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Abstract: To increase the affinities of aptamers for their targets, we designed an aptamer 
dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which 
enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, 
we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. 
Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer 
has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the 
designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-
inhibiting aptamer. Additionally, we connected together two identical aptamers against 
vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the 
case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd 
value than that of the monomer. This study demonstrated that the dimerization of aptamers 
effectively improves the affinities of those aptamers for their targets. 
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1. Introduction 

Protein detection and molecule quantification play an essential role in clinical diagnosis. Aptamers 
are drawing attention as novel molecular recognition elements for protein detection [1]. Aptamers are 
single-strand nucleic acid ligands that bind to various target molecules with high affinity and 
specificity [2-4]. They have many advantages over the antibodies as molecular recognition elements, 
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especially for diagnosis; for example, they are easy to design. By utilizing these advantages, simple, 
rapid and highly sensitive protein detection systems have been constructed [5-7]. Although the highly 
sensitive detection of target molecules has been reported, the lower detection limit is generally 
determined by the affinity of the aptamers used. Therefore, it is necessary for highly sensitive 
biosensing to use aptamers with high affinity for their targets. 

It is indicated that bispecific antibody fragments that recognize adjacent and non-overlapping 
epitopes simultaneously have higher affinity [8-10]. By connecting two antibodies that recognize 
different parts of the target molecule, the Kd value of the antibody can be lowered. Because the kon 
value increases and the koff value decreases when binding together two recognition sites for the same 
target, the Kd value may be lowered by connecting two antibodies. Thus, the affinity of the antibody 
can be increased by connecting together two antibodies that have non-overlapping epitopes to the 
target. 

Since it is easy to connect two aptamers, we tried to improve the affinity of aptamers by 
dimerization. In this study, as a model, we connected two thrombin-binding aptamers that have non-
overlapping binding sites for thrombin and investigated the aptamer dimer’s affinity and its thrombin-
inhibitory activity. Furthermore, we have already reported a DNA aptamer against vascular endothelial 
growth factor (VEGF165) [11], which is the marker protein in some diseases [12, 13]. Because 
VEGF165 is a homodimeric protein, we tried to connect two identical aptamers and investigate the 
affinity of the aptamer dimer for the target. 

2. Materials and Methods 

2.1. Materials 

Biotinylated and non-labeled oligonucleotides were purchased from Invitrogen and Operon 
Technologies, Inc. Thrombin and fibrinogen were obtained from Wako Chemicals. Recombinant 
human VEGF165 was purchased from R&D Systems as carrier-free lyophilized powders.  

2.2. Binding assay measurements  

The binding affinities of the aptamers for their targets were analyzed by surface plasmon resonance 
at 25 °C using a Biacore X instrument (Biacore AB). 

The linked thrombin-binding aptamer: To immobilize the biotinylated aptamers to the SA sensor 
chip, the aptamers (20 nM) were injected after being equilibrated with binding buffer (50 mM Tris-
HCl, 300 mM NaCl, 5 mM KCl, pH 8.0). After immobilization of the aptamers, various concentrations 
of thrombin were injected to measure the Kd values of the aptamers in running buffer (50 mM Tris-
HCl, 150 mM NaCl, 5 mM KCl, pH 8.0). After injecting the thrombin, the sensor chip was regenerated 
with 0.5 % SDS for 30 seconds. To analyze the binding kinetics of the thrombin aptamers, we used the 
BIA evaluation software, version 3.1 with a local fit of the kinetic simultaneous Ka/Kd model, 
assuming a 1:2 heterogeneous binding. 

The linked VEGF-binding aptamer: VEGF was immobilized on the sensor surface and the aptamers 
were injected onto the surface. VEGF165 (10 μg/ml in 10 mM acetate, pH 6.0) was immobilized on one 
of the two flow cells (Fc-1) of the CM5 sensor chip (Biacore AB) by the amine coupling procedure. 
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On another flow cell surface (Fc-2), VEGF165 was not immobilized in order to evaluate the nonspecific 
binding of aptamers to the sensor surface. For the interaction assay, the aptamer solutions were 
injected onto both flow cell surfaces. TBSE (10 mM Tris-HCl, pH 7.0, 100 mM NaCl, 0.05 mM 
EDTA) served as both the running buffer and the aptamer dilution buffer. NaOH at concentrations of 
10~50 mM or 0.5 % SDS was used as the regeneration solution. The differences in the response units 
Fc-1 and Fc-2 were used as the response signals, and these signals were used for the construction of a 
Scatchard plot. The dissociation constants of the aptamers were calculated from the Scatchard plot. In 
this evaluation, we assumed that the binding ratio of VEGF165 to the aptamer is 1:1 (one aptamer 
monomer binds to one VEGF165 monomer, and one aptamer dimer binds to one VEGF165 homodimer). 

2.3. Thrombin activity inhibition assay using linked aptamers 

 In a buffer solution consisting of 50 mM Tris-HCl, 100 mM NaCl and 5 mM KCl at pH 8.0, linked 
aptamers and thrombin (final concentration, 54 nM) were mixed for 5 min at 37 °C. Next, fibrinogen 
(final concentration, 2 mg/ml) was added, and the clotting time was measured using an automated 
fibrometer (Amelung KC-4A Micro Coagulation Analyzer) at 37 °C. 

3. Results and Discussion 

3.1. The linked thrombin-binding aptamer 

3.1.1. Design of the aptamer dimer 

The sequences of the designed thrombin-binding aptamers are shown in Table 1. The 15-mer 
thrombin-binding aptamer having a G-quartet structure recognizes the fibrinogen-binding exosite of 
thrombin via a T-loop and inhibits the thrombin activity (Fig. 1) [14]. The 29-mer thrombin-binding 
aptamer recognizes the heparin-binding site of thrombin and has no thrombin-inhibitory activity (Fig. 
1) [15]. We connected the 15-mer and the 29-mer aptamers using poly(dT) linkers of various lengths. 
The distance between the fibrinogen-binding exosite and the heparin-binding site is about 3.4 nm, and 
the total length of five sequential thymine bases is about 5 nm. Considering this, we varied the number 
of dTs inserted between the 15-mer and the 29-mer (0, 5, 10, 15 or 20 dTs). 

 

Figure 1. The linked thrombin-binding aptamer. 
 



Sensors 2008, 8                            
 

 

1093

Table 1. The sequences of aptamers and aptamer dimmers. 

 

3.1.2. Binding assay using SPR measurement 

We investigated the affinities of the designed aptamers by surface plasmon resonance (SPR) 
measurement on a Biacore X instrument. For this purpose, biotinylated aptamers were immobilized on 
the SA chip modified with streptavidin. The injection of the biotinylated aptamers onto the SA chip 
caused the RU value to increase (data not shown). Increased RU values were also obtained upon 
injection of various concentrations of thrombin (Fig. 2). The Kd value of the designed aptamers were 
calculated using the BIA evaluation software, version 3.1. As a result, the Kd value of the 5-linker 
aptamer became subnanomolar, i.e. 1/10 of that of the 29-mer (Table 2). This was caused mainly by 
the much smaller koff value. This finding indicates that the concatenated aptamer might recognize two 
different sites on the thrombin molecule owing to the flexible dT linkers. Thus, by connecting two 
thrombin-binding aptamers that recognize different parts of the thrombin molecule, avidity is obtained. 
The 5-linker aptamer had the highest affinity for thrombin among the concatenated aptamers. The 
linker we used is a single-strand DNA with a length of approximately 5 nm. It is expected that the 
flexibility and length of the 5-linker aptamer will enable it to bind to two different recognition sites of 
thrombin simultaneously. 
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Figure 2. A sensorgram of the linked aptamer (10-linker), as determined by SPR. 
Thrombin (30, 50, 100, 150 nM) was injected onto the linked aptamer-immobilized SA 
chip under running buffer at a flow rate of 20 μl/min. 

 
Table 2. The binding parameters of thrombin-binding aptamers investigated by BIA evaluation 3.1. 

 

3.1.3. The inhibitory activity of the linked aptamers 

We investigated the inhibitory activity of the linked aptamers. The 15-mer aptamer recognizes the 
fibrinogen-binding site of thrombin and exerts an anticoagulant effect by inhibiting the reaction of 
thrombin and fibrinogen. We investigated the inhibitory activity of the concatenated aptamers by 
comparing them with the 15-mer aptamer. As a result, the concatenated aptamers showed increased 
inhibitory activity (Fig. 3), and the aptamers with the longer linkers showed higher inhibitory activity. 
This result does not seem to be consistent with the affinity values. However, all the concatenated 
aptamers showed subnanomolar Kd values, and their affinities were not significantly different. In this 
case, excess amounts of concatenated aptamers for thrombin were used, and most of the thrombin 
seemed to bind to the aptamers. In that situation, larger concatenated aptamers might hinder the 
approach of fibrinogen to a greater degree, which might result in higher inhibitory activity as the 
linkers become longer.  
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Figure 3. The inhibitory activity of the linked aptamer for thrombin. We compared it with 
the inhibitory activity of the 15-mer thrombin-inhibiting aptamer. After the aptamer  
(1 μM) and thrombin (54 nM) were incubated for 5 min at 37 °C, we added fibrinogen  
(2 mg/ml) and measured the clotting time. 

 
Muller et al. have reported a fusion aptamer consisting of two distinct aptamers that target thrombin 

[16]. But they aimed to improve not the affinity but the inhibitory activity, and the observed affinities 
were increased only two- to three-fold compared to those of the individual precursor aptamers. On the 
other hand, the Kd values of the linked aptamers designed by us in the present study were 1/10 of those 
of the monomer aptamers. The reason for this difference resides in the linkers used to connect the 
aptamers. Muller’s group used poly(dA) as the linker, but we used poly(dT). The pyrimidine 
nucleosides are smaller than the purine nucleotides, so dT linkers are more flexible than dA linkers and 
the aptamers connected with dT linkers fit both binding sites of thrombin.  

The approach of connecting two aptamers with different epitopes is very simple and easily 
improves aptamer affinity. However, to obtain such aptamers, we needed to construct two aptamers 
which recognize distinct regions of the target protein. So, we designed our aptamer dimer using only 
the aptamer against the homodimeric protein VEGF165. 

3.2. The linked VEGF-binding aptamer 

3.2.1. Design of the aptamer dimer 

We had isolated the DNA aptamer against vascular endothelial growth factor (VEGF165), named 
“VEa5,” and investigated the properties of this aptamer in a previous study [11]. Since VEGF165 is a 
homodimeric protein, we attempted the dimerization of VEa5 and that of the deletion mutant of VEa5, 
del5-1, to improve their affinities for the target (Table 1). VEGF165 contains two domains, a receptor-
binding domain and a heparin-binding domain [17], and VEa5 recognizes the heparin-binding domain 
[11]. Although the 3D structures of each domain of VEGF165 have already been determined [17, 18], 
the structure of the full length of the VEGF165 has not been reported. Therefore, the distance between 
the heparin-binding domains of each monomer in homodimer is still unclear. So, we connected the 
aptamers together via 0-, 10- or 20-mer dT linkers to determine the suitable length between the linked 
aptamers. 
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3.2.2. Binding assay using SPR measurement 

We have already confirmed by SPR measurement that VEa5 binds VEGF165 with a Kd value of 120 
nM (Fig. 4A) [11]. The affinities of del5-1 and the aptamer dimers against VEGF165 were also 
evaluated by SPR measurement. Aptamer solutions of different concentrations were assayed on 
VEGF165-immobilized sensor chips and the corresponding signals were obtained. Figure 4 shows the 
signal at equilibrium plotted as a function of the aptamer concentration. The Scatchard plot analysis 
showed that del5-1 had a Kd value of 500 nM (Table 3). In both VEa5 and del5-1, the constants of 
dissociation with VEGF165 of the aptamer dimers without linkers were less than 1/10 of those of the 
monomer aptamers (Table 3). Meanwhile, when dimer aptamers with dT linkers were injected, the 
equilibrium response values were not even partially dependent on the aptamer concentrations, and the 
Scatchard plots were not linear (data not shown). This might be caused by the low stabilities of 
aptamer dimers with dT linkers.  

From these results, the dimerization of aptamers which bind to a homodimeric protein would be 
effective for improving their affinities. Furthermore, VEGF is a marker protein of some diseases [12, 
13], so aptamer dimers having higher affinities would be good sensor elements for highly sensitive 
VEGF detection in disease diagnosis. 

 
A                         B                        C                        D 

 

Figure 4. The equilibrium responses are plotted as a function of the aptamer concentration. 
VEGF165 was immobilized on a sensor chip and aptamers were injected for the SPR 
measurement. (A) VEa5, (B) del5-1, (C) VEa5-VEa5, (D) del5-1-del5-1 were assayed. 

 
Table 3. The dissociation constants of VEGF-binding aptamers calculated by scachard plots. 

 

4. Conclusion 

We connected two thrombin-binding aptamers which recognize different sites of the thrombin 
molecule via flexible dT linkers, and the concatenated aptamer showed a higher affinity than the 
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individual monomers (15-mer and 29-mer). Also, the concatenated aptamer showed a higher thrombin-
inhibitory activity. Furthermore, the dimerization of two identical aptamers against the homodimeric 
protein VEGF165 notably improved their affinities. We demonstrated here a simple approach to the 
improvement of aptamer affinity. 
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