
Sensors 2008, 8, 3429-3437; DOI: 10.3390/s8053429 

 

sensors 
ISSN 1424-8220 

www.mdpi.org/sensors 
Article 

Motion Compensation of Moving Targets for High Range 
Resolution Stepped-Frequency Radar 

Yimin Liu *, Huadong Meng, Hao Zhang and Xiqin Wang 
 

Department of Electronic Engineering, Tsinghua University, Beijing 100084, PR China 

 

* Author to whom correspondence should be addressed. E-mail: liuyimin00@mails.tsinghua.edu.cn 

Received: 7 May 2008 / Accepted: 21 May 2008 / Published: 23 May 2008  

 

Abstract: High range resolution (HRR) profiling using stepped-frequency pulse trains 

suffers from range shift and the attenuation/dispersion of range profiles while the target of 

interest is moving. To overcome these two drawbacks, a new algorithm based on the 

maximum likelihood (ML) estimation is proposed in this paper. Without altering the 

conventional stepped-frequency waveform, this algorithm can estimate the target velocity 

and thereby compensate the phase errors caused by the target’s motion. It is shown that the 

velocity can be accurately estimated and the range profile can be correctly reconstructed. 
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1. Introduction 

High resolution radar is an area of vigorous research and development in recent years. It is known 

that radar’s range resolution is inversely proportional to its bandwidth. Therefore, the increase in 

bandwidth correspondingly improves the radar’s range resolution. However, the wideband radar pulses 

complicate the design of transmitters and receivers. Also, such radar receivers are subject to potential 

interference from other sources. 

To overcome these drawbacks, Ruttenberg [1] introduced a kind of radar waveforms containing a 

train of pulses whose carrier frequencies were different from each other. In 1984, the stepped-

frequency pulse trains, with the carrier frequency of each pulse shifting linearly at a constant step, were 

introduced by Einstein, T.H. [2]. The total bandwidth of the pulse train can be synthesized together and 

the high range resolution profile (HRRP) can be generated by the inverse discrete Fourier transform 

(IDFT). Since then, the stepped-frequency pulse trains have been widely used in high range resolution 

(HRR) radars. 
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As mentioned in [2–3], the stepped-frequency radars suffer from distortion arising from the target’s 

motion. An uncompensated non-zero radial velocity is found to have two effects on the HRRP. The 

first one is the circular shift in the HRRP. The second effect is the attenuation and dispersion of the 

HRRP [2]. These effects degrade the performance of stepped-frequency radars. Recently, several 

investigations have been proposed to mitigate the distortion caused by target’s motion. In [4], two 

effective methods called reverse-count method and amplitude-interpolating method were introduced to 

solve the range shift effect. However, the attenuation/dispersion effect was not taken into account. In 

[5], the distortion of the HRRP from a perturbed target was analyzed, and a numerical model was 

developed to simulate the distortion effects. A kind of phase-coded, stepped-frequency waveforms, 

which had lower Doppler sensitivity than the traditional ones, was introduced by Temple in [6]. In [7], 

two successive stepped-frequency pulse trains were used to eliminate the phase errors of the moving 

target. Li et al. [8] introduced a new method using multiple stepped-frequency pulse trains and the 

robust phase unwrapping theorem to estimate the range and the velocity of the target. However, the 

majority of these methods [6–8] focused on the technique trends, which needed transmitting and 

receiving new kinds of waveforms. As a result, their implementations on those traditional in-service 

stepped-frequency radars were restrained. 

A new motion compensation algorithm, based on the maximum likelihood (ML) estimation, is 

provided in this paper. It will be shown that this algorithm can estimate the target’s radial velocity 

accurately and reconstruct the distorted HRRP successfully. Without altering the conventional 

waveforms, the new algorithm can be implemented on the in-service stepped-frequency radars. 

The remainder of this paper is organized as follows. In Section 2, the signal model of moving 

targets in stepped-frequency radar systems is formulated. In Section 3, the ML estimator of the radial 

velocity is derived. Then, using the fast Fourier transforms to reduce the computational load, the new 

algorithm is proposed. In Section 4, some numerical examples are given to demonstrate the 

performance of the proposed algorithm. Section 6 presents the conclusions drawn from this work. 

2. Signal Model 

A stepped-frequency pulse train is a series of pulses modulated with different carrier frequencies. 

The carrier frequency of the first pulse is fc and those of the rest N−1 subsequent pulses are fc+n∆f, 

n=1,2,…,N−1, where N is the number of pulses and ∆f is the frequency step size. Then, the nth 

transmitted pulse is 

( ) ( )2rect , 0,1, , 1cj f n f tr
n

t nT
s t e n N

T
π + ∆− = ⋅ = − 

 
K ,   (1) 

where rect(·) is the rectangular function, T is the pulse width, Tr is the pulse repetition interval (PRI) 

and the amplitude of the transmitted pulse is supposed to be 1. Supposing that the target is an ideal 

point-like scatterer, and disregarding both the energy divergence on wave propagation paths and the 

variation of target’s reflection factor, the nth received pulse is 

( ) ( ) ( ) ( ) ( )02 2 /02 /
rect c R rj f n f t R V nT cR r r

n n

t R V nT c nT
r t e w t

T
πα  + ∆ − + 

− + − 
= ⋅ ⋅ + 

 
, (2) 

where α  is the amplitude of the received signal, c is the speed of light, wn(t) is the additive noise, R0 

and VR are the initial range and radial velocity of the target. As in most studies on the stepped-
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frequency waveforms, it is assumed that VR is constant in the whole coherent processing interval (CPI), 

and the target range migration does not exceed / 2cT , which is the rough resolution determined by a 

single pulse. Each pulse is demodulated with its corresponding carrier frequency, thus the baseband 

signal of the nth pulse is 

( ) ( ) ( )( ) ( )04 /02 /
rect c R rj f n f R V nT cR r r

n n

t R V nT c nT
x t e w t

T
πα − + ∆ +− + − 

= ⋅ ⋅ + 
 

. 

The sample of the received baseband signal is 
( ) ( )2

0 0
4 /4 / c R r R rc

j f V T n V T fn cj R f R fn c
n nx e e w

ππα − + ∆− + ∆= ⋅ ⋅ + .        (3) 

The first phase term of the right side of (3) is caused by the initial range of the target, and the second 

phase term is the additional phase term caused by the radial velocity. When the target and the radar are 

relatively stationary, i.e., VR=0, one can use the IDFT to estimate the target’s range and to generate the 

HRRP. However, if the target and the radar are not relatively stationary, as mentioned in [2–3], the 

linear component of the additional phase term will cause the circular range shift and the quadratic 

component will cause the attenuation/dispersion of the range profiles. Both of them are significant 

distortions in using stepped-frequency pulse trains to generate the HRRP. However, once the VR is able 

to be estimated, the additional phase term can be compensated, and the HRRP can be reconstructed as 

well. 

Denoting 

( )04 /c R rR f f V T cη π= − ∆ + ,     (4) 

and 
4 /R rV T f cµ π= − ∆ ,      (5) 

(3) can be re-written as 
( )2j n n

n nx e w
η µα += ⋅ + ,      (6) 

Supposing that a target is composed by K scatterers and the amplitude of the received pulse from each 
scatterer is , 0,1, , 1k k Kα = −K , the baseband signal is 

( )21

0

k k
K

j n n

n k n
k

g e w
η µα

− +

=
= ⋅ +∑ ,      (7) 

where ηk and µk are determined by the range and velocity of each scatterer as proposed in (4) and (5). 

Denoting ( ) ( ) ( ) ( )( )22 2 1 11 1 2 2
1, , , , k kk k k k

T
j N Nj j

k e e e
η µη µ η µ − + −+ + Ω =   

K , where ( )T
�  is the transpose operation, 

equation (7) can be re-written in the matrix form, as 
= +g Ωα w ,       (8) 

where [ ]0 1 1, , ,
T

Ng g g −=g K , [ ]0 1 1, , ,
T

Nw w w −=w K , [ ]0 1 1, , ,
T

Kα α α −=α K , and [ ]0 1 1, , , K −= Ω Ω ΩΩ K . 

3. Velocity Estimation and Motion Compensation 

3.1. Maximum Likelihood Estimation of the Target Velocity 

The motion compensation and range profiling of a moving target can be seen as the estimation of 

the scatterers’ amplitudes, ranges, and velocities. According to (7), this problem is the same as the 
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estimation of { } 1

0
, ,

K

k k k k
α η µ −

=
 through the observations vector g. Supposing that the noise is additive 

white Gaussian noise (AWGN), the ML estimation of { } 1

0
, ,

K

k k k k
α η µ −

=
 can be obtained by minimizing 

the following cost function: 

{ }( ) 21

1
, ,

K

k k k k
C α η µ −

=
= −g Ωα .     (9) 

where �  denotes the Euclidean norm. Minimizing (9) with respect to α yields 

( ) 1
ˆ H H−

=α Ω Ω Ω g ,      (10) 

where ( )H
�  is the conjugate transpose operation. Substituting (10) into (9), we get 

{ }( )
( )

21

0

1

ˆ, ,
K

k k k k

H H H H

C α η µ −

=

−

= −

= −

g Ωα

g g g Ω Ω Ω Ω g
.    (11) 

Then, the ML estimation of { } 1

0
,

K

k k k
η µ −

=
 can be achieved through 

{ } ( ){ }11

0 ,
ˆ ˆ, arg max

k k

K H H H
k k k η µ

η µ
−−

=
= g Ω Ω Ω Ω g .    (12) 

As assumed in the previous section, the radial velocity of each scatterer is the same. Thus, 

0 1 1Kµ µ µ µ−= = = =K , and 

( ){ } ( ) ( ) ( )( )22 2 11 211 21, , , , 1, , , , , 0, , 1kk k
T

j Nj jj Nj j
k diag e e e e e e k Kηη ηµµ µ −−  Ω = = −

 
K K K . (13) 

Supposing that the number of pulses 1N �  and the range intervals between the scatterers are larger 

than ∆R (the range resolution, 
2

c
R

N f
∆ =

∆
 [3]), we have 

( ) 1 1H

N

−
≈Ω Ω I ,      (14) 

where I is the identity matrix. Substitute (14) into (12), and then the ML estimation of { } 1

0
,

K

k k
η µ −

=
 can 

be modified as 

{ } { }
( ){ } ( ) ( ) ( )( )22 2

1

0 ,

21
11 211 2

,
0

ˆ ˆ, arg max

arg max 1, , , , 1, , , ,

k

kk k

k

K H H
k k

K T
j Nj jj NH j j

k

diag e e e e e e

η µ

ηη ηµµ µ

η µ

η µ −

=

−
−−

=

=

   =     
∑

g ΩΩ g

g K K

. (15) 

According to (5), the velocity of the target can be achieved as 

( )ˆ ˆ / 4R rV c T fµ π= − ∆ .      (16) 

So the quadratic phase term caused by radial velocity can be compensated through 
( ){ }22 2 ˆ 1ˆ ˆ1 2' 1, , , , j Nj jdiag e e e µµ µ − −− −=g gK .    (17) 

And the total additional phase term caused by radial velocity can be compensated, as 
( )2ˆ4 /

' R c r rj V f T n T fn c

n nx x e
π + ∆= .     (18) 

Finally, the HRRP of the moving target can be generated by the IDFT of [ ]0 1 1', ', , 'Nx x x −K . 
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3.2. The Motion Compensation and Profile Reconstruction Algorithm 

With the above-mentioned preparation, the motion compensation algorithm will be introduced in 

this section. If the number of scatterers K is supposed to be known, the ML estimation of the 

parameters are obtained as follows. 

Firstly, the parameter µ is assumed to be known, as µ=µ′. Then, the additional quadratic phase term 

caused by radial velocity is compensated by using (17). 

Secondly, the FFT is adopted to estimate the { } 1

0

K

k k
η −

=
 in (15) for the purpose of reducing the 

computation load. The FFT is performed on the compensated signal vector g′, and the squares of 

amplitudes of the FFT results are calculated, as ( ) 2

' FFT 'µ =F g . The largest K components of vector 

'µF  are chosen, and their sum is denoted as 'Sµ . The 'Sµ  is a function of 'µ . The estimation of { } 1

0

K

k k
η −

=
 

is the frequency corresponding to these largest K components. 
Thirdly, the 'Sµ  is maximized with respect to 'µ . Then, the ML estimation of µ , denoted as ̂µ , 

can be obtained through 

[ ]
{ }

min max

'
' 4 / , 4 /

ˆ arg max
R r R rV T f c V T f c

Sµ
µ π π

µ
∈ − ∆ − ∆

= ,     (19) 

where [ ]min max,R RV V  is the search space of the target radial velocity. 

Finally, the estimation of target radial velocity R̂V  can be derived according to (16). Then, applying 

the first and second step given above, the { } 1

0
ˆ K

k k
η −

=
 can be achieved. The α̂  is finally obtained through 

(10). 

As the FFT is not exactly equivalent to the ML estimator of { } 1

0

K

k k
η −

=
 in the second step, we call the 

above procedure the simplified ML estimation (SMLE). As long as the estimation of radial velocity is 

obtained, (18) can be used to compensate the motion effect. The IDFT can be performed on the 

compensated signal to generate the undistorted HRRP. 

However, if the target is non-cooperative, the number of scatterers K cannot be supposed as a prior. 

Thus, one should estimate K before applying the SMLE algorithm proposed here. The minimum 

description length (MDL) criterion introduced by Schwarz [9] is adopted here to estimate the number 

of scatterers. Schwarz’s approach is based on Bayesian arguments. It is assumed that each hypothesis 

of K can be assigned a prior probability, and proposed to select the K that yields the maximum 

posterior probability. Using the MDL criterion, the number of scatterers K can be obtained by 

( ) { } 1

0 1 1 0

1
ˆ ˆ ˆarg min MDL log , , , | , , log

2
K

k N k k k kK
K M x x x K Nα η µ −

− =
  = − +   

K ,  (20) 

where { } 1

0
ˆ ˆ ˆ, ,

K

k k k k
α η µ −

=
 is the ML estimate of the parameters, and { } 1

0 1 1 0
ˆ ˆ ˆlog , , , | , ,

K

k N k k k k
M x x x α η µ −

− =
 
 

K  

is log-likelihood of the ML estimate of the parameters. 

An example is introduced here to validate the MDL criterion in our topic. We consider a moving 

target including four scatterers. The number of pulses in the stepped-frequency train is 512, and the 

signal-to-noise ratio (SNR) is 0 dB. The SMLE algorithm is used to yield the ML estimation of 

parameters and the following values for the MDL criterion (see Table 1). 
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Table 1. An example of the MDL criterion. 

 
K 1 2 3 4 5 6 7 8 9 10 

MDL 1100 924.99 748.11 572.3 574.9 576.12 577.36 578.7 580.14 581.6 

 

The minimum of the MDL is obtained, as expected, for the K = 4. 

With the MDL criterion and the SMLE algorithm proposed above, the scatterer number and the 

velocity of the target of interest can be estimated iteratively as follows. 

 

Step 1 Assume that the number of scatterers is K=1. 

Step 2 Obtain scatterers’ parameters by using SMLE. 

Step 3 Calculate the MDL(K). 

Step 4 Assume K=K+1, and repeat Step 2 and Step 3. 

 

Remaining Steps Continue the similar steps, until the minimum MDL(K) is achieved. Then, use 

(16) and (18) to compensate for the radial velocity, and perform the IDFT on the compensated 

signal to generate the reconstructed HRRP. 

4. Numerical Examples 

In this section, some numerical examples are given to show the performance of the proposed new 

algorithm. The noise is AWGN in all of these simulations, and the parameters of the radar waveform 

used in this section are shown in Table 2. 

 

Table 2. Parameters of the simulated stepped-frequency pulse train. 

 

Parameter Value 

Radar center frequency (fc) 9 GHz 

Frequency step size (∆f) 1 MHz 

Pulse number (N) 512 

Range resolution (∆R) 0.293 m 

Pulse repetition interval (PRI) 1 ms 

Pulse width (T) 0.5 µs 
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Figure 1. Root mean square error of the target velocity versus SNR. 
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First, we consider a moving target including only one scatterer. The range and the velocity of the 

target are 128∆R and 100m/s, respectively. The number of scatterers K is supposed to be known in this 

simulation and the SMLE algorithm is used to estimate the velocity of the target. 2000 Monte–Carlo 

trials are run. The results are presented in comparison with the Cramer–Rao bound (CRB) [10–11]. 

The accuracy of the estimated velocity is measured by the root mean square error (RMSE), defined as 

( )2

1

1 ˆ
rN

R R
ir

V V
N =

−∑ , where Nr=2000. Figure 1 shows the simulation results of the SMLE for target 

velocity versus various SNR. For SNR of −10dB or higher, the SMLE algorithm reaches the optimum 

estimation accuracy. 

Another moving target including seven scatterers is considered. The ranges of the scatterers are 
140∆R，153∆R，186∆R，195∆R, 208∆R, 251∆R, and 258∆R. Their amplitudes are 0.2, 0.3, 0.5, 0.7, 

1.0, 0.7, and 0.2, respectively. And the target radial velocity is 100m/s. 

The number of scatterers is obtained through the MDL criterion and the radial velocity is estimated 

by the SMLE. Simulation results are presented in Figure 2. 

 

Figure 2. Simulation results of the moving target including seven scatterers. 
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Figure 2(a) is the comparison between profile truth, profiling result with motion compensation and 

without motion compensation. The SNR is −5dB. It is shown that the profile result without motion 

compensation (the red dotted line) is badly attenuated and distorted, when compared with the profile 

truth with no motion (the blue solid line). However, the target velocity can be estimated through the 

algorithm proposed in this paper, and the HRRP is correctly reconstructed (the green dashed line). 

Figure 2(b) shows the accuracy of the estimated velocity. 

5. Conclusion 

In this paper, a new algorithm based on the ML estimation is proposed for HRR profiling of moving 

targets. This algorithm can be implemented on the in-service stepped-frequency radar systems, without 

changing their waveforms and system structures. The performance of this algorithm is guaranteed by 

the asymptotical optimality of the ML estimation [12]. The simulation results also show that the new 

algorithm can estimate the target velocity accurately and then reconstruct the HRRP correctly. Future 

work could include investigations into fast algorithms for the SMLE and how to extend this algorithm 

for maneuvering targets. 
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