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Abstract: How can the compound eye of insects capture thg poeaccurately and
quickly? This interesting issue is explored frora tferspective of computer vision instead
of from the viewpoint of biology. The focus is orerformance evaluation of noise
immunity for motion recovery using the single-roupsrposition-type planar compound-
like eye (SPCE). The SPCE owns a special symmethiaenework with tremendous
amount of ommatidia inspired by compound eye oédts The noise simulates possible
ambiguity of image patterns caused by either enwrental uncertainty or low resolution
of CCD devices. Results of extensive simulationdicate that this special visual
configuration provides excellent motion estimatigerformance regardless of the
magnitude of the noise. Even when the noise intmnfee is serious, the SPCE is able to
dramatically reduce errors of motion recovery o #go-translation without any type of
filters. In other words, symmetrical, regular, amaltiple vision sensing devices of the
compound-like eye have statistical averaging adgmto suppress possible noises. This
discovery lays the basic foundation in terms ofieegring approaches for the secret of the
compound eye of insects.

Keywords: image motion analysis, superposition-type planammpaund-like eye,
trinocular vision system.
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1. Introduction and Motivation

Over one hundred years ago, the configuration efdbmpound eye of insects started attracting
researchers’ attentions. Recently, the biologicaigpired visual studies have flourished with arnoo
in the microlens technology. The development ofgenacquisition systems based on the framework of
the compound eye has also progressed quicker trean Ene fabrication of micro compound eye has
been reported in the literature with a gradualmdaBon towards its commercial applications. Those
well-known commercial applications include the TOBBompound eye proposed by Tanita et al. [1],
and the hand held plenoptic camera by Ng et al.TB¢ former is a multiple-imaging system with a
post-digital processing unit that can provide a paot hardware configuration as well as processing
flexibility. The latter is similar to the Adelsomd Wang’s plenoptic camera [3], but with two fewer
lenses, which significantly shortens the opticahpand results in a portable device. In additi@ms
related publications involve one photoreceptor yew direction [4], [5], a miniaturized imaging
system[6], the electronic compound eye [7], thevedr gradient index lenses [8], an artificial
ommatidia [9], and a silicon-based digital retid@][ All of them belong to the same category of the
image acquisition systems with the framework ofdcbmpound eye.

Why can the compound eye of insects capture the geaccurately and quickly? This interesting
topic has not been completely answered yet. Thiodigis believe that it is because of the flicker
effect [11]. As an object moves across the visigdhdl f ommatidia are progressively turned on and off
The insects actually measure the distance by theomof images received by their eyes as they fly
[11]-[16]. Because of the resulting "flicker effécinsects respond far better to moving objectstha
stationary ones. Honeybees, for example, will wgid-blown flowers more readily than still ones.
Therefore, many researchers have put consideréble i@ building images viewed from a compound
eye and reconstructing the environmental image fioese image patterns [1]-[10]. However, most of
those researches are limited to static images.efqghasis of this paper will focus on dynamic vision
of the compound eye. In order to achieve motionmegion for visual servo, ego-motion estimation
needs to be investigated. Neumann et al. [8] agpgienoptic video geometry to construct motion
equations, and optimized the error function to &egonotion parameters. Tisse [10] used polydioptric
spherical eyes to develop self-motion estimatioevéitheless, they employed a more complicated
mathematic manner with spherical model. Our pagptags this phenomenon of the insect using a
more comprehensive and easy concept with a plandeimThe novel characteristics of the compound
eye of insects will be examined using a trinocularon approach. Based on our study on the triraycul
vision system [17], it has been shown that incaapong a third camera over traditional binoculae th
translational motion can be efficiently resolvecheTthird camera not only provides more image
information, but also significantly improves botffi@ency and accuracy for estimation of motion
parameters.

2. The Compound-like Eye and Computer Vision

Is there anything special about the image capthyeitie compound eye? How is the image pattern
produced by the compound eye? The mosaic theomgsett vision initially proposed by Muller in
1826, and elaborated by Exner in 1891, is stillegally accepted today. According to the mosaic
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theory, there are two basic types of compound ewgpposition and superposition [18]. The
constructions of these two types are clearly diffier The former acquires the image from ommatidium
just a small part of overall object, and exploitscle ommatidium to make up a complete but
ambiguous image; while the latter can acquire alevimmage through adjusting ommatidia. Each
ommatidium itself receives an ambiguous image, enery image will be different based on its
position in the arrangement. Strictly speaking,tdreninology of superposition referred here is altyu
the neural superposition [19], [20].

These two types of the compound-eye’s structuretioreed above are based on the ecological
aspect and can help us realizing how to producgesidrom compound eyes. But according to the
computer vision aspect, which configuration showel adopt to? The compound-like eye used in
computer vision proposed by Aloimonos [20] can beded into two categories. One is the planar
compound-like eye, which is a perspective projectimodule consisting of row and column CCD
cameras arranged on a flat plane. Each CCD camerasponds to an ommatidium of an insect. The
schematic diagram is shown in Fig. 1(a). The otbehe spherical compound-like eye. The focus of

this paper is on a degenerate type of the plamapoand-like eye, a single-row planar compound-like
eye shown in Fig. 1(b).
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Figure 1. (@) The planar compound-like eyé)(The single-row planar compound-like eye.

How to form the configuration of planar compourkklieye in computer vision? Because
generations of images in the superposition ancgipesition types are very different, some definiio

of compound-like eye in superposition type are deed as follows:

1) Arrangement: Assume each ommatidium is put tegetin parallel or vertical manner of
arrangement in a well-ordered way. Based on thigason, a number of CCD cameras treated as
ommatidium are arranged on the surface of a plarmnstant horizontal distance exists between
adjacent ommatidia.

2) Image acquisition: In order to distinguish witte apposition type compound-like eye, the image
acquisition of compound eye of insects in supetmosiype is defined as a whole image through
itself ommatidia, so that each ommatidium can labthe whole image of an object.



Sensors 2007, 7 1050

3) Image patterns: To produce ambiguous pattewed by the compound eye of an insect, assume
the image points are deviated from the idea positiy possible interfering noises. The
contaminated image will result in very differenfaened patterns since it is interfered by noises
randomly. Therefore the image viewed by each ontnati will have ambiguous appearances of
an object. Besides, each ommatidium creates itgantldat depends on its different arrangement
location. As a result, the images generated bystiperposition-type planar compound-like eyes
(SPCE) will be close to blurred patterns viewedbhbymatidia of an insect.

4) Simulation: To construct images viewed by thenpound eye, the essential pinhole perspective
projection will be adopted.

3. Trandlational Motion for the Parallel Trinocular

Before establishing the translational motion moftel the single-row SPCE, the translational
motion for trinocular needs to be investigatedtfifden, the extension to the translational mofam
the single-row SPCE can be made straightforwarglyxpanding towards two sides of the parallel
trinocular structure.

GivenO is the origin of a 3D spatial reference framepass three identical CCD cameras locating
along theX axis and the distances between adjacent camerd&s and h, , as illustrated in Fig. 2.

image

Middle
image

 J

/ . Right
image

Figure 2. Schematic for the parallel trinocular.

For an arbitrary poinP in 3D space, it will project onto the left, middknd right image planes and
the relationships among those three projectionseaiormulated. Since three cameras are arranged as
a parallel trinocular, three images will lie on teseameXZ plane. Thus, the distances for the
projections on the image planes will be all the saHbwever, it is interesting to note that regassllef
the distance between adjacent camehnasnd h, , the products of the image disparitiesXimlirection

meet the following constraint:
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(X = X )(er - ij) = (X = Xmi)(xmj - le) (1)
where (X, V,),(X,, Y, )» and(x.,y,) are corresponding projection points on the leftdie, and right

image planes respectivelyandj index two different image points. Please refeAfpendix A for
detailed derivation.
SupposeV =(V,,V, ,V,)" is the translational motion of the parallel trintar setup with respect to

a moving object. The relations between 2D imag®aigés, (vix,viy), and the translational motion

M EPARAZES

wherek indexes the left, middle, and right CCDs and has of those scriptd; m, andr , f is the

parameters for each CCD are

focal length, andz is the depth of the 3-D point.

First select a pair of images that come from |aft eniddle CCDs. The optical flow fields along the
X andY axes for the left and middle CCDs over all paifarresponding points can therefore be
collected. Because the depths of those two CCDgsha&resame, they can be easily eliminated. As a
result, a pair of image optical flow equations barderived as follows:

[T IS DS AL e o @)
[T 18 V) A g s o) ©

where Q, andQ , respectively represent corresponding image regionthe left and middle cameras.
The assumption o, =h, =h is also made to simplify further derivation.

The above equations indicate that when the focaitlheh and the distancé are given, three
unknowns for the translational motion if the looas of the image points can be acquired. This
configuration implies that using any two CCDs ase&is able to bring about a pair of image optical
flow equations. According to this arrangement, éase of the number of CCD brings about the growth
of the amount of optical flow equations. If thehtigand middle CCDs are selected as the second set,
and the left and right CCDs as the third set, theva procedure leads to subsequent two pairs of
optical flow equations.

f(gz . x,)vx +;(sz3 -sz;)v =h2f(gzv;w +sz;} 4)

m

(zxgelponpon=lpe ) ©
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f[;x‘ —;xr)\/x+i(;xf—;xf}/z:hf(;v'x+;v;] (6)
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For the purpose of simplicity and clarity, the esponding image region&,, Q ., andQ, are
neglected hereafter and some parameters are defsietdows:

A=) X=X, b =YX =D X, =D X=X
a, = x2=-D>x)12,b, = x? =D x2)12,¢c, = x => x*)/2
85 =) XnYm ~ 2 XY By T XY =D XY G =X Y T D XY,
d, =hQ> v, +> v)/2,d, =h(> v, +> vy') /2
dy =T+ Vi) /2, d, =h(S v+ v ) /2
ds :h(Zv'X +Zv;), d, :h(ZVL +Zv;)

Obviously, it is an over-determined problem to edlve translational motion parameters. Due to the
special symmetric framework of the arrangementoofgound eye, three strategies are applied. Model
A includes all optical flow equations. Model B dele all dependent constraints. Model C keeps the
symmetric framework but deletes the relationshipvben the left and right CCDs.

3.1. Modél A (the complete model)

If all equations are considered, then

[fa, 0 a, d,
0 fa, a; v, d,
S ity

1 3 V 4
fcc, 0 c,|-° ds
| 0 fc, ¢, | de |

which can also be formulated in the following magkpression
Ax =d

The translational motion can therefore be recovdngdhe standard least square estimation as
follows:

x=(ATA)ATd 8)
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Generally speaking, the above derivation can bdieapfo both point-to-point correspondence and
patch-to-patch matching cases.

3.2. Model B (the simplified model)

Much simpler mathematical expressions can be esiaol by getting rid of those equations that are
dependent with others. Since Egs. (3), (5), an&&)dependent equations, both Egs. (5) and (7) can
be eliminated. Meanwhile, Eq. (6) does not needetinbluded because it is the sum of Egs. (2) and
(4). Thus, three unknowns can be exactly solvedhbydllowing equation:

fa, 0 a,|V, d,
0 fa, a5 ||V, |=f|d,

fo, 0 b, |V, d,

3.3. Modél C (the compromise model)

It just takes time to distinguish equations witlpeledency. A compromise approach to overcome
this difficulty is to ignore the third set of eqimats that consists of the left and right CCDs vitik
most dependency by excluding Egs. (6) and (7). Aesalt, the matrix expression becomes:

fa, 0 a, Vv d,
0 f § d

al a3 Vy — f 2

fo, 0 b, v, d,

0 fb b d,

Although the parameters for the translational mottan be resolved by the standard least square
approach, possible singularity problem, i.e., teeethinant ofA’A is zero, still needs to be carefully
examined.

The determinant of the matrix'A for the model C can be obtained as [17]:

det(ATA) = f 4(812 +b12)[(a'1b2 _azb1)2 + (ale _a3b1)2]

It can be shown thaéﬂlb2 —a2b1)¢0 and (albs—aabl):O(refer to Appendices B, C, and D for

detailed derivation). Apparently, the above fornaliways greater than zero, because the focal laagth
always positive and the image disparities in ¥hexis,a, andb,, are also not zero. Therefore, the
singularity problem will not happen in the presené@proach. Correspondingly, both Models A and B
can also lead to similar results. Appendix E vesifieat determinant of matrix'A for model A is not
zero. Similarly, non-zero determinantAfA for the model B can be easily assured.

Due to the rich relationships among CCDs ownedhigyparallel trinocular, standard solutions for
those three models under the ideal condition of fneise are identical. However, the image will
normally be corrupted by noises in real world, #msolutions for the translation will not be sianil
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4. Trandational Motion for the Single-Row SPCE

Installing more CCDs along two sides of the patatlaocular gradually reaches a single row SPCE
structure. Expanding the image optical flow equaidor the translational motion of the parallel
trinocular by increasing the number of CCDs alsmiteto the translational motion model for the sng|
row SPCE. Basically, the approach to solve the singlv SPCE is the same as that in the parallel
trinocular. The only difference is the orders of theage matrix and the optical flow vector, which
should correspond to the amount of CCD.

Assume the amount of CCD at each side from theralecamera isy. Then the total number of
camerad in the single row SPCE becomest2. Therefore, the orders of the image matrix amd th
optical flow vector for each motion model are summed in Appendix F. For example, assume the
total amount of CCD for a single row SPCE is 7, tilem order of the image matrix, optical flow
vector for Models A, B, and C will become ¢2 42x1), (73, 7x1), and (123, 12x1), respectively.
The single row SPCE structure, similar to the pafatflinocular, owns advantages of absence of
singularity difficulty and robust solution for moti estimation subject to signal noises, which |
verified by extensive experiments.

Based on the images of SPCE generated from comysten, recovery of the translational motion
using a single-row SPCE can be accomplished bydll@ning procedures:

1) In order to have the images captured by canwrtee single row SPCE as ambiguous as the picture
viewed by ommatidium, random noises are addeddal itnages. The fuzziness properties of all
individual images are assumed to be independemtéaanother.

2) When the single-row SPCE looks at an object, eanmatidium CCD will perceive a different
profile according to its given location. In this nmer, the compound-like eye will observe a whole
picture consisting of many small, similar, and aguioius patterns.

3) When the object moves, the single-row SPCE caecti¢his translational movement using two
complete images before and after the motion.

4) Using those two vague images that include thiernmation of the translation, the corresponding
optical flow for each camera can be determined.

5) Any two CCDs are able to generate a pair of enagtical flow equations. The greater the total
quantity of the camera is, the more the numbeh@ihage optical flow equations becomes.

6) These large amount of image optical flow equatiocan be stacked in a matrix form, such as
Ax =d, whereA denotes the image matrid, is the optical flow vector, and is the unknown 3D
translational motion.

7) Using the least square estimation approach,eth@translational motion can be immediately
obtained byx = (ATA) " ATd.

8) When the amount of the ommatidium CCD cameravgrdhe resolved ego-translational motion
parameters using the single-row SPCE will approadhé ideal values.
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5. Experimentson Motion Estimation

In order to verify the performance of noise immuridr the single row SPCE, a given synthesized
cloud of fifty 3D points shown in Fig. 3 is chosasthe test objects in the experiment.

Figure 3. A synthesized cloud of fifty 3D points.

To simulate a realistic situation, noises have tinbbeduced into ideal data. Gupta and Kanal [23]
have tried various noise models, such as uniforigena a range, Gaussian noise with zero mean and a
specified variance, and Gaussian noise with zemnnaad a specified fractional variance. Variandes o
noises in error analysis conducted in [21]-[23] aveiven proportional to magnitudes of velocity
components. The zero-mean Gaussian noise usedsipdper is adopted from the works [24], [25].
Their algorithms were validated by incorporating thero-mean Gaussian noise with simulated
realistic data. Garcia and Tziritas [25] furtherigaded this error model can provide the ability to
synthesize errors whose range is similar to thatiypced by optical flow. Their optical flow noise
model was referred by Lobo and Tsotsos [26] as “&ansoise with mean 0% and standard deviation
b%”. In order to reveal the capability of noiseistance of the compound-like eye available in large
noise environment, a high noise model, which camdscribed as “Gaussian noise with mean 0 and
standard deviation b”, will be employed. The propbseise model presents 100 times noise level
higher than the pre-mentioned one.

Assume the image components in the ideal motidd fiey) are perturbed by additive zero-mean
Gaussian noises. The two noise processesdady image planes were independent to each other, and
each of them was spatially uncorrelated. For thgpgee of reflecting actual implementation in
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computation of optical flows using image patternadjacent time instants, the noises directly aszlr

on the positions of image pixels and their varianeere assumed to be constant over the entire image
plane. Therefore, the contaminated image pointsheynises before and after a movement were
respectively modeled as:

R OFNLO] 60+ N,0)
Vo) + N ) | 2y, )+ N, ()

wherei indexes the image pointx(i), y(i)) locates the ideal image point for thth point, andN i( )
denotes a zero-mean Gaussian random noise atdsisop. The noise procesfdg, N, N,,, and

N,, are assumed to have the same statistical propedtyre given by
E{N(1)} = E{NJ ()} = E{NZ(i)} = E{NJ(i)} = 0

whereo is the standard deviation. In other words, allgmaoints are contaminated by a random noise
with the same variance.

For the purpose of simplification for the follow-wmlidation and simulation, the translation
movement was approximated by the translation vglagider the assumption of unit sampling time.
Therefore, the image velocity could imply the imalygplacement. A small displacement and a large
displacement were chosen as (0.1, 0.1, 0.1) andb®B®) with unit of mm, respectively. According t
the above algorithm, for an ideal case free of eoithe estimated ego-translations were
correspondingly derived as (0.1, 0.1, 0.1) [mm] é&®16661, 49.7217, 4.9718) [mm]. Different levels
of noise with variance varying from 1 to 100 weadéed. Due to movement variation being too small
in the small displacement, only the large displaeein{60, 50, 5) would be applied for validationl Al
gap distances between adjacent CCD cameras weraB0The arrangements of CCDs in the single
row SPCE include 1x3, 1x5, 1x7, 1x9, 1x11, 1x13l58lxand 1x25. A total of 300 trials for each
situation were conducted. The image points witliedént noise variances for the 1x25 single-row
SPCE at two contiguous time instants (black angl aeel shown in Fig. 4. From Fig. 4, when the level
of noise increases, its influence on the imageepatbecomes more seriously. And as the variance of
noise reaches 16, the profiles for each CCD imagye wot distinguishable and it is extremely difficu
to recognize the corresponding movement.
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Figure 4. The image points with different noise variancestiie 1x25 single-row SPCE before
(black) and after (red) a movement.
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Considering those ambiguous image patterns congdednby different levels of noise, model
validation based on performance of motion recousipg those three presented motion models will be
explored. The relative error is defined as [27]

1/2

V] =V,) + (V] =V,)% + (V] —V,)?
VXZ +Vy2 +V22

where (\/;,V;,VZ*) represents the computed translation movement, (dpd/,,V,) is the actual

translation motion.
5.1. Validations of Three Models
5.1.1. Accuracy

For validation of the three Models, additional teases including an arbitrary single point, i.e., (-
365, 112, 960) and any 5 points will be exploreat. different single row SPCE configurations under a
noise level of variance 100, relative errors of imotrecovery in percent of the ego-translation are
demonstrated in Fig. 5 for the single point, 5 pmiand 50 points in 3D space. Thexis is the CCD
camera number of the single row SPCE, Ytexis is the number of test points in 3D space, thed
axis is the relative error of translation motiorotdl that the configuration of the single row SPGOE f
1x3 is neglected since the results in those thredefs are very close.

Based on the experimental results, the followingmaries can be made
1) Models A and C always keep in the acceptablelletnen the CCD camera number increases. But

Model B cannot converge to a satisfactory levehc8i Model A possesses more equations in

translation motion estimation, it is not surpridintess relative errors are found. While Model B

owns less equation, the relative error become®tatg the single point case, for the 1x155 single

row arrangement, it is clear that the relative reobModel A is the best, Model C is next, and

Model B is the worst.

2) It has been shown that the errors decrease lguwitien the number of points increases [28]. When
the number of test points increases to 50, it agptet the relative error of Model A is not the
minimum any more. Considering the case with thesbxdingle row arrangement, the relative error
of Model C, 0.46%, becomes better than that of Méd®.51%. Nevertheless, Model B is still the
worst.

3) The two relative error curves for Models A an@xhibit interesting variations when the number of
test points increases. The intersection point e$e¢htwo relative error curves are about at 1x29 and
1x70 for the cases of a single point and 5 poirdgspectively. But when the test point number
reaches fifty, it is noted that the intersectionnpaoes not exist. This interesting phenomenon
clearly indicates the relative error of Model Clgse to that of Model A in most situations.
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Figure5. The relative errors of translation motion in thneedels with a single, five, and fifty 3D
points under a noise level of variance 100.

5.1.2. Computational efficiency

Since the dimensions of image matrix and opticalflvector in those three models vary with the
CCD camera number of the single row SPCE, theicetkeg times will be different. Table 1 lists the
elapsed time per running of the different configiares of single row SPCE using those three models

for the fifty 3D test points. The minimum elapsedd is Model B since it has less constraint equatio
Model C is next, and Model A is the worst.

Table 1. Elapsed time in sec of the ego-translation foied#nt single-row SPCE configurations
with three models under a noise level of variar@@ 1

Moddl Single-row SPCE configurations
1x5 1x15 1x35 1x55 1x75 1x95 1x125 1x155
A 0.13 1.05 5.57 14.137.5246.5683.37 153.2
B 0.07 022 052 082 113 142 186 2.63
C 008 024 053 098 134 148 195 277

However, if we set a base with Model B, Fig. 6 destmtes comparison of the ratios of the elapsed
time of Models A and C to Model B versus the CClneaa number. The ratios of the elapsed time of
Model A to Model B in 1x5, 1x75, and 1x155 are 1.88.35, and 58.25, while the ratios of Model C
to Model B are 1.14, 1.19 and 1.05. When the CClber increases, the ratio of Model C to Model B
becomes near constant, which is independent wtlCthD amount. But the ratio of Model A to Model
B turns to be an oblique curve varying with the C&bount. In General, the executing time is directly
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related to the dimensions of image matrix and apfiow vector. Therefore, when the CCD camera
number becomes large, in terms of elapsed tingevery obviously that Model B is the best, Model C,
close to Model B, is next, and Model A is the worst

To sum up, from the above comparison on the acguaad computation efficiency of the single
row SPCE with fifty points depicted in Figs. 5 aBdalthough Model B has the best computation
efficiency, its performance is the worst. While Mbd\ owns best performance only limited in fewer
test points, and its computation efficiency is Warst. Therefore, it can be concluded that Modés C
the better choice among those three models.

Cormnparison of the elapsed time per running

B0

—<— Model A/ Model B
501 ---4-- Model C / Maodel B 1

Ratio of elapsed time
] £
[ (]

]
[
T

10+

o 20 40 50 a0 100 120 140 160
CCD camera number (1x)

Figure 6. The elapsed time per running of translation motiotinree Models with fifty 3D points
under a noise level of variance 100.

5.2. Variations of Noise Levels

According to previous examination, Model C appetarsbe the best motion model in noise-
resistance capability. Hence Model C is selectedddher investigation for motion recovery of the
ego-translation movement. Table 2 lists the retagirors for single-row SPCE arrangements under the
effect of different noise levels. Promising perfamae in terms of noise immunity using multiple CCD
cameras arranged in single-row SPCE configurai®okarly demonstrated.

For different CCD numbers of the single row SPG&rlx3 to 1x25, when the variance of noise
increases from 1 to 100, the relative error forioroestimation of the ego-translation is enhanced b
10 times in average. This trend is reasonable,usecthe variance of the noise is proportional & th
square of the corresponding component.

Regardless of the magnitude of noise level, theenmiterference damages image patterns when the
CCD number is small. Besides, the capability ofsaakesistance becomes better when the CCD
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number increases. When the variance reaches 1@Oyelative error of ego-translation in 1x3
configuration is up to almost 50%. Using the singley SPCE framework, the relative error can fall
down to less than 2% by just modifying the CCD ageament to 1x25. It can be concluded under the
influence of noise interference, when the CCD nunibereases, the relative error will be greatly
reduced. The multiple camera scheme, inspired &ygdmpound eyes of insects, successfully provides
outstanding filtering performance on image pattavite noises.

Table 2. Relative errors in percent of the ego-translatmrdifferent single-row SPCE configurations
with various noise variances.

Noise Single-row SPCE configurations
Variances 1x3 1x5 1x7 1x9 1x11 1x13 1x15 1x25
1 4.69 1.50 0.900.60 0.42 0.36 0.30 0.16
4 10.01 2.82 1.62 1.19 0.80 0.68 0.62 0.33
16 19.51 6.43 3.742.25 1.72 1.35 1.14 0.68
36 28.18 9.59 4.91 3.68 2.60 2.00 1.74 0.95
64 40.1312.436.154.59 3.74 2.81 2.26 1.34
100 47.8514.038.795.81 4.18 3.60 2.89 1.58

5.3. Irregular Arrangements

The above validations in sections 5.1 and 5.2 ased on regular arrangement of single row SPCE.
But what happen if the arrangement of SPCE is uleg@ We just made a small deviation for the most
left CCD camera in each case of Table 2, and magddcations to the right hand side 10 mm away
from the original position. Table 3 lists the ralaterrors for the single-row SPCE configurationt bu
with irregular arrangement under the effect ofatiéit noise levels. It is very clearly to realihattthe
irregular arrangement of single row SPCE generatedsive relative error comparing to regular
arrangement in Table 2.

Table 3. Relative errors in percent of the ego-translatmrdifferent single-row SPCE configurations
with various noise variances after a small deviatio

Noise Single-row SPCE configurations
Variances 1x3 1x5 1x7 1x9 1x11 1x13 1x15 1x25
1 3.90 54.23%7.8775.5881.9187.7493.81120.0
4 8.25 54.3067.9675.5881.8587.7693.83120.0
16 16.0154.4767.9175.6281.8987.7993.86120.1
36 23.5954.6567.9975.5881.5687.8393.89120.1
64 32.2854.8367.9875.4182.0187.8293.93120.1
100  40.3154.9868.0775.5382.0087.8993.97120.1
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From Table 3, a number of summaries can be matidlaws

1) When the CCD camera number increases, thewelatror becomes larger. Since the deviation is
far away from the origin of the coordinate, theatie error will be large. The more of the amount
of CCD is, the more of the relative error beconkas. example in 1x25, the relative errors in each
case are almost about 120%.

2) Although under the different level noises, tlirgegular arrangement of the single row SPCE still
dominates the relative error of motion estimatidhus, the relative errors of the same single row
SPCE configuration are close. Exception in 1x3¢eithe amount of CCD number is too fewer, the
relative errors are dominated by the noises o&dsffit level variances.

3) Although the irregular arrangement of the singley SPCE happened with small deviation, the
accuracy of estimation for the translation motiendestroyed seriously. Therefore, the regular
arrangement is very important in compound eye ahaeact for the motion estimation.

5.4. Discussions

From the above experimental results of the singhe $PCE, when the CCD’s number in the single
row SPCE framework increases, the relative erroegd-translation will significantly reduce. If the
number of the CCD goes to infinity, the relativeoeris expected to approach to zero. The SPCE
appears to own a powerful capability to overcomee® In particular, even when the variance of
noise is large, the images blurred, the SPCE dHlrsisow its effective noise-resistance capabitiy
recover the motion parameters of the translatior@alement.

The dragonfly has nearly 30000 ommatidia in eaah @hich makes sense because they hunt in
flight, whereas butterflies and moths, which do mat in flight, only own 12000 to 17000 ommatidia
[12]. The only difference is the amount of ommatidin these situations, due to the increase of the
number of ommatidium, the detection accuracy of poumd eyes becomes more and more enhanced.
It appears that the compound eye is able to prosiaeore correct detection capability in 3D ego-
motion. This phenomenon clearly corresponds t@abie/e experimental results.

Apparently, some of the reasons why the compourdogythe insect is able to help capturing its
prey so exactly and quickly are its symmetrical agglular arrangement framework, and its sufficient
large number of ommatidia. The multiple camera segecontribute multiple visual measurements for
image patterns that behave like an inherent fflterpossible noises. Based @ sufficient multiple
image patterns, powerful capability of noise-resise for motion recovery can be accomplished
without using any types of additional signal fiter

6. Conclusions

The compound eyes of the flying insect in the lgatal world are highly evolved organs. Although
the images received from their views are vague @amtlear, they are still able to capture prey so
exactly and quickly. Inspired by these insectsngigiinhole image formation geometry to investigate
the visual mechanism of the SPCE to moving objeets conducted.

The principle of the parallel trinocular was firstroduced. After extending to the single row SPCE,
the experiments for motion recovery of the tramsiatl movement under the influence of noises were
extensively performed. Especially, a compromisaddlation motion model is proposed to provide the
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excellent motion recovery performance with the naxsturacy and the faster computation efficiency.
Meanwhile, the experimental results also indichtg ho matter whether the noise is large or srfadl,
relative error of the ego-translation reduces wiiienamount of CCD number of the single row SPCE
increases. This outcome also lays the basic thearébundation to explain why the compound eye of
the insect can seize the prey with a tremendouseityfrom the engineering point of view.

Appendix A

(% = X )(ij — X )= (le ~ Xy )X = Xi)

Proof:

For an arbitrary poinP in 3D space as shown in Fig. 2, it will projectithe left, middle, and right
image planes and the relationships among those prggections can be formulated as

Xm_xl :M’ Xr _Xm :M

Z Z
For any two sets for matching image pixels on thdd&erent image planes, i.e(x;, X, X%; and
(Xu 1 X » Xy ) )

hh, f 2
X, =X . WX. —-X.)=
( li ml)( mj rj) ZiZ,-
hh, f 2
X, =X . WX.—-X.)=—=°
( j m)( mi n) ZiZj

therefore
(% = X )(ij — X )= (le ~ Xy )X = %)
It should be noted that the above equation is gueea no matter whethéx is equal toh, or not.

Appendix B

det(ATA) = f 4(312 + blz)[(ale - azb1)2 + (a1b3 - a3b1)2]

Proof:
f?(af +b?) 0 f(a,a, +bb,)
ATA = 0 f2(a? +b?)  f(aa; +hby)
f(a,a, +bb,) f(a,a,+bb,) aZ+b?+al+h?
det(ATA)

=f%(af +b7)*(aJ +by +aj +bj) - f*(a +b7)(a,a, +bb,)* - f* (a7 +b7)(a,a, +bb,)”
= f*(af +b)[(af +b7)(a; +b; +ai +bf) - (a,a, +bb,)* - (aa, +bb,)?*]

= f(a; +b/)[a’b; +a/b] +a;by +agb’ -2a,a,bb, -2a,a,bb;]

= f(a’ +b/)[(ab, —a,b)* +(ab, —a;b)’]
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Appendix C

a,b, —a,b, 70
Proof:
a1b2 - a2bl

Z(ZXH _me)%(zxrzj _szj)_(zxmi _Zxri)%(zxij _ZXUZ)
Z(Xli = X )Z(szl _X;)_Z(Xmi _Xri)Z(X;‘ _lez)}
306 %) -6~ 33 06 - 6,06, —xﬂ

NP, N

:%ZZ[_(XH _Xm)(xm _er)(xmj +er)+ (Xmi _Xri)(xlj _Xn]')(xlj + X )]

1
ZEZZ(X“ = X )Xoy =X )%~ %)
i
0
Appendix D

a1b3 - aSbl =0
Proof:
ayb; —ab

O ENORATE WHMESUCHAREAD) HCAEED
=204 %)% y,—l(xrj —xm)]—Zyj (% ]—x.j)iz(xm- - %)

PIAC —xmj-)y,- (%, —xm-)—iz(xm- = X,)Y, (% = %;)

= Ziyj [= (% = %)%y = %)+ (o - X, )(%; = %y)]

=ol |

Appendix E

det(ATA) = f 4(312 + b12 + Cf)[(aibz - a2b1)2 +(be, - b2cl)2 +(ac, - azcl)z]
Proof:
f2(a; +b +c)) 0 f(a,a, +bb, +c,C,)
ATA = 0 f2(a12+b12+012) f(a,a; +bb; +c,c;)
f(aa, +bb, +cc,) f(aa, +bby+cc) & +by +c; +aj+by+c;
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detATA)

= f 4(6‘12 + bl2 + Cf)[(aibz - azb1)2 +(bc, _bzcl)z +(ac, - azcl)z +(ab; - a3b1)2 +(bc, _b3C1)2

+(8,C; —a,C,)°]

=f 4(a12 + b12 + Cf)[(aibz - a2b1)2 +(bc, _b2C1)2 +(ac, - azc1)2]

The following inequalities can be assured by thecesses similar to Appendix D and Appendix C,
respectively.

b,c, —b,c, =0,a,c, —a,c, =0 andb,c, —h,c, #0,a,c, —a,c, Z0

In addition,a,b, —a,b, # 0 is already verified in Appendix C. As a resulte tleterminant of M is
proved to be always positive.

Appendix F
Model A:
2n! 2n!
orderof A=————x3=n(n-1)x 3 orderofd=—————x1=n(n-1) x1
(n—2)12! (n—2)12!

Model B:

orderof A =[(n—-1) +1]x3=nx 3 orderofd =[(n—1) +1]x1=nx1
Model C:

orderof A =2(n—-1) x 3, orderof d =2(n—1) x1
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