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Abstract: In this study, use of the covalent enzyme immobilization method was proposed 

to attach cholesterol oxidase (ChO) on a conducting polymer, poly(3-thiopheneacetic acid), 

[poly(3-TPAA)]. Three red-orange poly(3-TPAA) films, named electrodes A, B and C, 

were electropolymerized on a platinum electrode by applying a constant current of 1.5 mA, 

for 5, 20 and 100 s, respectively. Further, 1-ethyl-3-(3-dimethylamiopropyl)carbodiimide 

hydrochloride (EDC‧HCl) and N-hydroxysuccinimide (NHS) were used to activate the free 

carboxylic groups of the conducting polymer. Afterwards, the amino groups of the 

cholesterol oxidase were linked on the activated groups to form peptide bonds. The best 

sensitivity obtained for electrode B is 4.49 mA M-1 cm-2, with a linear concentration ranging 

from 0 to 8 mM, which is suitable for the analysis of cholesterol in humans. The response 

time (t95) is between 70 and 90 s and the limit of detection is 0.42 mM, based on the signal to 

noise ratio equal to 3. The interference of species such as ascorbic acid and uric acid 

increased to 5.2 and 10.3% of the original current response, respectively, based on the 

current response of cholesterol (100%). With respect to the long-term stability, the sensing 

response retains 88% of the original current after 13 days. 
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1. Introduction 

 

In clinical diagnosis, cholesterol is an important indicator in human blood for hypertension, 

myocardial infarction and arteriosclerosis. The normal range of total cholesterol in blood plasma, of 

which one-third is free cholesterol and two-thirds are cholesterol ester, is 3.96 ± 0.8 mM (153 ± 31 

mg/100 mL) [1]. The value may be up to 8 mM for abnormal patients, and the high values have a 

relationship to the precursors of bile acid and steroid hormones. In previous studies, the sensing 

process is usually based on spectrophotometry [2,3]. However, the analysis involves complicated steps, 

hence, it is necessary to develop a sensing technique that may offer a faster response and higher 

selectivity. We have fabricated an amperometric biosensor by immobilizing an enzyme and this fulfills 

the above-mentioned requirements. 

In general, enzyme-immobilization methods can be divided into four types; adsorption, entrapment, 

cross-linking and covalent attachment [4]. For the adsorption method, the enzyme is attached on the 

matrix either by hydrogen bonds or various charge attractions. For example, a multilayer of 

poly(2,6-pyridinedicarboxylic acid) with negative charge in the first layer and poly(allylamine 

hydrochloride) with positive charge in the second layer immobilizes negatively charged horseradish 

peroxidase by adsorption [5]. The entrapment process by electropolymerization in one-step, using 

conducting polymers, such as polypyrrole [6,7] and polyaniline [8], is a fast, convenient and popular 

method. During the entrapment process, the enzyme is entrapped inside the polymer and the thickness 

can be arbitrarily controlled by changing the polymerization time. In the cross-linking method, the use 

of a cross-linking agent such as glutaraldehyde [9] is necessary to link the enzyme and the substrate. 

However, in covalent attachment, chemical bonds are formed between the enzyme and the matrix 

through functional groups, such as amino or carboxylic groups. For instance, urease can be covalently 

immobilized on a copolymer film of poly(N-3-aminopropyl pyrrole) and polypyrrole, to fabricate an 

urea biosensor [10]; cholesterol oxidase (ChO) can be bound on a polyaniline-carbon nanotube 

composite film for a cholesterol biosensor [11]. Among the four methods mentioned, the covalent 

attachment and cross-linking methods provide better immobilizing performance than the others, which 

may be related to the presence of strong attractive forces formed by chemical bonds. 

Judging by the previous literature, it was noted that functionalized conducting polymers such as 

polyazulenes [12] and polythiophenes [13,14] were proposed for the covalent attachment. In previous 

work on lactate biosensors [15], the carboxylic groups of poly(3-thiopheneacetic acid), which is one of 

the functional polythiophenes, were linked to the amino groups of lactate oxidase by two reagents, 

namely, 1-ethyl-3-(3-dimethylamiopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide. In 

other words, the two chemicals are generally utilized as a carboxyl activating agent for providing a 

chemical bond with a primary amine group. Moreover, the physical properties and networks of 

poly(3-thiopheneacetic acid) obtained by electropolymerization were studied earlier [16]. Based on the 

above studies, an amperometric biosensor with poly(3-thiopheneacetic acid) as a matrix has been 

fabricated in this study for linking cholesterol oxidase, in order to carry out the detection of cholesterol. 
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By using the conducting polymer in the linking method, the proposed biosensor may offer the 

advantage of better long-term stability. In addition, ferricinium ion (Fc+) was added as a mediator in 

the sensing system to prevent the formation of H2O2. The reaction sequence can be described by: 

Cholesterol + ChOox → Cholestenone + ChOred (1)

ChOred + 2Fc+ →ChOox + 2Fc (2)

2Fc → 2Fc+ + 2e- (3)

where ChOox and ChOred represent the oxidized state and the reduced state of cholesterol oxidase, 

respectively. As the reactions involved are in series, the cholesterol concentration can be determined 

indirectly by sensing the current contributed from the electrochemical oxidation of Fc. The schematic 

illustration of the sensing mechanism in the polymer film during sensing is shown in Figure 1. 

Figure 1. Schematic illustration of the sensing mechanism proposed for electrocatalytic 

oxidation of cholesterol on the modified electrode, where ferrocene acts as a mediator. 

 
 

2. Results and Discussion 

 

2.1. Electropolymerization of Poly(3-TPAA) Film 

 

The electropolymerization of poly(3-thiopheneacetic acid) film on a bare platinum electrode at a 

constant current is shown in Figure 2. The chronopotentiometric curve can be divided into three stages. 

In the first stage (ca. 0 ~ 5 s), the monomer forms a dimer or radical species since the high potential 

would overcome the energy barrier. With the increase of radical ions, the potential (more precisely, the 

driving force, or the overpotential of the electrochemical reaction) appears to decrease and this implies 

that the deposition process was governed by a steady-state chain reaction. The polymer thin film was 

found to grow up stably at ca. 1.82 V (vs. Ag/Ag+) in the second stage (ca. 5 ~ 40 s). Finally in the last 

stage (ca. 40 ~ 100 s), the potential became large again. This is because the modified polymer film was 

too thick and resulted in high resistances during the electropolymerization. Besides, the brown 

polymer film was brittle and displayed swelling properties.  
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Figure 2. The chronopotentiometry of the poly(3-TPAA) film electroploymerized at a 

constant current of 1.5 mA for 100 s in an organic electrolyte. 

 
 

2.2. FTIR Spectrum, SEM Morphology and EIS Analysis 

 

Figure 3 shows the FTIR spectra of the Pt/poly(3-TPAA) electrode with and without cholesterol 

oxidase. In both spectra, the broad absorption at 3,200-3,500 cm-1 is assigned to the O-H of carboxylic 

groups and the absorption peaks at 2,977, 2,920 and 2,847 cm-1 resulted from aliphatic C-H groups. 

The aromatic ring stretches cause the peak at 1,350-1,550 cm-1 and the peak at 1,625 cm-1 may be due 

to the severe oxidation of the carboxylic groups of the polymer film to form esters during 

electropolymerization [16].  

Figure 3. The FTIR spectra of Pt/poly(3-TPAA) film (bold line) and 

Pt/poly(3-TPAA)-ChO film (thin line) at room temperature. 
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Comparing the two electrodes with (Figure 3, curve b) and without (Figure 3, curve a) the linking 

enzyme, the additional peak between 1,520-1,550 cm-1 in Pt/poly(3-TPAA)-ChO (which represents the 

Pt/poly(3-TPPA) electrode linked with cholesterol oxidase) film is assigned to the N-H bend of the 

cholesterol oxidase, which confirms the formation of covalent bonds between enzyme and polymer. 

Besides, the O-H of carboxylic groups (3,200-3,500 cm-1) vanished in Figure 3 (curve b) because the 

carboxylic groups were linked with the enzyme.  

The surface morphology of the electrode with and without cholesterol oxidase was monitored by 

scanning electron microscopy [Figures 4 (a) and (b)] at a fixed magnification of 30.0 K. Platinum was 

sputtered on the indium tin oxide (ITO) glass and used as the substrate. The electropolymerization 

condition and the covalent process were the same as mentioned earlier. The molecular weight of 

cholesterol oxidase is about 200 kD, which is approximately equal to the size of 10 nm. The enzyme 

appears as white particles in Figure 4(b), which clearly distinguishes the morphologies between the 

two electrodes and this also confirms the formation of covalent bonds between enzyme and polymer. 

Figure 4. The SEM pictures of (a) Pt/poly(3-TPAA) and (b) Pt/poly(3-TPAA)-ChO. 

     
(a)                               (b) 

 

 

Figure 5 is the electrochemical impedance spectroscopy of the electrodes measured at the open 

circuit potential with the frequency ranging from 65,000 to 400 Hz in 0.1 M PBS with 1.0 mM 

Fe(CN)6
3-. The order of the slope, from low to high, is Pt, Pt/poly(3-TPAA) and Pt/poly(3-TPAA)-ChO. 

This means that the charge transfer resistance (Rct) at the Pt/poly(3-TPAA) was much larger than that 

of the bare Pt, but slightly smaller than that of the Pt/poly(3-TPAA)-ChO. This is because only a little 

enzyme was linked on the polymer, thus slightly increases the Rct of the electrode. In short, the EIS 

analysis provides another proof that the ChO was indeed linked on the polymer. 
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Figure 5. The electrochemical impedance spectroscopy data for the Pt, Pt/poly(3-TPAA) 

and Pt/poly(3-TPAA)-ChO electrodes in 0.1 M PBS with 1.0 mM Fe(CN)6
3-. 

 
 

2.3. Limiting Current Plateau and Electron Transfer 

 

In order to determine the best sensing potential, the linear sweeping voltammetry (LSV) was 

performed for electrode C at low scan rate, as shown in Figure 6.  

Figure 6. The LSV of electrode C scanned from 0.30 to 0.80 V (vs. Ag/AgCl/sat’d KCl) in 

background electrolyte (a) and 8 mM cholesterol solution (b), at a scan rate of 0.1 mV/s. 

 
 

The total current and the background current were obtained respectively in the 8 mM 

cholesterol-containing solution and the background electrolyte described in Section 3.2. The total 

current was found to be higher than the background current. The net current, obtained from the total 

current minus the background current, is contributed from the oxidation of ferrocene. From the net 

current noted in Figure 6, it follows that the current responses can be divided into three parts. In the 

first part, the current approaches zero value in the potential range of 0.30 ~ 0.45 V. This is due to the 
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fact that ferrocene could not be oxidized on the electrode [Equation (3)] at lower potentials. At higher 

potentials, a sharp increase in the sensing current was noticed in the potential range of 0.45 ~ 0.65 V, 

which supports the reaction sequence proposed in Equations (1) ~ (3). Finally, in the potential range of 

0.65 ~ 0.80 V, the sensing current reaches a plateau, which is the limiting current region of the 

electrochemical reaction. The plateau observed in Figure 6 corresponds to the oxidation of ferrocene, 

as described by Equation (3). A potential of 0.70 V (vs. Ag/AgCl/sat’d KCl) was set as the best sensing 

potential for detecting cholesterol. Theoretically, the standard potential for ferrocene oxidation, E0, is 

0.15 V (vs. Ag/AgCl/sat'd KCl). Yet, the potential to reach the limiting current plateau (0.65 ~ 0.80 V) 

is higher in this study, which is common (or natural property) for an electrode modified with 

conducting polymer films. The net current, obtained by the LSV with no mediator (not shown), was 

smaller than the net current in Figure 6 (curve c) and no plateau was observed. This implied that the 

plateau of the catalyzed product (H2O2) would appear at potential exceeding 0.80 V, as the natural 

property of poly(3-TPAA) may shift the oxidation potential to more positive direction. 

For the sake of obtaining the stoichiometric number of electron transfer involved in the 

electrochemical oxidation [Equation (3)], the following equation derived from the Nernst equation was 

applied:,  





 

 

I

II

nF

RT
EE ln2/1  (4)

where E is the applied potential, E1/2 is the half-wave potential at which the current has reached exactly 

half of its limiting current, I∞ is the limiting current, I is the current at the applied potential, E, n is the 

number of electrons involved in the redox reaction, R is the gas constant equaling to 8.3144 J/mol‧K, 

F is the Faraday constant equaling to 96,485 C/mol, and T is the temperature in Kelvin equaling to 298 

at room temperture. According to Equation (4), a plot of log[(I∞-I)/I] vs. E is a straight line with a 

slope of n/59.1, from which n is calculated to be 0.79 in the potential range of 0.50 ~ 0.60 V. The n 

value is taken approximately as unity and the deviation may come from the two chemical reactions 

(Equations (1) and (2)) proceed before the electrochemical reaction (Equation (3)).  

 

2.4. The Calibration Curve of the Cholesterol and the Performances of the Biosensor 

 

Figure 7(a) reveals that the current responses of cholesterol at each concentration level do reach the 

steady-state values with a sampling time of 200 s. The sensing current increases with the increase in 

cholesterol concentration up to 8 mM. The calibration curves of the three cholesterol biosensors, as 

shown in Figure 7(b), were plotted from the steady-state current at 200 s for each cholesterol 

concentration. From Figure 7(b), it is seen that the sensing current is proportional to the cholesterol 

concentration and the linear range for all enzyme electrodes lies between 0 and 8 mM (the normal 

cholesterol range of human beings is 3.96 ± 0.8 mM). Among the three preparation times, too little 

functional group of cholesterol oxidase was linked on electrode A. By increasing the deposition time, 

the film became thicker and the sensitivity increased for electrode B. However, the sensitivity of 

electrode C decreased significantly due to the increase in resistance for a thick film. The best 

sensitivity obtained was 4.49 mA M-1, which was calculated from the slope of the regression line with 

a regression coefficient of 0.981. Furthermore, two additional performance parameters, such as the 
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response time and the limit of detection (LOD), were obtained. The response time (t95) is defined as the 

time it takes for the electrode to reach 95% of the steady-state current (variant disturbance 20 nA), 

which was calculated to be 70 ~ 90 s at different concentration levels. The LOD (with the signal to 

noise ratio of 3) was 0.42 mM. Besides, the Michaels-Menten constant of electrode B was calculated 

to be 14.53 mM with a R2=0.992 based on the calibration curve. 
 

Figure 7. (a) The current responses of the cholesterol at different concentrations by 

applying the sensing potential at 0.70 V (vs. Ag/AgCl/sat’d KCl) on electrode C and (b) the 

calibration curves of the three modified cholesterol biosensors at 0.70 V with regressions. 

 

The interference effect with respect to the common species in human plasma, such as ascorbic acid 

and uric acid, has been examined. The normal ranges of ascorbic acid and uric acid are 0.04 ~ 0.08 

mM and 0.18 ~ 0.42 mM, respectively. In this work, the tested concentrations of ascorbic acid and uric 

acid were chosen to be 0.10 and 0.40 mM, respectively, as determined by the upper limits in the blood. 

The net current response for cholesterol was set as 100%, and the relative percentages of the current 

increment in the presence of ascorbic acid and uric acid were 5.2 and 10.3%, respectively. It is 

interesting to note that the interference effect is not significant.  

 

2.5. The Long-term Stability and Discussion on the Sensor Performance 

 

The covalent method provides an interactive binding force between the cholesterol oxidase and 

poly(3-TPAA) film. The long-term stability of the cholesterol biosensor is shown in Figure 7. By 

defining the sensing current collected at the first day as 100%, the current response contributed from 

cholesterol retained 88% of its original value after 13 days. The initial decrease in the sensing current 

may result from the loss of the enzyme, which was entrapped in the polymer matrix. During the daily 

analysis, it is possible that the loss of enzyme begins initially as the polymer chains are in motioning 

and swelling conditions. According to the long-term stability data in Figure 8, the biosensor achieves a 

stable condition in 4 ~ 5 days. When comparing the performance of this cholesterol biosensor with 

those found in literatures (Table 1), this biosensor shows a wide linear range. The first seven references 
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in Table 1 reported the data on the immobilization of an enzyme, ChO, with different enzyme 

electrodes to sense free cholesterol by the entrapment method. The next three reported the results using 

two kinds of enzymes, namely ChO and cholesterol esterase (ChEt), to detect the total cholesterol 

concentration in plasma. In the latter methods, the cholesterol ester is initially catalyzed by ChEt to 

form free cholesterol. The free cholesterol then reacted with another enzyme, ChO, to produce species 

following the reaction sequence described in Equations (1) ~ (2). It is apparent that the performance of 

cholesterol biosensors, especially the enzyme-based sensors, depends on the kind of electrode substrate, 

matrix layer, and process used. The linear range, sensitivity and response time of this work are 

comparable with the others; however, the enzyme immobilization based on the covalent attachment 

provides the modified electrode with a better long-term stability than the entrapment method reported 

in literatures. Conversely, the LOD (limit of detection) in our system needs to be improved and this 

can be attained by using a flow injection system to reduce both the noise and the diffusion layer 

thickness, which form the basis of our future work. 

Figure 8. The long-term stability of the cholesterol biosensor at a sensing potential of 0.70 

V vs. Ag/AgCl/sat’d KCl. 

 

Table 1. The performance parameters of cholesterol biosensors reported in the literatures. 

Enzyme Electrode 
Linear 

range (mM) 

SEN 

(mAcm-2M-1) 

LOD 

(M) 

Response 

time (s) 

Stability 

(days) 
[Ref.] 

Pt/P(HEMA)1 /PPy2-ChO 0.5-15 0.02 120 30 >360 (75%) [7] 

GC/TEOS3 sol-gel/HRP/ChO 2-10 0.48 - - - [17] 

Pt/PPy-ChO/o-PPD4 0-0.3 50.62 1.35 7.5 16 (70%) [18] 

Pt/TMOS5 sol-gel/ChOx/p(DB)6 0.06-3 0.58 - 51 32 (50%) [19] 

Pt/PAn7/ChO 0.01-0.1 2.22 - - - [8] 

Au/AET8+TP9/MP-1110/ChO 0.2-3 0.09 - <20 - [20] 

Pt/Pt/PPy/ChO 0-0.4 1.1 14 6.3 >35 (70%) [21] 
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Table 1. Cont. 

W/ferrocyanide/[ChO/ChEt] 0.05-3 - 10 30 - [22] 

CPE/HMF11/POD/[ChO/ChEt] 0.001-0.15 9.5 - - - [23] 

GC/PPy/laponite/[ChO/ChEt] 0-0.025 13.2 0.5 50 10 (70%) [24] 

Pt/Poly(3-TPAA)/ChO 0-8 4.49 420 70 ~ 90 >13 (88%) This work 

1 P(HEMA): poly(2-hydroethyl methacrylate), 2PPy: polypyrrole,  
3 TEOS: tetraethyl orthosilicate, 4o-PPD: poly(o-phenylenediamine),  
5 TMOS: tetramethoxysilane, 6P(DB): poly(1,2-diaminobenzene),  
7 PAn: polyaniline, 8AET: 2-aminoethanethiol, 9TP: 3-thiopropanol, 10MP-11: 

microperoxidase-11,  
11 HMF: hydroxymethylferrocene 

 

3. Experimental  

 

3.1. Chemicals and Instruments 

 

Cholesterol oxidase (ChO) (EC 1, 1, 3, 6) from Pseudomonas fluorescens (protein approx. 15%), 

cholesterol (>99.0%), phosphate buffer saline (PBS, pH 7.4), potassium chloride (99.0 ~ 100.5%) and 

the surfactant, Triton® X-100 (for molecular biology), were purchased from Sigma. The monomer, 

3-thiopheneacetic acid (3-TPAA), and the mediator, ferrocene, were obtained from Acros. The two 

linking agents, 1-ethyl-3-(3-dimethylamiopropyl) carbodiimide hydrochloride (EDC‧HCl) and 

N-hydroxysuccinimide (NHS, >97.0%), were obtained from Sigma and Fluka, respectively, whereas 

acetonitrile and lithium perchlorate (>95.0%) were purchased from J.T. Baker and Aldrich, 

respectively. De-ionized water (DIW) was used throughout the experiments. All electrochemical 

experiments, including both potentiometric and amperometric measurements, were performed with a 

potentiostat/galvanostat (Autolab, model PGSTAT30, Utrecht, the Netherlands). 

 

3.2. Preparation of Cholesterol Solution 

 

The background electrolyte contains 0.02 M phosphate buffer, 10% (v/v) Triton® X-100, 0.3 mM 

ferrocene and 0.1 M KCl, and cholesterol was added to the background electrolyte to form the 8 mM 

cholesterol solution. Afterward, both the background electrolyte and cholesterol solution were put into 

a constant temperature water bath at 65 oC for 6 hours until they become clear. Then they were 

allowed to cool down to room temperature and stored at 4 oC when not in use. Triton® X-100 was used 

as a non-ionic surfactant to enhance the cholesterol solubility in aqueous solution. Moreover, the 

surfactant also plays a role in stabilizing the activity of the cholesterol oxidase, as reported in the 

literature [17]. 
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3.3. Fabrication of the Enzyme Electrode 

 

Electropolymerization was carried out in a three-electrode cell, consisting of a platinum disc with 

3.14 mm2 area as the working electrode, a Ag/Ag+ as the reference electrode and a platinum wire as 

the counter electrode. Prior to the polymerization, the working electrode was polished by alumina 

powders with the particle size of 0.05 μm and then ultrasonically cleaned in DIW. The organic 

electrolyte solution containing 0.5 M monomer, 3-TPAA and 0.1 M lithium perchlorate was dissolved 

in acetonitrile. The red-orange poly(3-TPAA) film was electrochemically deposited on the working 

electrode by applying a constant current of 1.5 mA (or 0.48 mA/mm2) for 100 s. Finally, the 

Pt/poly(3-TPAA) modified electrode was washed by DIW and dried in air. Three electrodes, which 

were prepared at different deposition times of 5, 30 and 100 s, were assigned as electrodes A, B and C, 

respectively. After electrodepositing the polymer film on the electrode surface, the enzyme was 

immobilized by the covalent attachment. Initially, the Pt/poly(3-TPAA) electrode was put in an 

aqueous solution containing 0.015 M EDC and 0.03 M NHS for 1.5 hours in order to activate the free 

carboxylic groups of the polymer, and then immediately placed into a 0.02 M phosphate buffer 

solution with 100 U/ml cholesterol oxidase to react for another 1.5 hours. During the above process, 

the peptide bonds formed between the activated carboxylic groups and the free amino groups of the 

enzyme, thus leading to the formation of the enzyme electrode, Pt/poly(3-TPAA)-ChO. The whole 

immobilization process was carried out at room temperature. The enzyme electrode was stored under 

dried condition at 4 oC when not in use. 

 

3.4. Determination of the Sensing Potential and Performance Test 

 

A three-electrode system was constructed for sensing cholesterol by the amperometric method. The 

working electrode, reference electrode and counter electrode are the enzyme-modified electrode of 

electrode C, Ag/AgCl/sat’d KCl electrode and platinum wire, respectively. In order to search for the 

suitable sensing potential, the linear sweeping voltammetry (LSV) method was performed with respect 

to the background electrolyte and the 8 mM cholesterol solution in potential ranging from 0.30 to 0.80 

V at a low scan rate of 0.1 mV/s. All the solutions for the LSV experiments were de-oxygenated. 

Moreover, the net current, namely, the difference between the sensing current and the background 

current, was plotted as a function of the potential and the suitable sensing potential was chosen in the 

limiting current plateau obtained from the LSV curve. The working electrode potential of 0.70 V with 

a sampling time of 200 s was chosen to obtain the steady-state sensing current. Furthermore, a 

calibration curve was established with cholesterol concentration ranging from 0 to 8 mM. Additionally, 

the interference effects with respect to ascorbic acid and uric acid were studied during cholesterol 

sensing. For this, 0.10 mM ascorbic acid and 0.40 mM uric acid were independently added into the 

cholesterol solution to detect the additional currents in separate experiments.  

 

4. Conclusions 

 

In this work, the amino groups of the cholesterol oxidase were successfully linked with the 

carboxylic groups of the Pt/poly(3-TPAA) activated by the two reagents, EDC and NHS, as confirmed 
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by the FTIR spectra, SEM morphologies and EIS analyses. In addition, the cholesterol biosensor 

provides good performance characteristics. The linear range lies within the normal range of the human 

body (between 0 and 8 mM). The sensitivity of electrode B and response time (t95) are 4.49 mA M-1 

cm-2 and 70 ~ 90 s, respectively, and these values are acceptable when compared with the performance 

reported in the literature. Based on the signal to noise ratio of 3, the limit of detection is about 0.42 

mM, which is a little bit higher than the values reported elsewhere. As for the selectivity, common 

interferences such as ascorbic acid and uric acid increase the original current at 5.2% and 10.3%, 

respectively. Most importantly, the biosensor possesses a good long-term stability. The sensing current 

still retains 88% of its original current even after 13 days.  
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