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Abstract: Near Infrared Hyperspectral Imaging (NIRHSI) is an emerging technology 

platform that integrates conventional imaging and spectroscopy to attain both spatial and 

spectral information from an object. Two important problems in NIRHSI are those of data 

load and unserviceable pixels in the NIR sensor. Hyperspectral imaging experiments 

generate large amounts of data (typically > 50 MB per image), which tend to overwhelm 

the memory capacity of conventional computer systems. This inhibits the utilisation of 

NIRHSI for routine online industrial application. In general, approximately 1% of pixels 

in NIR detectors are unserviceable or ‘dead’, containing no useful information. While this 

percentage of pixels is insignificant for single wavelength imaging, the problem is 

amplified in NIRHSI, where > 100 wavelength images are typically acquired. This paper 

describes an approach for reducing the data load of hyperspectral experiments by using 

sample-specific vector-to-scalar operators for real time feature extraction and a systematic 

procedure for compensating for ‘dead’ pixels in the NIR sensor. The feasibility of this 

approach was tested for prediction of moisture content in carrot tissue. 
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1. Introduction 
 

Non-destructive, non-contact and fast measurement methods are in great demand for on-line 

industrial quality control tasks. Optical methods, like machine vision systems, allow real-time 

classification or discrimination of objects on the processing line. By processing the spatial distribution 

of its RGB coordinates, an object can be identified, its spatial location can be determined and its visible 

properties, such as colour and shape, can be described by quantitative properties [1-3]. Spectroscopy is 

another optical method used for routine quality analysis in industry. Spectral properties, such as NIR 

reflectance, can detect invisible features, e.g. existence of chemical components on the surface. In 

order to detect a certain feature on a particular object, characteristic wavelengths must be determined 

by the analysis of sample spectra from that object [4]. Features of interest can be detected by measuring 

the reflectance on the characteristic wavelengths determined by this analysis. Multi-spectral imaging, 

much like RGB imaging, can measure the spatial distribution of reflectance at numerous wavelengths 

(typically ≤ 10). This fast and non-contact measurement method can be also used for real-time 

controlling or quality control tasks [5, 6]. 

Hyperspectral imaging extends the concept of multispectral imaging to the measurement of images 

at hundreds of contiguous wavelengths. This non-destructive, non-contact technology was first used for 

airborne remote sensing applications [7], and since then it has been demonstrated as feasible for many 

quality control applications in the food and pharmaceutical industries [8]. A number of configurations 

exist for acquiring hyperspectral images, including the “push-broom” setup [9] and the variable filter 

focal-plane array [10]. In the push-broom setup, a spectrograph disperses light reflected from a line 

segment of a sample into a spectrum, mapping all points of the examined line into a rectangular area of 

a sensor matrix (Figure 1).  

Figure 1. Push-broom measurement setup. 

 
 

The sensor scans this rectangular area with given spatial, spectral and signal resolution, grabbing an 

Intensity(X,W) matrix, where X is the spatial axis and W represents the spectral axis. Moving steadily 
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perpendicular to the examined line in the Y direction and performing a line scan at each spatial 

position, the spectra of each pixel can be measured on the surface. The result is an Intensity(X,Y,W) 

matrix, commonly called a "data hypercube". This push-broom method can be used in preliminary 

experiments for determining characteristic wavelengths of a certain property for a given sample type. 

Spectra from hyperspectral experiments are generally rather noisier than those obtained in 

instrumental spectroscopy. This is due to a number of factors: in NIRHSI the sample surface is not 

isolated, so the illumination is not homogeneous; the unevenness of the sample surface causes high 

intensity variance; the sensitivity of the system is not homogeneous, and some pixels of the sensor-

matrix can be unserviceable. Moreover, the outputs of hyperspectral measurements (hypercubes) are of 

enormous size, typically in the order of mega- or giga-bytes, which poses significant problems for data 

storage and processing. This array of data can be analysed by robust mathematical or statistical 

methods to extract significant features, however, such analysis tends to be time consuming, given the 

large size of the datasets to be analysed.  

In this paper, a strategy for compensation of unserviceable pixels in the NIR detector is presented, 

and an approach for the reduction of hyperspectral data by real-time extraction of examined features 

using vector-to-scalar operators is discussed. As an application of the approaches presented, the 

NIRHSI properties of carrot have been investigated for estimation of the moisture decrease during 

drying. Preliminary experiments were performed to determine the suitable data reduction operator 

(target function) for extraction of the moisture content feature. Image processing and statistical 

algorithms were used to analyse the data in order to determine the optimal target function.  

2. Hyperspectral imaging system 

The hyperspectral imaging system employed in this research (Figure 2) allowed two different 

configurations: one for imaging in the visible-very NIR range (400 – 1000 nm) and another for imaging 

in the NIR range (900 – 1700 nm).  

Figure 2. Hyperspectral imaging system. 
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The NIR configuration was used in this study. The system consists of a linear translation table, 

illumination source (DC regulated light feedback fibre optic, Model 3900, www.illuminationtech.com), 

objective lens (2/3" C-mount broadband coated lenses, Schneider–Kreuznach CINEGON), Specim 

N17E spectrograph (Spectral Imaging Ltd., Oulu, Finland) operating in the wavelength range of 900 – 

1700 nm, detector (LuxNIR camera with InGaAs focal plane array, effective resolution of 320 x 256 

pixels by 12 bits, 30x30 µm pixel pitch, 98% pixel operability) and PC. The linear translation table was 

driven by Isel LF4 mechanics and Isel TMO-4403 (PICMIC) stepping motor that could be controlled 

by textual commands via an RS-485 interface (www.isel.com). Wavelength calibration was performed 

using Mercury-Cadmium and Helium lamps in NIR and visible ranges and the heat extracted from the 

NIR camera sensor by a Peltier cooler was removed by an external liquid pump.  

Reflectance calibration was required to account for non-homogeneous spectral response of detector. 

The relative absorbance value (‘RA’) was calculated from the measured signal (‘x’) as shown in 

equation 1, where the dark field reading (‘min’) was obtained by covering the optics with a lens cap 

and the bright field reading (‘max’) was obtained by measuring the reflectance of a gold-covered plate. 

Reflectance (‘R’) and absorbance (‘A’) are defined in equations 2 and 3. 
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3. Methodology 

3.1. Unserviceable NIR sensor pixels  

Two types of unserviceable pixels observed for the NIR sensor (InGaAs focal plane array) are 

described below: 

I. Extraordinarily dark pixels: These pixels behave like a stone dropped into water, resulting in a 

slightly higher intensity level for their four neighbours [Figure 3 (a)]. The superposition effects were 

additive, therefore one fourth of the missing signal of dark pixels had to be subtracted from that of the 

four neighbours. 

II. Extraordinarily bright pixels: These pixels resulted in a “light shadow” on the pixel directly to 

their right; this “light shadow” also affected far neighbours with exponentially decreasing intensity 

[Figure 3(b)].  
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Figure 3. Dark (a) and bright (b) pixel’s effect and superposition. 

  
 

Standard noise removal algorithms for image processing are not applicable to the problems listed 

above. Therefore, the following steps are proposed to deliver suitably homogeneous frames: 

A. Identification of extraordinarily dark and bright pixels 

Dark and bright pixels have to be identified on a frame of a grey (mid-intensity level) surface when 

calibrating extraordinary pixels. Firstly, the intensity variance for a square area of a given size (e.g. 

10x10 pixels) on the grey surface is calculated. Then this variance is multiplied by a number, N (e.g. 

4), to define a threshold value. Pixels with intensity values above this threshold are classified as 

extraordinarily bright, while pixels with intensity values below this threshold are classified as 

extraordinarily dark. 

Figure 4. Schematic showing correction of extraordinarily dark pixel based on interpolation. 
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B. Correction of extraordinarily dark and bright pixels 

The steps required for correction of an extraordinarily dark pixel (ED) by interpolation in shown in 

Figure 4. Surrounding the ED are 2 bright shadow pixels (S1, S2) which are neighboured by two 

normal pixels (N1, N2); firstly, a linear regression is made between N1, N2 to estimate the value of ED 

[Figures 4(i) & (ii)]. S1 and S2 are then corrected by subtracting ¼ of the error (i.e. difference between 

actual and estimated values) of ED [Figure 4 (iii)]. Finally, a linear regression is made between the 

corrected values of S1 and S2 to re-estimate the value of ED [Figure 4 (iv)]. A similar linear 

interpolation correction scheme was used to compensate for extraordinarily bright pixels. 

3.2. Real-time data reduction 

The procedure developed in this research enables real-time pre-processing of hyperspectral data 

during data acquisition for reduction of the enormous Intensity hypercube, I(x,y,λ), into Score matrices, 

S(x,y), each representing a particular feature. This is achieved by multiplying the spectral emission of 

the target by an feature extraction operator predefined by experimentation. The simplest example of 

feature extraction is the pre-processing function of human vision. The spectral emission of a scene is 

multiplied by Red, Green and Blue (RGB) filters, the CIE 1931 colour matching functions [11] 

resulting three scalar values as score of features.  

To perform real time feature extraction of hyperspectral images, the vector-to-scalar operator of the 

desired feature, Op(λ), must first be estimated by experimentation. An example of how this may be 

done is given further on in this paper. Once this has been done, while scanning the frame of an 

examined line, the 2-D (spatial vs spectral) Intensity matrix, I(x, λ), is real-time pre-processed into a 

score vector, T(x), by multiplying the spectrum of each pixel by Op(λ) (see Figure 5). By moving the 

object under the camera (in the y-direction) and grabbing the frames of subsequent lines, the scores 

matrix of features, T(x,y), is built. This matrix may be displayed while scanning as a pseudo-image, 

showing the distribution of the selected feature on the surface. Selected score matrices, which are 

substantially smaller in size than the corresponding hypercube (3-4 score image planes as opposed to 

>100 spectral planes in the hypercube) may then be saved for further analysis by usual image 

processing methods. 

Figure 5. Conversion of 2-D spatial-spectral matrix, I(x,λ) into score matrix, T(x), as a 

result of a vector multiplication operator. 
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Optimal vector-to-scalar functions are usually determined by mathematical and statistical methods. 

For instance, Principal Component Analysis is frequently used in chemometrics. This analysis 

determines a set of independent base vectors, the first few of which optimally describe the variance of 

the sample population. The measured spectrum can then be transformed into the base vector-space 

[12]. For determining optimum data-reduction operators, spectra of samples have to be obtained where 

the examined feature of interest (e.g. moisture-content) is known. The optimal operator must then be 

determined by statistical analysis. The following section of this article shows an example of how to 

estimate an efficient operator for a given feature. In this case, the goal of the data reduction operator 

was to predict the moisture-content of carrot tissues during storage. 

4. Experiments 

Non-invasing monitoring of the impact of postharvest conditions on carrots can be an important tool 

in supply chain management. Spectrophotometric techniques have been adapted and evaluated with 

conventional chromatographic methods to test their feasibility for monitoring of compounds 

determining the quality of carrot during storage [13]. Investigating and modelling the behaviour of 

different tissues could be another interesting approach to describe the changes of carrot. 

 

Sample preparation 

 

Carrot samples (Barbara cultivar) sourced from a local supplier were stored prior to analysis in a 

controlled atmosphere at a temperature of 4˚C and a relative humidity of 90%. Cross-sectional slices 

were cut from the middle third of the carrot length, since this part is generally free from quality defects. 

Interior carrot structure is shown in Figure 6. At each time point studied, hyperspectral images of fresh-

cut slices from the middle third of the carrot length were examined (Figure 7). Cross-sectioned carrot 

slices were measured rather than grated carrot, since grated carrot experienced rapid darkening by 

enzymatic oxidation of phenolic compounds. Re-measurement of a given slice resulted spectrally 

homogeneous whitening caused by drying of the surface layer; therefore it was necessary to measure 

fresh-cut surfaces at each time point. Plastic covering prevented the examined section from lengthwise 

drying since intact carrots lose moisture primarily in the radial direction during drying.  

Figure 6. Cross section of carrot structure 
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Figure 7. Film covered section (left) was cut each time to provide a fresh surface. 

 

 
 

Carrot samples were dried to different moisture levels by storage in a drying chamber at 30 oC for 0, 

90, 180, 270, 360, 450 min. Five carrots were used in the experiment: one slice was obtained from each 

of the 5 carrots at each time point, making five slice samples for each time point. Slices were weighed 

immediately after each hyperspectral measurement and were then dried completely for 24 hours drying 

in a chamber at 105 oC. Moisture content (% d.b.) was calculated by mass difference.  

Five hyperspectral line scans were obtained along the central region of selected carrot slices, as 

shown in Figure 8. The distance between scanning lines was 1 mm, and the average and variance of 

relative absorption was calculated along 3 mm of these lines at the sites of the phloem and xylem. 

Spectral data was limited to the range 950 – 1650 nm since the signal to noise ratio was unacceptably 

low beyond these limits. Due to temporal signal fluctuations, all spectra were normalized by dividing 

them by the mean value of the background signal obtained at respective time points. 

Figure 8. Areas of carrot tissue selected for analysis 

 
 

5. Results 

The average of 525 spectra was calculated for each of the drying times on both tissue types (Figure 

9). Differences in spectral shape for the different time points studied were not readily visible, except 

for xylem absorbance in the 1050 – 1300 nm interval, which showed a trend of decreasing absorbance 

with increasing drying time. The observed decrease in absorption for longer drying times is probably 
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related to water content, since liquid H2O exhibits an intermolecular stretch band at around 1200 nm 

[14]. 

Figure 9. Average absorbance of carrot phloem and xylem (corrected by mean 

normalization) versus wavelength for different storage time intervals. 

 

Discriminant analysis proved that both the tissue types could be classified with very high scores 

along the whole measurement time (Table 1), and the time of storage could also be classified on both 

tissue-types (Table 2).  

Table 1. Classification results of DA grouping tissue types (xylem and phloem) for 

2x630 spectra in calibration set and 2x2520 spectra in test set (data of each time intervals 

are contained) 

 

 predicted group membership 
 original group xylem phloem 
learning set: 2*630 spectra count xylem 630 0 

phloem 0 630 
% xylem 100.0 0.0 

phloem 0.0 100.0 
test set: 2*2520 spectra count xylem 2504 16 

phloem 20 2500 
% xylem 99.4 0.6 

phloem 0.8 99.2 
100.0% of selected original grouped cases (learning set) correctly classified. 
  99.3% of unselected original grouped cases (test set) correctly classified. 

 

Finally, U-test or PLS analysis can be used to calculate the optimal wavelengths for discrimination. 

The linear combination of significant wavelengths can be divided by a wavelength that is invariant 

from the investigated property, to eliminate the changes of absorbance, caused by other circumstances, 

like illumination. 

Then the displayed pseudo-images of data-reduction operators can real-time display the distribution 

of examined property. Figure 10 illustrates the result of operator that classifies xylem tissue type on the 

base of significant wavelengths. The brightening of xylem tissues can be observed on the distribution 

of discriminant function that describes the change of xylem by time (Figure 11).  
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Table 2. Classification results of DA grouping different time intervals (0..5x90 min) for 

6x210 spectra in calibration set and 6x840 spectra in test set (data of each tissue types are 

contained) 
 

 predicted group membership 
 group 0 90 180 270 360 450 
learning set: 6*210 spectra %     0 100.0 0.0 0.0 0.0 0.0 0.0 

  90 0.0 98.6 1.4 0.0 0.0 0.0 
180 0.0 4.3 95.7 0.0 0.0 0.0 
270 0.0 0.0 0.0 81.0 15.7 3.3 
360 0.0 0.0 0.0 5.2 80.5 14.3 
450 0.0 0.0 0.0 4.8 11.9 83.3 

test set: 6*840 spectra %     0 98.1 1.9 0.0 0.0 0.0 0.0 
  90 0.1 91.2 8.7 0.0 0.0 0.0 
180 0.0 7.5 92.5 0.0 0.0 0.0 
270 0.0 0.0 0.0 78.6 16.9 4.5 
360 0.4 0.1 1.0 41.0 41.9 15.7 
450 0.0 0.0 0.0 38.9 26.2 34.9 

89.8% of selected original grouped cases (learning set) correctly classified. 
72.9% of unselected original grouped cases (test set) correctly classified. 

 

These pseudo-images of the measured object set can be processed later by the conventional image 

processing methods. 

Figure 10. Pseudo-images of different ranges and one for enhancing xylem tissue type 

 
 

Figure 11. Pseudo-images to detect changes of xylem. Slices were cut after 0, 90 and 180 

minutes storage time from a definite carrot. 
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6. Conclusions 

Measurement method was developed for insuring proper signal level of push-broom NIRHIS system 

and for reducing the data load of hyperspectral experiments by using sample-specific vector-to-scalar 

operators for real time feature extraction. The feasibility of this approach was tested for describing the 

changes of carrot tissues during storage. The method was able to distinguish the different behaviour of 

different tissues. Surfaces of food and raw materials can be investigated and tested by this method in 

preliminary measurements for using multispectral system for industrial tasks or quality control. 

Studying and modelling the behaviour of different tissues could be an interesting approach to describe 

more detailed changes in agricultural produce before harvest and during storage. 
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