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Abstract: Matrix effects on the microcystin-LR fluorescent immunoassay based on the 

evanescent wave all-fiber immunosensor (EWAI) and their elimination methods were 

studied. The results indicated that PBS and humic acid did not affect the monitoring of 

samples under the investigated conditions. When the pH was less than 6 or higher than 8, 

the fluorescence signals detected by immunosensor systems were obviously reduced with 

the decrease or increase of pH. When the pH ranged from 6 to 8, IC50 and the linear 

working range of MC-LR calculated from the detection curves were 1.01~1.04 μg/L and 

0.12~10.5 μg/L, respectively, which was favourable for an MC-LR immunoassay. Low 

concentrations of Cu2+ rarely affected the detection performance of MC-LR. When the 

concentration of CuSO4 was higher than 5 mg/L, the fluorescence signal detected by EWAI 

clearly decreased, and when the concentration of CuSO4 was 10 mg/L, the fluorescence 

signal detected was reduced by 70%. The influence of Cu2+ on the immunoassay could 

effectively be compromised when chelating reagent EDTA was added to the pre-reaction 

mixture. 
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1. Introduction 

 

Evaluation of matrix effects is of great importance when developing a quantitative immunoassay 

method because antigen and antibody binding depends mainly on van der Waals forces and 

hydrophobic interactions, which are greatly affected by effects existing in real water samples such as 

pH, ionic strength, organic content and so on [1]. Matrix effects may be defined as ‘the sum of the 

effects of all of the components, qualitative or quantitative, in a system with the exception of the 

analyte to be measured’ [1,2]. Environmental samples are usually comprised of extremely complex 

and variable mixtures of proteins, carbohydrates, lipids, small molecules, salts and so on, which may 

lead to false positive or false negative results, low or high bias or poor precision. The reagents used in 

the immunoassay may also cause matrix effects. Despite enormous advances in the design of 

immunoassays, unwanted interferences caused by matrix effects cannot be completely excluded. 

Moreover, the interferences in the measurement of different samples usually vary with each other, so 

when detecting a target pollutant of interest with an immunosensor, special methods for eliminating 

matrix effects must often be used to obtain correct assay results.  

Microcystin-LR (MC-LR) containing L-leucine and R-arginine in positions 2 and 4, respectively, is 

the most frequent and most toxic among nearly 80 microcystin variants obtained from Microcystis, 

Anabaena, Oscillatoria (Planktothrix), Nostoc and Anabaenopsis [3]. Many reported cases of 

animal-poisoning and human health diseases, some resulting in liver cancer and even death, are due to 

exposure to MCs via drinking and surface water [4-6]. To minimize public exposure to MCs, the World 

Health Organization (WHO) has proposed a drinking water MC-LR guideline value (GV) of 1 μg/L [3]. 

Some immunoassay technologies have been developed to detect MC-LR [7,8], but due to the matrix 

interferences in water samples, most of them could not be applied to assay the real samples [9]. 

Fluorescent immunosensors have been developed to determine various trace amounts of targets interest 

based on the principle of fluorescent immunoassay [10-12]. However, a detailed evaluation of common 

organic and inorganic substances found in the environment for the detection of MC-LR based on 

fluorescent immunosensor is still missing. We have previously introduced a new portable miniaturized 

evanescent wave all-fiber immunosensor (EWAI) to determine various trace amounts of targets 

interest based on the principle of immunoreaction and total internal reflect fluorescent (TIRF) [13]. 

Here we use the slightly revised EWAI to investigate the influence of common interferences like PBS, 

pH, humic acid and copper ions on the sensitivity and stability of the MC-LR fluorescence 

immunoassay, and demonstrated that with the choice of a proper elimination method, the influence of 

interfering substances can be limited.  

 

2. Experimental 

 

2.1. Immunoreagents and Chemicals 

 

3-mercaptopropyl-trimethoxysilane (MTS), ovalbumin (OVA), bovine serum albumin (BSA), 

N-(4-maleimidobutyryloxy) succinimide (GMBS), and 1-ethyl-3-(dimethylaminopropyl) carbodiimide 

hydrochloride (EDC) were purchased from Sigma-Aldrich (Steinheim, Germany). MC-LR was 

obtained from Alexis (Lausen, Switzerland). All the other reagents, unless specified, were supplied by 
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Beijing Chemical Agents; these were also of analar grade and used without further purification. 

Distilled deionized water was used throughout the investigation. Monoclonal anti-MC-LR antibody 

(MC-LR-MAb. reference no. 8C10) was produced and the hapten conjugate MC-LR-OVA was 

synthesized by our research group. 1×PBS was 0.01 mol/L phosphate buffer, 0.8% saline solution and 

unless otherwise indicated the pH was 7.4. 5×PBS and 10×PBS is 5 times and 10 times concentrated 

1×PBS. 1 mg/L MC-LR stock solutions were prepared in 0.01 mol/L PBS and stored at 4 ºC. 

 

2.2. EWAI instrumentation  

 

The slightly modified EWAI immunosensor used in this study was previously described in [13]. The 

pulse laser beam from a 635-nm pulse diode laser was directly launched into the single-mode fiber of 

the single-multi mode fiber coupler. The laser light then entered the multi-mode fiber with the diameter 

of 600 μm and numerical aperture of 0.22 from the single-mode fiber. Afterwards, the excitation light 

from the laser, through the fiber connector, was coupled to a fiber probe. The incident light propagates 

along the length of the probe via total internal reflection. The evanescent wave generated at the surface 

of the probe then interacted with the surface-bound fluorescently labelled analyte complexes, and 

causes excitation of the fluorophores. The collected fluorescence was subsequently filtered by means 

of a bandpass filter and detected by photodiodes through lock-in detection. The probe was embedded 

in a flow glass cell with a flow channel having a nominal dimension of 70 mm in length and 2 mm in 

diameter. All reagents were delivered by a flow analysis system operated with a peristaltic pump.  

 

2.3. Probe preparation 

 

Combination tapered fiber optic probes were prepared as previously described [14]. The 

hapten-carrier conjugate MC-LR-OVA, used as recognition element, were covalently attached to the 

sensing surface of the probes with a heterobifunctional reagent. Employing a modified procedure 

originally described by Bhatia et al. [15], the hapten-carrier conjugate was immobilized onto the probe 

surface. Briefly, the probes were initially cleaned with piranha reagents (concentrated H2SO4/H2O2 

2:1), rinsed with distilled deionized water, and dried in N2. Next, the probe was placed in 2% MTS in 

toluene for 2 hours, under an inert atmosphere. Excess MTS was eliminated with dry toluene to assure 

the order and uniformity of the SAM. The thiol group of the silane was allowed to react for 1 hour 

with a heterobifunctional crosslinker, 2 mM GMBS in ethanol. After rinsing with ethanol and PBS, the 

succinimide group on the GMBS was then used to covalently bind the epsilon amino groups on 

proteins. Immersion of the probe for 20 min in 2 mg/mL BSA was then carried out to block its 

non-specific binding sites. 

 

2.4. Immunoassay procedure 

 

The indirect competitive inhibition method was developed for MC-LR determination. Free analyte 

(MC-LR, 240 μL) of different concentrations was mixed with a fixed (0.6 μg/mL) concentration of 

antibody in PBS (240 μL) supplemented with BSA (2.0 mg/mL), which reduce non-specific binding of 

antibody, and allowed for incubation at room temperature for 6 min. Then, this mixture solution was 
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delivered over the MC-LR-OVA immobilized fiber-optic probe surface at 240 μL/min in 2 min. After 

the other 6 min reaction, regeneration of the sensor surface was carried out with 2 mg/mL pepsin (pH 

1.9) for 4 min followed by a short pulse (15 s) of acetonitrile, proprionic acid and water (50:1:50) and 

rinsing with PBS. The regeneration cycle was repeated twice in order to remove all antibodies 

remained on the surface. The whole immunoreactions’ process was on-time monitored by EWAI.  

During pre-incubation, antibody binding sites were occupied depending on the concentration of the 

MC-LR. Only the antibodies left with free binding sites were able to bind to the antigen (MC-LR) 

immobilized onto the probe. Thus, as the amount of free MC-LR, the number of antibody available for 

interaction with MC-LR immobilized onto probe surface is decreased and vice versa. Based on this 

dependence, free MC-LR in the sample solution can be quantified. Real-time monitoring of the 

fluorescence signal was also undertaken as binding occurred between antibodies with free binding sites 

and the immobilized conjugate of the probe. All the assays were performed in triplicate. 

 

2.5. Effect of the ionic strength 

 

In immunoassay, PBS solution is usually used to prepare antibody or antigen standard solutions, 

and may affect the results of immunoassay. To evaluate the effect of PBS of different concentrations on 

the detection, 1xPBS, 5xPBS, 10xPBS were used to prepared the MC-LR standard solutions and 

Cy5.5-MC-LR-antibody solution, respectively. 

 

2.6. Effect of the pH  

 

We considered the effect of different pH on the MC-LR fluorescent immunoassay. 1×PBS solution 

was adjusted to different pH values with 1 mol/L HCl or NaOH, respectively. PBS solutions ranging 

from pH 3 to pH 11 were used to prepare solutions of the immunoreagents.  

 

2.7. Effect of copper ion  

 

The concentration of CuSO4 used for algal bloom removal generally ranges from 0.1 to 4 mg/L [16]. 

Therefore, the concentration of CuSO4 investigated in this work ranged from 0 to 10 mg/L. MC-LR 

samples were spiked with CuSO4 solution of different concentrations. After pre-reaction of the same 

amount of antibody and antigen for 10min, the mixture was delivered to the sample cell to detect. The 

measurements were performed at about pH 7.4. To eliminate the effect of high concentration CuSO4 on 

the immunoassay, 6 μL (1 mg/mL) EDTA was added to the mixture of antibody solution and MC-LR 

standard solutions, which were prepared using 5×PBS. And all the above experiments were repeated. 

 

2.8. Effect of humic acid  

 

The influence of the humic acid, which represent as humic substances, on the immunoassay 

performance was investigated. For this, MC-LR samples were spiked with humic acid sodium salt at 

concentrations ranging between 0 and 200 mg/L. Then, after pre-reaction of the same amount of 

antibody and antigen for 10 min, the mixture was delivered to the sample cell to detect.  
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3. Results and Discussion  

 

3.1. Effect of the ionic strength 

 

It has been reported that in a competitive immunoassay, the ionic strength may have a direct effect 

on the sensitivity of the immunoassay [17,18], but other studies stated that the ionic strength had no 

obviously effect on the immunoassay performance [19,20]. Therefore, we studied the effect of 

different concentrations of PBS on the sensitivity and stability of the EWAI.  

The experimental results are shown in Figure 1. The dynamic MC-LR detection range of the EWAI 

sensor is described to exhibit 20~80% inhibition. From Figure 1, this meant that the linear working 

range of MC-LR was 0.12~9.8 μg/L, 0.14~10.2 μg/L, and 0.15~10.5 μg/L (response to 1×PBS, 5×PBS, 

10×PBS, respectively). The limit of detection (LOD) for MC-LR of 0.012, 0.019, and 0.024 μg/L 

(response to 1×PBS, 5×PBS, 10×PBS, respectively) were also calculated from the calibration curve as 

the analyte concentration providing a 10% decrease of the blank signal. On the other hand, no 

significant variations on the IC50 and Signalmax were observed by changing the ionic strength of the 

media. These suggested that the ionic strength did not affect the performance of EWAI under the 

indirect competitive detection mode. Due to buffer solutions may reduce the effect of other matrice 

(e.g. pH, and salt and so on) on the immunoassay, different concentrations of PBS may be used to 

prepare the samples and/or antibody solution in the assay of the real water samples. 

 

Figure 1. Effect of the ionic strength on the MC-LR immunoassay based on EWAI. 

Different concentrations of PBS (1×, 5×, and 10×) were used to prepare the standard 

solutions and antibody solutions and tested by using EWAI. 
 

0.00001E-3 0.01 0.1 1 10 100 1000

0

20

40

60

80

 1PBS
 5PBS
10PBS

MC-LR(g/L)

 

 Si
gn

al
 (

m
V

) 

 

3.2. Effect of the pH 

 

In an immunoassay, the pH of solutions obviously do not only affect the stability and biological 

activity of antibodies, but also the binding efficiency between antibody and antigen, which may lead to 

detection errors [21,22], if the effect of the pH is not taken into account. To evaluate this effect, 

detection curves of MC-LR were prepared in PBS buffer at pH values varying from 3.0 to 11.0. From 
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Figure 2, at lower pH values or higher pH values, a decrease of the signal was observed in the EWAI 

determination of MC-LR. For example, when the pH was 3.0, the maximum EWAI signal was 

decreased by more than 70% than that in pH 7.0 in the absence of analyte. Moreover, the immunoassay 

was much more sensitive to basic than acidic conditions. Especially, above pH 11.0 no signal was 

obtained, indicating that fluorescent signal was not obtained by either non-specific adsorption of 

Cy5.5-MC-LR-MAb on the sensor surface, or excitation of free Cy5.5-MC-LR-MAb in the solution.  

In contrast, between pH 6 and pH 8 the immunoassay was more sensitive, and almost no changes 

were observed on the immunoassay features including the linear working range, LOD, IC50, and 

Signalmax. These results showed that pH value of analyte solution close to neutral environment (pH = 

7.4) is the most favourable for the binding of antigen-antibody reaction in MC-LR immunoassay based 

on the EWAI. As a result, when the pH of the real water samples tested is too high or too low, a higher 

concentration of buffer solution (e.g. 5 × PBS or 10 × PBS) should be considered to prepare samples 

and antibody solution to eliminate its detriment to immunoassay. 

 

Figure 2. Effect of the pH on the MC-LR immunoassay based on EWAI. 1xPBS at 

different pH values were used to prepare the standard solutions and antibody solutions, 

respectively, and they were tested by using EWAI. 
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3.3. Effect of copper ions and its elimination 

 

Due to its biological activity toward algae, copper sulfate has been used since 1904 for nuisance 

algae control in surface waters [23]. Application of copper sulfate remains the most commonly used 

method for controlling nuisance algae in lakes and reservoirs [16], and therefore the eutrophicated 

lakes often contain potentially high levels of copper ions which may affect the results of MC-LR 

immunoassay.  

In this study, the effect of copper ions, which were regarded as the representative of heavy metal 

ions, on the immunoassay is investigated. From Figure 3, the experimental results showed that when 

the concentration of CuSO4 was less than 1 mg/L, it rarely affected the detection results of MC-LR; 

and when that of CuSO4 was more than 1 mg/L, the concentration of copper ion was then increased 

and the decrease in signal was observed. When the concentration of CuSO4 is 5 mg/L, the signal 
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response of the system was less than half of that in the absence of CuSO4. Especially, when the 

concentration of CuSO4 reached 10 mg/L, the system detected signals rapidly declined and could no 

longer be used. However, it was surprised why the response of EWAI was not the linear dependence on 

the copper concentration. Due to the effect of heavy metal ions on the immunoassay was complex 

process, we were difficult to explain this appearance under our experimental conditions. 

 

Figure 3. Effect of the copper ions on the MC-LR immunoassay based on EWAI (not 

containing EDTA in immunoassay system). The concentration of CuSO4 ranged from 0 to 

10 mg/L. 
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Over the last years, there has been a growing interest in the immunnotoxicity of heavy ions. General 

consensus holds that the harmful effects of these ions mainly result from their interaction with proteins 

[24]. Studies showed that more than four Cu2+ ions per antibody molecule led to large insoluble 

aggregates [25], which may affect the performance of antibody. Although we could not make sure how 

many copper ions per antibody molecule led to large insoluble aggregates in this immunoassay system, 

when the concentration of copper ions was higher, part of them may chelate with or denature 

antibodies, and then led to the decrease of detection signals of EWAI.  

Therefore, in order to reduce the effect of the copper ion in samples on the detection results, 6 μL (1 

mg/mL) of the chelating agent EDTA was added in MC-LR standard solutions containing different 

concentrations of CuSO4. And all the above experiments were repeated and the results, shown in 

Figure 4, stated that the effect of the copper ion obviously inhibited the immunoassay. The detection 

curves had better consistency, and the maximum signal value and IC50 did not differ significantly. The 

reason might be that copper ions in the solutions were chelated by EDTA and theirs harmful effect was 

compromised.  
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Figure 4. Effect of the copper ions on the MC-LR immunoassay based on EWAI (6 μL 

1mg/mL EDTA added to the mixture). The concentration of CuSO4 ranged from 0 to 10 

mg/L. 
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3.4. Effect of humic acid 

 

It is well-known that the organic matter (dissolved and suspended) content in surface waters may 

have a negative effect on the MC-LR immune determination. The main mass of organic carbon 

distributed in natural aquatic environments is concentrated in humic substances. In general humic 

substances are the final products of microbial degradation processes of plants in waters. There is a lack 

of studies on the influence of naturally isolated humic substances on the performance of MC-LR 

immunoassay based on optical biosensor. 

 

Figure 5. Effect of the humic acid on the MC-LR immunoassay based on EWAI. The 

concentration of humic acid ranged from 0 to 100 mg/L. 
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To evaluate this effect, detection curves of MC-LR were prepared in PBS containing different 

concentrations of humic acid, which is the representative of humic substances. As shown in Figure 5, 

the consistency of all standard curves is good, and the maximum signal value and IC50 did not differ 
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significantly. Some studies have shown that there are a lot of different diameters hole in humic acid 

polymer to absorb or chemically react with organic pollutants and heavy metals [26]. Therefore, 

MC-LR molecule and antibody used in immunoassay may be absorbed by humic acid, which led to the 

decrease of the signal values detected. However, under the investigated conditions, the reason why the 

detected results were not affected might thank to that BSA added into the antibody solutions played a 

role in shielding in order to reduce non-specific adsorption of the antibody. 

 

3.5. Water sample Analysis 

 

Among the water samples tested were the laboratory tap water and two lake water samples collected 

from Lake Tai (Zhengjiang) and Lake Cao (Anhui), respectively. To eliminate the matrix effects, 240 

μL different water samples were mixed with a 240 μL fixed (0.6 μg/mL) concentration of antibody in 

10×PBS supplemented with 1 mg/mL EDTA and 2.0 mg/mL of BSA. At first, the samples were 

measured unspiked. Then, the sample was added the standard MC-LR solution of different 

concentration and detected by EWAI. The results were shown in Table 1. Three individual experiments 

were tested for each sample. 

 

Table 1 Detection results of water sample. 

Origin 

MC-LR in water 

sample (μg·L-1) 

MC-LR added to 

the samples 

(μg·L-1) 

MC-LR by EWAI 

(Mean) (μg·L-1) 

CV 

(%) 

Recovery 

(%) 

Tap water 0 
0.5 0.45 2.1 90 

2 1.98 3.0 99 

Tai Lake 0.52 
0.5 0.96 1.2 96 

2 2.64 3.4 106 

Cao Lake 0.31 0.5 0.83 1.5 104 

  2 2.24 4.2 96.5 

 

From Table 1, the recovery of all measured samples was between 90 and 110%, and the parallel 

tests showed that the relativity coefficient was more than 0.992 (n=3). These results indicated that the 

possible interference from the different composition of water samples on EWAI analysis was 

negligible by adding PBS, EDTA and BSA in antibody solutions. The developed EWAI can be 

successfully applied to MC-LR analysis in real water samples.  

 

4. Conclusions 

 

In this research, some important areas of matrix interference in MC-LR immunoassay based on the 

EWAI and their elimination solutions have been discussed. It has not been possible to make detailed 

observations on every aspect due to the complexity and diversity of environmental matrices as well as 

the constraints of space. The experimental results of matrix effects indicated that PBS and humus 

under the scope of the experimental conditions did not affect the monitoring of samples, the proposed 

pH is 6~8, and the influence of copper ions on the immunoassay could effectively be compromised 
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when chelating reagent EDTA was added to the pre-reaction mixture. 
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