore relevant to investigate the sink 

capacity of these ecosystems, both at site level with field measurements and at regional scale with 

modeling tools.  

In recent years, a number of process-based models have been developed for estimating carbon and 

water fluxes at different spatial and temporal scales [4,5]. Among these, BIOME-BGC [5,6] is a 

widely employed ecosystem model designed to simulate plant physiological processes and soil 

biogeochemistry with a very detailed scheme and at a fine temporal scale (from daily to yearly). 

BIOME-BGC has been applied with success to different types of forest ecosystems, from 

Mediterranean [7] to coniferous species [6,8]. However, to our knowledge, it is rare to find 

applications on agricultural [9] and agro-forestry ecosystems such as poplar plantations. Spatial 

analysis was also proven feasible in recent studies in which BIOME-BGC was successfully applied to 

model net primary production [10] and gross primary production (GPP) at regional and continental 

scales [11,12]. 

Model parameterization and corroboration can benefit from the availability of continuous 

measurements of carbon, water and energy fluxes between ecosystems and the atmosphere with the 

eddy covariance (EC) technique [13]. Moreover, these measurements represent an important data 

source for the optimization of uncertain or unknown model parameters by using an inverse modeling 
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approach [14]. In fact, when parameters cannot be measured directly, inverse modeling allows 

exploitation of one or more measurable model outputs (e.g. carbon fluxes) to optimize the values of 

one or more unknown model parameters (e.g. allocation ratios). This optimization is performed by 

retrieving the set of model parameters that minimizes the difference between simulated and observed 

data. Many inverse modeling approaches, such as Monte Carlo methods, gradient-based optimization 

algorithms, look-up tables and neural networks have been proposed in literature [15,16] and 

successfully applied in earth observation [17-19], biogeochemistry [20,21] and phenological studies 

[22,23]. 

Besides EC, remote sensing (RS) is another tool that can be exploited to gather spatially and 

temporally distributed information which is well suited for regional applications of process-based 

models. As a consequence, a number of techniques for the assimilation of RS time series at different 

spatial resolution into process-based models have been developed [24]. These techniques can be 

grouped into three main categories: i) determination of model initialization parameters (e.g. 

phenological parameters, leaf area index), ii) update of model state variables through direct ingestion 

of RS data (forcing) and, iii) estimation of state variables or model parameters through model 

inversion against RS data (recalibration or optimization). 

The accuracy of modeled GPP is dependent on a correct parameterization of plant ecophysiology 

and stand characteristics (e.g. standing biomass and phenology) [25]. For regional scale mapping, such 

parameters are unknown and have to be determined for each spatial location. Stand characteristics 

strongly controlling the modeled carbon fluxes such as standing biomass or phenology [26], can be 

mapped with an appropriate analysis of RS time-series. This is not feasible for other ecophysiological 

parameters (e.g. C:N ratios, fraction of available nitrogen in leaves) which are instead assumed to be 

constant for a given species [10] or even plant-functional type (e.g. evergreen needleleaf forest, 

deciduous broadleaved forest, etc.) as described in several applications at continental level [12]. This 

assumption neglects the temporal and within-species variability of such parameters but allows their 

spatial determination through the use of a land use map. 

In this paper we present a modeling study conducted at site level which represents the first step 

toward the analysis of the carbon budget of poplar plantations at regional scale. 

According to the previous distinction of model parameters in two groups, species-dependent 

(ecophysiological parameters) and spatially variable (standing biomass and phenological parameters), 

we propose the following modeling scheme: 

1. determine the ecophysiological parameters exploiting site level EC measurements; 

2. determine the spatially variable parameters necessary for modeling poplar productivity over 

large areas through assimilation of RS data into the optimized BIOME-BGC. 

More in detail in this paper we describe: 

1. a modified version of BIOME-BGC (named PROSAILH-BGC) which was developed by 

coupling BIOME-BGC with the vegetation radiative transfer models PROSPECT and 

SAILH. The aims of this coupling were twofold: i) to improve the description of the 

radiative transfer regime within the canopy and ii) to allow assimilation of remotely-sensed 

vegetation indexes time series, such as MODIS NDVI, into the process-based model.  

2. an inverse modeling approach developed for the optimization of the key [25] 

ecophysiological parameters of the PROSAILH-BGC. In this first-step optimization, model 
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parameters were optimized for poplar plantations by inverting the model against EC data 

measured at the experimental field site. 

3. a technique developed for assimilation of MODIS NDVI data into the process model. For 

this purpose we inverted the PROSAILH-BGC against the MODIS NDVI (second-step 

optimization) in order to retrieve key drivers [25] of modeled GPP (e.g. start and end of 

growing season, maximum leaf carbon during the year). 

4. the evaluation of model accuracy: daily and yearly GPP modeled after two-step optimization 

were compared to site observations. 

 

2. Data 

 

2.1. Experimental Field Site Information 

 

The study site is a managed poplar plantation located in a flat area periodically subjected to 

flooding near the village of Zerbolò in northern Italy (45° 12' 03.14" N, 9° 03' 39.74 E, 60 m a.s.l.). 

The climate of the site is classified as Humid Subtropical - Mid Mild Latitude (Cfa) - Koppen Climate 

Classification [26], with yearly average rainfall of 912 mm and mean temperature of 12.5°C. The site 

is characterized by high total nitrogen depositions of about 20 kgN ha-1 per year [27]. The soil texture 

is sandy-loam (60.4% sand, 30% silt and 9.6% clay). The nitrogen and carbon content of the soil, 

measured to a depth of 100 cm, are 1.36 kgN m-2 and 5.23 kgC m-2, respectively. 

A 27-m scaffold tower was erected in March 2002 in the homogeneous stand of about 46 ha and 

disassembled in 2005, immediately before logging. The EC flux tower, belonging to the Carboeurope-

IP network (site ID: IT-PT1), measured continuously carbon, water and energy fluxes between 

ecosystems and atmosphere. The plantation was characterized by a spacing of 6 x 6 m and a tree 

density of 278 trees ha-1. Mean tree height, mean diameter at breast height (DBH) and the stem basal 

area, measured in 2005, were 26.3 (± 4.5) m (n = 8), 32.9 (± 5.7) cm (n = 266) and 20.45 m2ha-1, 

respectively. The leaf area index (LAI) was measured during the growing season every two weeks with 

LAI-2000 PCA plant canopy analyzer (LI-COR Inc., Lincoln NE, USA) as described in [28]. The LAI 

showed a seasonal variability with a maximum value of about 2.0 m2m-2 reached generally in July. The 

mean specific leaf area (SLA) of poplar leaves was 12.3 (± 1.8) m2kgC-1. SLA was estimated by 

extracting a known sub-area from the leaves collected during the growing season. Three leaves, at two 

different canopy levels (bottom and top), from three plants around the flux tower and from three plants 

located in the nearby stand were sampled. The leaves were collected every month from May to August 

for a total of five sampling dates.  

The maximum taproot length reached about 1.5-1.7 m [29], while the soil depth was limited by the 

position of the water table at about 2.0 m. 

 

2.2. Micrometeorological Data 

 

A standard EC setup was used to collect micrometeorological data. Carbon and water fluxes were 

calculated with a time step of 30 minutes according to EUROFLUX methodology [30]. 
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The CO2 fluxes were corrected and filtered following [30] in order to assess the quality of measured 

data and to discard the half-hourly data not fulfilling the hypothesis necessary for the application of the 

EC technique (i.e. steady state and integral turbulence characteristics of the vertical wind [31]). Data 

were corrected for storage of CO2 in the air layer below the measuring height [32]. Missing half-hourly 

data caused by malfunctioning of system, periodical calibration of instruments, u* filtering or data 

quality check not fulfilled, were filled with the marginal distribution sampling method [33].  

EC measures the half hourly net ecosystem exchange of CO2 (NEE). Half-hourly GPP can be 

estimated from NEE via the general equation: 

ecoRNEEGPP   (1) 

Ecosystem respiration (Reco), was estimated using the partitioning method described in [33]. Both 

the MDS and the partitioning algorithm were implemented in an online tool [33], widely employed by 

the Carboeurope-IP project and FLUXNET network for both gap-filling and partitioning [34,35] of 

fluxes. 

Along with the flux measurements, standard micro-meteorological data were collected 

continuously. Moreover, PAR transmitted below the canopy at ground level (PARt) was measured by 

means of a transect of 3 quantum sensors (LI-190S, LI-COR Inc., Lincoln NE, USA) and used to 

investigate the radiative regime within the canopy. All meteorological data were stored as half-hourly 

means on a data logger (DL2 DELTA-T Devices, Burwell, Cambridge, UK). 

 

2.3. Remotely Sensed Data 

 

MODIS 250m 16-day composite NDVI data acquired by the TERRA platform (Product 

MOD13Q1) were downloaded from the Earth Observation System (EOS) data gateway. MODIS 

NDVI temporal profiles (NDVIMODIS) were affected by errors related to the presence of cloudy sky 

conditions over the compositing period. In order to reduce this influence and to reconstruct high-

quality vegetation index time series, the original MODIS NDVI time series were processed following 

the method proposed by [36], which is based on the recursive application of a Savitzky-Golay filter 

[37]. The smoothed MODIS NDVI time series of the studied poplar plantation were then extracted as 

the average of the three pixels within the experimental field. 

 

3. Methods 

 

3.1. BIOME-BGC Description 

 

BIOME-BGC is a mechanistic ecosystem model that simulates biogeochemical and hydrologic 

processes of terrestrial ecosystems based on the assumption that differences in the process rates are a 

function of climate and general life-form characteristics. BIOME-BGC simulates carbon, nitrogen and 

water cycles within a forest ecosystem across several compartments (including leaf, root, stem, soil 

and atmosphere) [5]: the main processes described by the model are evapotranspiration (Penman–

Monteith equation), photosynthesis (Farquhar model, [38]) and respiration, modeled as the sum of 

autotrophic respiration [39] and heterotrophic respiration. 
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NEE (kgC m-2 day-1) was modeled as the net accumulation or loss of carbon by the entire soil-stand 

system and was determined by the differences between GPP (kgC m-2 day-1), resulting from the 

processes of photosynthesis, and Reco (kgC m-2 day-1), resulting from the respiration processes. The 

LAI (m2 m-2) is a key variable of BIOME-BGC controlling canopy radiation absorption, water 

interception, photosynthesis and litter input to detrital pools [40]. 

The model requires three types of information: ecophysiological parameters, site parameters and 

meteorological data. The main ecophysiological properties include the carbon to nitrogen ratios of the 

different plant pools (e.g. carbon to nitrogen leaf ratio, C:Nleaf), carbon allocation parameter (e.g. new 

fine root to new leaf carbon, FR:LC), maximum stomatal conductance (gc,MAX), canopy water 

interception, light extinction coefficients and SLA.  

The main site parameters include soil depth, soil texture, initial standing biomass (e.g. maximum 

leaf carbon during the simulated year, LCMAX and maximum stem carbon) and initial soil carbon in the 

different soil pools. The model also requires the bud-burst date (ONDAY), in which the growing 

season starts, and the day of the end of growing season (OFFDAY). These phenological parameters 

strongly influence the seasonal pattern and magnitude of simulated carbon fluxes [25].  

With regards to meteorological data, the model requires the maximum, minimum and mean daily air 

temperature, mean daylight VPD, daily precipitation, mean daily incoming shortwave radiation and 

day-length.Model outputs include GPP, NEE, evapotranspitration and LAI simulated at a daily time-

step. We used version 4.1.1 of the BIOME-BGC code available on the web site of the Numerical 

Terradynamics Simulation Group (NTSG) of the University of Montana. More information on the 

design of the model and its functioning can be found in [6, 25, 40]. 

 

3.2. PROSAILH-BGC Description 

 

BIOME-BGC was coupled with the leaf and canopy radiative transfer (RT) models named 

PROSPECT and SAILH [19], respectively, resulting in the coupled model referred to hereafter as 

PROSAILH-BGC. The objectives of the coupling were twofold: to improve the BIOME-BGC 

description of the canopy radiation regime and to simulate the NDVI as a function of LAI and overpass 

characteristics (sensor and sun geometry) of MODIS observations. 

BIOME-BGC computes net shortwave radiation using a constant surface albedo during the year. 

This assumption is violated in deciduous ecosystems where the albedo is closely related to foliar 

phenology [41]. Moreover, the radiation transmitted and absorbed by the canopy is modeled according 

to Lambert-Beer's law. The radiation absorbed by the canopy is therefore a function of the incoming 

PAR radiation, the LAI and of biome-specific canopy light extinction coefficients. The Lambert-Beer 

formulation neglects multiple scattering in the vegetated medium. To overcome such limitations we 

replaced the RT subroutine of the model with the PROSAILH model. PROSAILH is a combination of 

two models: PROSPECT [42], which describes leaf optical properties and SAILH [43], which 

computes top-of-the-canopy spectral bidirectional reflectance. 

PROSPECT is a plate model that simulates reflectance and transmittance of a leaf as a function of 

four state variables: leaf structure parameter, chlorophyll a+b concentration, water content and leaf 

mass area. 



Sensors 2009, 9                            

 

 

928

SAILH is a one-dimensional bidirectional turbid medium RT model that simulates canopy 

bidirectional reflectance for a given sun-sensor geometry, canopy background reflectance, LAI, mean 

leaf inclination angle, hot-spot-size parameter and background brightness factor. The choice of SAILH 

is justified by its theoretical simplicity and advantages for application purposes. Nevertheless, this 

model assumes a dense canopy, which may not be the case with young poplar plantations. Sparse 

canopies in fact originate shadowing (between crowns and on the soil background) which are not 

simulated by the RT model. Shadowing effects were minimized by working with the vegetation optical 

index NDVI. Moreover, it must be noted that when using MODIS data at 250 m spatial resolution (so-

called medium resolution) the 1D approach can accurately represent the reflected, transmitted and 

absorbed fraction of vertical fluxes, irrespective of local variability exhibited by the canopy at a finer 

spatial scale [18]. On the contrary, the retrieved variables (e.g. LAI) are the domain-average effective 

variables instead of the actual ones. We believe that this is not a major problem because these effective 

variables are used to feed BIOME-BGC, which is indeed a simplification of the real world, using 

effective variables as well. 

Table 1. Parameterization of PROSAILH: leaf structure parameter (N), chlorophyll a+b 

concentration (CAB), leaf water content (Cw), dry matter content (CM), Leaf Area Index 

(LAI) mean leaf inclination angle (θL), hot spot size parameters (SL), the background 

brightness factor (αS). LAI is variable because it is estimated daily by BIOME-BGC. 

PROSAIL Parameters Values 
N - 1.37 

CAB g cm-2 45 
CW g cm-2 0.0092 
CM g cm-2 0.0065 

LAI m2 m-2 VARIABLE 
L deg 56.5 
SL - 0.005 
S - 1 

 

The PROSAILH requires a total of eight input parameters (Table 1). LAI was provided with the 

daily step by BIOME-BGC, while the other input parameters were kept constant and parameterized 

according to a previous study on poplar plantations [17]. Fixing leaf parameters to constant values 

represented a simplification of the RT problem because of leaf age and darkening during the growing 

season. Another simplification that was applied regards the fact that our modelling approach does not 

include the understory vegetation that may be present in poplar plantations. Both natural processes 

(changes of leaf optical properties, understory growth) are to some extent picked up by NDVI, but 

neglected in our modelling approach. 

The PROSAILH-BGC flowchart is reported in Figure 1. Daily LAI, simulated by the BIOME-BGC, 

is used as input for the PROSAILH which simulates NDVI, daily shortwave radiation, PARt, PAR 

absorbed by the canopy and site albedo. These variables are then forced into the BIOME-BGC and 

used for daily simulations. 
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The additional key output of the PROSAILH-BGC with respect to BIOME-BGC is the daily NDVI 

(NDVIPROSAILH-BGC), which is computed using simulated canopy spectral reflectance taking into 

account MODIS spectral characteristics and sun-sensor geometry. 

Figure 1. Flow chart of the PROSAILH-BGC model. Yellow blocks represent the models, 

parallelepipeds represent the input parameters, grey boxes represent the state variables 

passed between the coupled models, while the red boxes are the model outputs (NDVI and 

GPP). 

 
 

 
3.3. Basic Model Parameterization 

The BIOME-BGC was parameterized using information about vegetation and site characteristics 

and used as a reference model for the comparison with the modified one. Daily meteorological data 

were measured at the experimental site, while soil and stand characteristics were obtained from 

[29,44]. Standing biomass data (LCMAX and first-year maximum stem carbon) were obtained from a 

specific stand characterization conducted during the years 2002 and 2003. We avoided the “spin up 

and go” mode, which initializes site characteristics and finds an internal equilibrium (i.e. steady-state) 

of the model state variables [25], because poplar plantations are typical managed and disturbed 

ecosystems far from the steady-state. With the exception of SLA, which was measured on site, all the 

ecophysiological parameters required by BIOME-BGC were derived from literature [10,25,45,46] and 

are reported in Appendix I. 

We defined two reference models to be compared with the optimized one. In both, the 

ecophysiological parameterization was derived from literature while phenology (ONDAY, OFFDAY) 

was parameterized using different methods: for Reference Model 1, the dates were defined with the 

BIOME-BGC internal phenological model while in the Reference Model 2 the dates were determined 

as the dates of the inversion (positive to negative and viceversa) of the 10-day running average of the 

measured NEE. 
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3.4. PROSAILH-BGC Optimization 

 

An inverse modeling approach was used to recalibrate the input parameters of the PROSAILH-BGC 

model. The optimization technique [47] was based on a Truncated-Newton method [48] that minimizes 

iteratively the cost function (C) with respect to a given set of model parameters . The C defined for 

this study was the normalized least squared differences between observed and modeled data: 
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where n is the number of observations, obsi and modi indicate the ith observed and ith modeled daily 

data, respectively. mod is a function of the parameter vector θ. 

Figure 2. Flow chart of first-step optimization. Yellow blocks represent the models, 

parallelepipeds represent the model input parameters and the data for model optimization, 

grey boxes represent the state variables passed between coupled models while the red box 

is the model output.  

 
 

Figure 3. Flow chart of second-step optimization. Yellow blocks represent the models, 

parallelepipeds represent the model input parameters and the data for model optimization, 

grey boxes represent the state variables passed between coupled models while the red box 

is the model output. 
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The optimization strategy was based on a two-step approach: 

1. In the first step the model was optimized against GPP observations to estimate the 

ecophysiological parameters (Figure 2) for poplars for a further large-scale application. The 

target variables selected for optimization were C:NLeaf, the percentage of leaf nitrogen in 

RUBISCO (PLNR), FRC:LC and gs,MAX. We selected these parameters because they exert a 

significant influence on the modeled carbon fluxes, as pointed out by the sensitivity analysis 

described in [25]. In this step phenological observations (ONDAY, OFFDAY) and LCMAX 

were fixed to the observed values. 

Model ecophysiological parameters and their relative standard errors were estimated by 

using a bootstrapping algorithm with N = 500 resampling as described in [49]. The median 

of the distribution generated by bootstrapping for each parameter represents the estimated 

parameter value, while the standard deviation is a good measure of the error associated with 

the parameters. 

2. In the second step we estimated phenological and standing biomass related parameters by 

inverting the model against remotely sensed NDVI time series. The algorithm determines 

ONDAY, OFFDAY and LCMAX which minimize the cost function calculated using 

NDVIMODIS as observation and the NDVIPROSAILH-BGC as modeled data (Figure 3). These 

parameters were chosen because of their importance for the model application at spatial 

scale. In fact, process-based models, and in particular BIOME-BGC, are sensitive to 

parameters describing the development of the canopy such as phenological data and 

parameters related to maximum LAI [25]. Thus, in this step we evaluate the accuracy of the 

proposed method in retrieving these important data, usually lacking over large areas. 

Even though ecophysiological parameters and stand characteristics can be correlated, we assumed 

that they could be estimated independently in two subsequent optimizations by exploiting two different 

data sources. In the first step, stand characteristics are set to their measured values. Thus, the optimized 

ecophysiological parameters may be considered as representative for the examined species and not a 

model inversion artifact due to an uncorrected parameterization of stand characteristics. 

 

3.5. Evaluation of Model Accuracy 

 

The accuracy of the modeled data can be evaluated by means of different statistics as described in 

[50]. In this study we used RMSE and modeling efficiency (EF) [51]. Slope (b[0]), intercept (b[1]) and 

r2 of the linear regression observed vs modeled were also used for the evaluation of model accuracy. 

For correct model corroboration, simulations obtained with a specific set of parameters should be 

evaluated against a completely independent dataset, whose availability is usually rare in the case of 

environmental models. With regard to first-step optimization, we optimized the ecophysiological 

parameters against eddy covariance data observed during 2002 and corroborated the optimized model 

against data measured in 2003. 

For second-step optimization, we firstly evaluated the accuracy of modeled NDVI time series. 

Secondly, we compared the retrieved ONDAY, OFFDAY and LCMAX with the observed ones. Finally, 

we evaluated the error in the annual GPP budget introduced using the proposed method and the 
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BIOME-BGC internal phenological routine. As an overall evaluation of the proposed method, the 

observed GPP and the GPP modeled with PROSAILH-BGC optimized in the first step and using the 

phenological dates and the LCMAX derived from the second step were compared. 

 

4. Results and Discussion 

 

4.1. Radiative Regime Description of PROSAILH-BGC 

 

The performances of PROSAILH-BGC and BIOME-BGC in describing the radiative transfer 

regime within the canopy were tested by comparing the observed and modeled PARt with the two 

models. Results showed a reduction in the bias of PARt using the PROSAILH-BGC (Figure 4). In fact, 

although the r2 did not improve using PROSAILH-BGC, PARt simulated with the coupled model was 

closer to the 1:1 line than the PARt modeled by BIOME-BGC, thus leading to a reduction in RMSE 

between modeled and observed data (from 144.9 µmol m-2s-1 to 111.2 µmol m-2s-1).  

Figure 4. Relationship between modeled and observed PARt. Red circles represent data 

modeled with BIOME-BGC while white circles represent data modeled with PROSAIL-

BGC. Dashed lines represent the 95% confidence intervals of the linear regression between 

PARt modeled (with BIOME-BGC in red and PROSAIL-BGC in black) and observed data. 

Grey line is the 1:1 line. b[0] is the intercept, b[1] is the slope and p is the significance of 

the linear regression analysis. 

 
 

4.2. First-step Optimization - PROSAILH-BGC Eecophysiological Parameter Estimates 

 

The model parameter estimates obtained through model optimization against GPP measured during 

2002, their relative standard errors and statistics for the evaluation of model accuracy are listed in 

Table 2. The optimized parameters (θopt) showed considerable differences with respect to the original 

literature-based parameterization (used for Reference Models 1 and 2). In particular, FRC:LC showed 
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a sensible increase (from 0.333 to 1.969). This optimized value is consistent with values published for 

broadleaved species ([25] (with values from 0.54 to 1.59 found) and for other poplar species ([10] (for 

which a value of 1.2 was reported). This may therefore indicate that the original ecophysiological 

parameterization based on the works of [10,25,45,46] was unsuited for the investigated poplar species. 

Linear regression analysis between observed and modeled data showed an increase in both 

determination coefficient (from 0.88 to 0.93), slope (from 0.68 to 0.83), EF (from 0.78 to 0.88) and a 

decrease in RMSE (from 2.31 to 1.12 gCm-2day-1), between the optimized values and the Reference 

Model 2. Cumulated yearly GPP for 2002 simulated with the optimized model was 1546 gC m-2 year-1, 

with good agreement with the measured data of 1578 gC m-2 year-1. Conversely, GPP simulated by 

PROSAILH-BGC with the original parameterization was 1362 gC m-2year-1, while yearly GPP 

simulated with the Reference Model 2 (i.e. literature ecophysiological parameterization and phenology 

derived from site observations) was 1330 gC m-2year-1, with an underestimation of about 248 gC m-2 

year-1. 

As a validation exercise, the accuracy of the optimized model was evaluated using the GPP 

measurements collected during 2003, achieving a good improvement in GPP estimation with respect to 

the results obtained by PROSAILH-BGC with the original literature parameterization. Although 

modeled GPP with the optimized and original parameters explained the same amount of variance of 

the observed GPP (r2 = 0.78 for both the models), the RMSE decreased from 1.81 gC m-2day-1 to 1.41 

gC m-2day-1 and EF increased from 0.67 to 0.76 as a consequence of the optimization. This 

improvement in model accuracy underscores that the main effect introduced by the optimized 

parameters was the reduction of the bias with a reduction of the systematic underestimation of the 

model. Conversely, the correlation between observations and modeled data did not improve when 

using the optimized parameterization because the daily variability of simulated fluxes is mainly driven 

by meteorological data.  

Table 2. Original (θor) and optimized (θopt) parameters of the PROSAILH-BGC model. 

Standard errors of parameter estimates, calculated with the bootstrap algorithm, are shown 

in parentheses. 

Parameter Unit θor θopt 

FRC:LC - 0.333 1.969 (±0.420) 

Leaf C:N kgC kgN-1 15.59 20.93 (±2.50) 

PLNR - 0.088 0.1050 (±0.011) 

gs,MAX m s-1 0.006 0.0041 (±0.001) 

 

4.3. Second-Step Optimization - Phenological and Standing Biomass Parameter Estimates 

 

The relationship between modeled and observed NDVI for the two growing seasons is reported in 

Figures 5a and 5b. NDVIPROSAILH explained about 75% of NDVIMODIS variance and showed good 

agreement between observed and modeled data (Figure 5b). For low NDVI values an underestimation 

of modeled NDVI was observed. 
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ONDAY, OFFDAY and LCMAX estimated with second-step optimization for 2002 and 2003 

showed good agreement with the values observed at the experimental site (Table 3). 

Table 3. Start (ONDAY) and end (OFFDAY) of growing season, maximum leaf carbon 

(LCMAX) observed and estimated with second-step model optimization. The ONDAY and 

OFFDAY estimated with the internal phenological model (Internal phenology) were also 

reported. DOY is Day Of Year. 

 

 

 

 

 

Figure 5. a) Time series of NDVIMODIS (full circles) and NDVIPROSAILH-BGC (open circles) 

for the time period 2002-2003. b) Scatterplot of NDVIMODIS and NDVIPROSAILH-BGC. Black 

triangles are the NDVI data for the growing season (for the days between ONDAY and 

OFFDAY) while open triangles are data for the dormant period. The black straight line is 

the regression line calculated on the whole dataset, the dashed lines represent the 95 

confidence intervals, the grey line is the 1:1 line. b[0] is the intercept, b[1] is the slope and 

p is the significance of the linear regression analysis observed vs modeled. 

 
 

With regard to ONDAY, we found 3 and 8 days of displacement between modeled and observed 

dates for 2002 and 2003, respectively, whereas for OFFDAY, the displacement was 7 and 6 days for 

2002 and 2003, respectively. Conversely, the phenological dates estimated with the internal 

phenological model of BIOME-BGC led to higher offset between modeled and observed dates with an 

Year  ONDAY. OFFDAY LCMAX 

 DOY DOY kgCm-2 

2002 Obs. 91 267 0.164 

 Second-step 88 260 0.159 

 Internal phenology 100 289 - 

2003 

 

Obs. 

Second-step 

78 

70 

315 

309 

0.155 

0.147 

 Internal phenology 107 297 - 
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average displacement of 17 days for the ONDAY and 20 days for the OFFDAY. Moreover, LCMAX 

values were estimated with good accuracy (mean error = 4.1%) as shown in Table 3. 

The discrepancy between modeled and observed NDVI, as well as the offset between the estimated 

and observed phenological dates, may be due to the influence of the understory on the NDVIMODIS 

signal, particularly noteworthy in the period immediately before the beginning and after the end of the 

growing season as shown in Figure 5a. However, these discrepancies between observed and modeled 

phenological dates are similar to those reported in others studies [52]. 

The effect of correct phenological parameterization on the determination of the annual GPP budget 

is reported in Table 4 where the yearly GPP estimated with the reference models and the two-step 

optimized model are listed. It is to be noted that by using the Reference Model 1 we obtained sensible 

underestimation of yearly GPP (-21% for the 2002, -26% for 2003). In Reference Model 2, in which 

the parameters related to phenology were set to the observed values, yearly GPP showed an 

underestimation of 15.7% for 2002 and 14.1% for 2003, with an improvement compared to Reference 

Model 1. 

Table 4. Annual GPP measured and simulated by BIOME-BGC with parameterization 

from literature and internal phenology (Reference Model 1), BIOME-BGC with 

parameterization from literature and observed phenology (Reference Model 2), by 

PROSAILH-BGC after first-step optimization with the internal phenology (GPPPROSAILH-

BGC 1-step) and the final results obtained with PROSAILH-BGC after two step optimization. 

 

The error introduced using the internal phenological model is high even using the PROSAILH-BGC 

with the optimized ecophysiological parameters after first-step optimization (GPPPROSAILH-BGC 1-step); in 

fact, underestimation of the cumulated annual GPP was -10.4% for 2002 and -11.8% for 2003. The 

yearly GPP estimated after two-step optimization (GPPPROSAILH-BGC 2-step) showed good accuracy with 

an underestimation of 1.8% and 5.6% for 2002 and 2003, respectively. These results underline the 

importance of the phenological parameters in determining the annual GPP budget. Obviously, for 

application at regional scale, the parameterization of the model with the observed phenology is not 

operatively feasible. Hence, the proposed method may be considered an important option for 

determining these parameters. 

Finally, we evaluated the accuracy of daily GPP modeled by PROSAILH-BGC after two-step 

optimization. The time courses of daily GPP for 2002 and 2003 are depicted in Figure 6a. Results 

show good agreement between modeled and observed GPP both at daily (Figure 6b) and yearly (Table 

4) time-steps thus underscoring that the proposed approach may be useful in modeling the GPP of 

poplar plantations. 

 

Year 
GPPmeasured GPPReference Model 1 GPPReference Model 2 GPPPROSAILH-BGC 1-step GPPPROSAILH-BGC 2-step

gC m-2yr-1 gC m-2yr-1 gC m-2yr-1 gC m-2yr-1 gC m-2yr-1 

2002 1,578 1,253 1,330 1,414 1,550 

2003 1,473 1,084 1,265 1,299 1,391 
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Figure 6. a) Time courses of modeled (red straight line) and observed (blue dotted line) 

GPP for 2002 and 2003. b) Scatterplot of observed and modeled GPP, data from both the 

growing seasons were plotted with exclusion of data of the dormant period. The black 

straight line is the regression line, the dashed lines represent the 95 confidence intervals, 

the grey line is the 1:1 line. b[0] is the intercept, b[1] is the slope and p is the significance 

of the linear regression analysis observed vs modeled. 

 
 

5. Summary and Conclusions 

 

In this paper we present a modeling study conducted at site level which represents a first step 

toward the analysis of the carbon budget of poplar plantations at regional scale. We developed a 

PROSAILH-BGC coupling the RT Model PROSAILH with the BIOME-BGC model. This coupling 

allowed us to arrive at a more realistic description of the light regime within the canopy and to 

simulate the vegetation index NDVI, with the MODIS satellite sensor spectral and overpass-dependent 

characteristics, as a function of LAI provided by the ecosystem part of the model. This new feature of 

the model enabled us to assimilate high temporal frequency MODIS NDVI observations into the 

process-based model. 

With this study we also provide a set of relevant ecophysiological parameters well suited for the 

application of PROSAILH-BGC for poplar plantations. The accuracy of the optimized model 

simulations, evaluated using an EC dataset not exploited in any calibration increased with respect to 

the PROSAILH-BGC applied using literature-based parameterization.  

Modeled NDVI time series simulated MODIS data quite realistically (r2 = 0.75) and key 

phenological dates were retrieved with far better accuracy than the ones modeled by the internal 

phenological model: ONDAY and OFFDAY were determined with a mean error of 6 and 7 days, 

respectively, while with the internal phenological model the mean error was 17 days for ONDAY and 

20 days for OFFDAY. The error in the dates estimated with second-step optimization may be due to 

the development of a green understory which affected the NDVI signal immediately before tree bud-

burst and persisted after overstory leaf senescence. In the same computational step, maximum leaf 

carbon was also retrieved with an average error of 4.1%. 

Globally, the two-step optimization process allowed fairly accurate estimates of GPP both at daily 

(r2 = 0.72, EF = 0.70, RMSE = 1. 80 gCm-2day-1) and yearly time steps. In particular, for the annual 

cumulated GPP we found a sensible reduction in the underestimation of modeled GPP after the two-

step optimization compared to the results obtained using Reference Model 1, Reference Model 2 and 
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also using the first-step optimized PROSAILH-BGC with phenology determined by the internal 

routine. 

For the application of the model over large areas (e.g. regional scale), the unknown phenological 

parameters as well as the site structural parameters have to be specified in some way. These parameters 

set to a nominal value (e.g. based on few field observations) or modeled with the internal phenological 

routine may lead to errors in GPP estimations. This observation underlines the usefulness of the 

proposed procedure which provides a reliable estimate of such spatially variable parameters based on 

RS observations. 

In summary, the proposed approach appears useful for modeling gross primary production both at 

site-level and at regional scale. In fact, we were firstly able to determine the correct species-dependent 

parameterization of the process-based model and, afterwards, we were able to assimilate remotely-

sensed NDVI time series for the determination of spatially varying variables such as those related to 

phenology, canopy development and site standing biomass. 

Further developments should be focused on the application of the method to different forest species 

and the development of a stable method for the optimization of other site characteristics required by 

the model (e.g. transfert growth and litterfall period; maximum stem carbon, soil effective depth), 

which are not easily available for application at the regional scale. 
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Appendix I. Ecophysiological parameterization of BIOME-BGC and PROSAILH-BGC as 

derived from literature for the Clone I-214. In grey the parameters involved in first-step 

optimization are outlined. For those parameters the value here reported is the one found in 

literature. 

 

ECOPHYSIOLOGICAL PARAMETERS - Clone  I-214 (Populus x canadensis Moench)

78           (yday)      yearday to start new growth  (when phenology flag = 0) 

315         (yday)      yearday to end litterfall  (when phenology flag = 0) 

0.12        (prop.)     transfer growth period as fraction of growing season 
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Appendix 1. Cont. 

0.38        (prop.)     litterfall as fraction of growing season 

1.0          (1/yr)       annual leaf and fine root turnover fraction 

0.70        (1/yr)       annual live wood turnover fraction 

0.008      (1/yr)       annual whole-plant mortality fraction 

0.0    (1/yr)       annual fire mortality fraction 

1.2          (ratio)      (ALLOCATION) new fine root C : new leaf C 

2.2          (ratio)      (ALLOCATION) new stem C : new leaf C 

0.16        (ratio)      (ALLOCATION) new live wood C : new total wood C 

0.22        (ratio)      (ALLOCATION) new croot C : new stem C 

0.5          (prop.)     (ALLOCATION) current growth proportion  

25.06      (kgC/kgN)   C:N of leaves 

55.0        (kgC/kgN)   C:N of leaf litter, after retranslocation 

42.0        (kgC/kgN)   C:N of fine roots  

50.0        (kgC/kgN)   C:N of live wood  

550.0      (kgC/kgN)   C:N of dead wood 

0.38        (DIM)       leaf litter labile proportion 

0.44        (DIM)       leaf litter cellulose proportion 

0.18        (DIM)       leaf litter lignin proportion 

0.34        (DIM)       fine root labile proportion 

0.44        (DIM)       fine root cellulose proportion 

0.22        (DIM)       fine root lignin proportion 

0.77        (DIM)       dead wood cellulose proportion 

0.23        (DIM)       dead wood lignin proportion 

0.041      (1/LAI/d)  canopy water interception coefficient  

0.54        (DIM)       canopy light extinction coefficient 

2.0          (DIM)       all-sided to projected leaf area ratio 

12.30      (m2/kgC)  canopy average specific leaf area (projected area basis) 

2.0          (DIM)       ratio of shaded SLA:sunlit SLA 

0.038      (DIM)       fraction of leaf N in Rubisco 

0.006      (m/s)        maximum stomatal conductance (projected area basis) 

6E-5       (m/s)        cuticular conductance (projected area basis)  

0.01        (m/s)        boundary layer conductance (projected area basis) 

-0.34       (MPa)      leaf water potential: start of conductance reduction 

-2.2         (MPa)      leaf water potential: complete conductance reduction 

1100.0     (Pa)        vapor pressure deficit: start of conductance reduction 

3600.0     (Pa)        vapor pressure deficit: complete conductance reduction 
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