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Abstract:  When microcantilevers are used in the dynamic mode, the resonance shift upon 

material adsorption depends on the position of the adsorbate along the microcantilever. We 

have previously described that the adsorbate stiffness needs to be considered in addition to 

its mass in order to correctly interpret the resonance shift. Here we describe a method that 

allows obtaining the Young’s modulus of the adsorbed bacteria derived from the 

measurement of the frequency shift when adsorbates are placed close to the clamping 

region. As a model system we have used E. Coli bacteria deposited on the cantilever 

surface by the ink-jet technique. We demonstrate that the correct information about 

adsorbed mass can be extracted by recording the cantilever profile and its resonance 

response. Also, the position and extent of adsorbates is determined by recording the 

microcantilever profile. We use a theoretical model based on the Euler – Bernouilli 

equation for a beam with both mass and flexural rigidity local increase due to the deposited 

material.  
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1. Introduction 

Microcantilevers have demonstrated their potential to be used as highly sensitive sensors. They 

have been applied in diverse fields, such as nanocalorimetry [1], infrared detection [2], gas sensing [3], 

particle flux measurements [4], acoustic waves detection [5] and also as biosensors [6]. They are used 
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by applying two different principles of actuation, the static and the dynamic modes. The static mode 

measures the deflection of the beam due to the adsorption of molecules on one side of the cantilever. 

This adsorption produces a differential surface stress and the consequent bending of the beam. The 

dynamic operation mode is devoted to measure the resonance of the cantilever. Usually, the resonant 

frequency is changed by the mass bounded to the cantilever surface [7]. It has been demonstrated that 

the resonating microcantilevers can detect added mass at the level of zeptograms [8] and single 

biological entities [6]. The mass measurements are handicapped by the presence of damping forces and 

inertial masses when we are trying to operate in the natural environment of the molecules of interest 

[9,10]. These external factors are related with the low quality factor measured in liquids and the poor 

signal – to – noise ratio. To improve the sensitivity of the frequency measurements the experiments are 

usually performed in air or vacuum. Also, the intrinsic sensitivity of the measurements can be 

enhanced by using higher resonance frequencies. These frequencies can be reached by shrinking the 

structures or by using higher resonant modes. Therefore, it is predictable an increased sensitivity in the 

mass detection by improving the nanofabrication techniques. 

The shrinking of cantilever devices raises new questions when adsorbed masses are to be detected 

and measured with them. It is known that when the adsorbate is not uniformly distributed over the 

cantilever, the position of the adsorbate affects the dynamic response in different ways depending on 

the mass position with respect to the cantilever end [11]. However, as the size of the device approaches 

the dimensions of the adsorbed material, the change in the local moment distribution along the 

cantilever length plays a very important role that in some conditions can overpass the response due to 

the added mass [12,13].  

Here we describe a method that allows fast and reliable determination of the mass position through 

the recording of the cantilever profile. This information, together with the read-out of the vibration 

response, allows the correct determination of the adsorbed mass. The model used here accounts for 

both the effect of the adsorbate stiffness and the effect of the added mass [12,13]. According to this 

theoretical scenario, to calculate the mass of an inhomogeneous layer it is necessary to determine the 

position and the flexural rigidity of the target, besides the frequency shift. The position is recorded 

here taking into account the change of curvature caused by the material adsorption on the cantilever 

surface. If the adsorption takes place only on a restricted region of the surface, a local change of 

curvature is observed. This change of curvature is observed in the profile, acquired by using a recently 

developed technique [14], of the cantilever recorded before and after the adsorbate deposition. The use 

of this technique allows obtaining the curvature of the cantilever as a function of the position.  

In this work, the resonance frequencies of the cantilevers are measured by acquiring the spectrum of 

the Brownian motion of the cantilevers vibrating in air. The relative frequency shift of the first three 

resonant modes is compared in order to choose the mode that provides the major sensitivity for the 

mass measurements. Here, we present experiments showing how the resonance is shifted to lower 

frequencies when the bacteria cells are placed at the free end of the cantilever and to higher 

frequencies when the same added mass is placed close to the clamped end. We show that the stiffness 

can be experimentally measured if the adsorbates are placed near the clamping of the microcantilever.  
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2. Materials and Methods  

The E. Coli suspension was obtained by centrifugation of the Luria Bertani (LB) broth in which the 

E. Coli bacteria were grown. The resulting pellet was resuspended in ultrapure water to avoid the 

effects of the salt crystals when buffer solutions are used. By using the ink–jet technique, 0.5 nanoliter 

droplets of bacteria suspension were achieved. The micropipette (Microdrop Gmbh) was mounted on a 

microposition XY stage in order to control the position of the deposited drop along the cantilever with 

±10 µm accuracy. Commercial rectangular with triangular free end tipless silicon cantilevers 

(NanoWorld) were used for the experiments. Their length, width and thickness were 500 µm, 100 µm 

and 1 µm respectively. In order to simplify the theoretical calculations, the triangular free end was 

substituted by an effective rectangular cantilever, taking the barycentre of the triangle as the end of the 

effective rectangular shape. 

Since the quality factor of the oscillation of cantilevers immersed in liquids is very low, the 

resonance frequency was measured in air, comparing the effects of the adsorption on the resonance 

before and after the deposition of the cells. The short time delay between the measurements (about 15 

min) assures that the temperature and pressure of the surrounding air in the laboratory conditions do 

not sufficiently change to affect the resonance of the cantilevers. 

The out of plane vibrational resonant modes of the cantilever used in this work were measured 

using the optical beam deflection method. A laser diode (3 mW, 635 nm, Edmund optics Ltd.) was 

focused on the free end of the cantilever and the reflected spot was collected by a double split 

photodiode used as a position sensitive detector (Hamamatsu). The photocurrents are preamplified by 

current to voltage converters (HMS). The signals of the different quadrants of the photodiode are then 

processed by a summing amplifier (Stanford Research Systems, SIM 980). The amplified signals are 

connected to the PC via digital-to-analog converters (National Instruments) which separate the AC and 

the DC coupling of the signal. To measure the resonant peaks, fast frequency sweeps were performed 

in the range of 1 ms. Then a Fast Fourier Transform of the vibration is performed to obtain the 

resonant peaks. 

The profile of the cantilever before and after bacteria deposition is recorded by a scanning laser set-

up. This readout technique combines the optical beam deflection method and the automated two-

dimensional scanning of a single laser beam by voice-coil actuators. Fig. 1 shows a schematic drawing 

of the experimental set-up. The laser diode is mounted on two perpendicular linear voice coil actuators 

(Physik Instrumente GmbH & Co.) for two-dimensional scanning of the cantilever array. Voice coil 

actuators are based on the Lorentzian force between a radial field created by permanent magnets 

embedded on the inside diameter of a ferromagnetic cylinder and a current-carrying coaxial tubular 

coil that moves along the axial direction. The force is proportional to the applied current to the coil. 

Conversely, a voltage is induced in the coil that is proportional to the velocity, allowing accurate 

readout of the position. The advantages of using voice coil actuators include non-hysteretic 

displacement, a range of several millimetres, speeds of up to 50 mm/s and an accuracy of 100 nm. In 

our set-up, one of the scanning axes is oriented parallel to the cantilever longitudinal axis to record the 

cantilever profile. The laser beam is focused and directed in order to illuminate different locations of 

each cantilever of the array. The reflected beams off the chip are collected by a two-dimensional linear 

position detector (On-Trak Photonics, Inc.). The photocurrents generated on the PSD are processed by 
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a four channel current amplifier system using a position sensing algorithm to give three analog outputs 

which are directly proportional to  the total light collected on the PSD and to the coordinates of the 

reflected laser beam on the PSD, independently of the light intensity fluctuations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic drawing of the set-up for the read-out of the cantilever profiles in 

arrays.  The laser is mounted in a 2-D voice-coil scanner that allows obtaining the profile 

of an arbitrary number of cantilevers in the array. Measurements can also be performed 

in real-time.   

3. Results and Discussion  

3.1. Theory 

In order to describe the response of the microcantilevers upon adsorption of an inhomogeneous 

layer, we propose a model that is based on the Rayleigh’s method. This method consists of an energy – 

work balance during a vibration cycle. Assuming a harmonic vibration u(x,t)∼ψn(x)cos(ωnt+α) where 

ψn is the flexural vibration mode shape of the unloaded cantilever; ωn is the nth flexural 

eigenfrequency of the loaded cantilever and α is an arbitrary value of the oscillation phase, the 

resonant frequency can be calculated as [13] 
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Where x is the spatial coordinate along the cantilever, ρc and Tc are the cantilever mass density and 

thickness, respectively; ρa is the mass density of the material adsorbed on the cantilever, Ta is the 

y

x

Laser diode

2D Voice-Coil Scanner

PSD

Microcantilever Array (b)

x
y

Cantilever
profile

y

x

Laser diode

2D Voice-Coil Scanner

PSD

Microcantilever Array (b)

x
y

Cantilever
profile



Sensors 2007, 7                            
 

 

1838

adsorbate thickness that depends on x, w is the width and D(x) is the cantilever flexural rigidity that 

depends on x. The adsorbate locally modifies the flexural rigidity according to [15],   
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where Ec and Ea are the Young’s modulus of the cantilever and adsorbed material, respectively. The 

flexural rigidity is a measure of the stiffness of the cantilever. It can be obtained as the product of the 

modulus of elasticity and the moment of inertia per unit length. 

 

The flexural vibration shape of the unloaded cantilever is given by [16]  
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where kn satisfy the boundary conditions and are given by kn =1.8751, 4.6941, 7.8548,…   

 

We have applied the above equations to estimate the frequency shift of the first three resonant 

modes due to the adsorption of a finite structure on the cantilever. In order to simplify the theoretical 

calculation and compare it to the experiments, the adsorbates are modelled as a solid disc. The 

diameter of this disc is 120 µm, approximately the diameter of the droplet obtained by the ink-jet 

technique. By equalling the volume of the all bacterial cells to the volume of a pad, we deduce an 

effective thickness of 800 nm, smaller than the bacteria thickness, 1 µm. The estimated adsorbed mass 

is 3.3 ng which is equivalent to 4200 cells, and the Young’s modulus is 1GPa, which is in the range of 

values obtained by atomic force microscopy measurements in dried bacteria [17].  

Fig. 2 shows the relative frequency shift of the first three resonant modes versus the position of the 

bacteria drop attached on the cantilever. The clamping is placed at x = 0 µm and the free end at x = 

433 µm. The solid line represents the theoretical calculation of the frequency shift of the first resonant 

mode, the dash line the effect on the frequency shift of the second resonant mode, the dotted line the 

calculated frequency shift for the third flexural mode. The experimental values of the resonance 

frequency shift are also included (symbols). The open squares represent the frequency shift of the first 

flexural mode, the open circles and triangles respectively show the effect on the second and third 

flexural modes. The theory shows a good agreement with the experimental data indicating the 

consistency of the presented model. 
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Figure 2. Experimental measurements of the resonance frequency shift as a function of 

the longitudinal position of the adsorbed bacteria with respect to the clamping for the first 

(open squares), second (open circles) and third (open triangles) flexural modes. The lines 

represent the theoretical calculations for the first (solid), second (dash) and third (dotted) 

flexural modes.  

 

We observe that the mass and the flexural rigidity have opposite effects on the resonance. The 

added mass always produces a decrease of the resonance, whereas the increase of the rigidity produces 

a positive shift of the frequency. The different maxima and minima of the frequency shift are related 

with the shape of the eigenmodes. As can be deduced from eq. (1) the contribution of the stiffness to 

the resonant frequency is proportional to the curvature of the cantilever, whereas the effect of the mass 

is maximal at the antinodes, where the amplitude of oscillation is maximal.  

 

Therefore, from the theoretical analysis it can be derived a frequency shift that depends on the 

position of the adsorbate along the cantilever length and on its mechanical properties in addition to the 

added mass. It is demonstrated also that the relative frequency shift is higher for the first resonant 

mode, although its resonant frequency is smaller than the rest of the modes. This is due to the presence 

of the nodes in the higher modes where the stiffness contribution is as sufficient as to practically 

cancelling the mass effect.   

3.2.Measuring the adsorbed mass 

Figure 3 shows the optical micrograph of four cantilevers in which the drops containing the E. Coli 

bacteria have been placed at different positions: close to the clamping, at the middle and near the free 

end and also on the back side of the cantilever. The number of cells deposited ranges from 3000 to 
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5000 depending on the final size of the drop. The observed ring – pattern is due to the original shape of 

the drop. Although the pattern used in the theoretical depiction is circular, the qualitative behaviour is 

not affected because the ring keeps the axial symmetry along the cantilever length. This figure also 

shows the profile of the cantilevers before (dashed line) and after bacteria deposition (solid line). It can 

be clearly observed that the attached bacteria locally change the cantilever curvature. Using this 

profiling technique the local change of surface stress induced by bacteria adsorption can be 

determined. These measurements indicate surface stress changes ranging from 0.05 N/m to 0.10 N/m. 

By applying the existing theoretical models in the literature [18], these values can be neglected for the 

dynamical calculations. 

In figure 4 the curvature has been derived from the cantilever profile in figure 3 d) after the 

deposition of a droplet of bacteria. From this information the exact location and size of the droplet of 

bacteria can be determined. In this case the size of the droplet is of about 150 µm and it is placed at 

380 µm from the cantilever clamping region on the back side of the microcantilever. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. Optical micrographs of the cantilevers after deposition of droplets containing 

E. Coli bacteria. Above each picture the cantilever profile measured before (dotted line) 

and after (continuous line) bacteria deposition are presented. The cantilever profile is 

modified at the position of the adsorbed bacteria due to the induced surface stress by the 

adsorbed inhomogeneous layer of bacteria.  
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Figure 4. Curvature of the cantilever recorded by the scanning laser set-up. The local 

change of curvature indicates the position and extension of the adsorbed droplet on the 

cantilever. 

 

We have also measured the spectra of the Brownian motion of this cantilever before and after 

bacteria deposition, fig. (5). The shown peaks are the result of the average of 50 measurements. The 

resonance frequencies are then calculated by using the harmonic oscillator approximation. The 

fundamental resonance frequency before adsorption is 8.5 kHz. For the first resonant mode, a negative 

resonance frequency shift of −2.18% was observed, whereas for the second and third flexural modes 

the measured frequency shift is respectively –1.13% and –1.09%. Taking into account the procedure 

used to determine the resonance frequency, the error can be estimated bellow than 0.01% in all cases. 

As can be observed in this figure, the change in the quality factor is negligible, indicating that the 

damping constant in air introduced by the attached bacteria is also negligible. 

By using eq. (1) and the data obtained previously, we can determine the adsorbed mass on 

the cantilever. We obtain 1.6 ± 0.5 ng for the first flexural mode, 1.1 ± 0.5 ng by using the 

second mode and 8.8 ± 21 ng when we use the frequency shift measured for the third flexural 

mode. 

On repeated measurements, we observed that the third mode produces a value with the larger 

dispersion. This can be explained as the bacteria are adsorbed close to a node of the vibration so the 

error in the mass determination is maximal. The main source of experimental error in this 

measurements is the determination of the size of the drop. The above calculated errors take into 

account an indetermination of 20% in this parameter and 50% in the Young’s modulus of the bacteria, 

the later considering the different values reported for the bacteria in the literature [17]. 

If the harmonic oscillator approximation ∆m/m=-2∆ω/ω is employed to calculate the mass, the mass 

calculated from the measured resonance shift corresponding to the first flexural mode is 4.4 ng, the 

second resonance mode provides a value of 2.3 ng and the shift for the third mode gives 2.2 ng. In this 

case the mass calculated using the first flexural mode overestimates the adsorbed mass by a factor of 

four because this model neglects the contribution of the flexural rigidity to the resonance shift.  
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Figure 5. Spectra of the Brownian motion of the cantilever before (solid line) and after 

(dashed line) bacteria adsorption. 

 

 

 

3.3.Measuring the Young’s modulus 

From the equation (1) it is possible to estimate the Young´s modulus of the adsorbed material 
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where D0 is the flexural rigidity of the unloaded cantilever and a and b are the limits over the 

cantilever in which the mass is spread out expressed as spatial coordinates. 
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For the cantilever shown in fig. 3 (a), the relative frequency shift is 3.63 %, the centre of the droplet 

is positioned at 70 µm from the clamping and the drop length is 100 µm (the drop width equals that of 

the microcantilever). Using these parameters and equation (4), the Young’s modulus obtained for the 

bacteria cells is of about 0.4 ± 0.6 GPa. This value is of the order of magnitude of those reported in the 

literature. Usually values of 1 GPa are obtained by AFM measurements in dried bacteria [16]. As was 

discussed above, the main source of error is the determination of the position. 

Note that this value does not correspond to what was used in the previous section to simulate the 

biological layer. In fig. (6), we plot the frequency shift as a function of the thickness of the adsorbed 

layer for three different values of the adsorbed material Young’s modulus. In this theoretical 

calculation the layer is supposed homogeneous to simplify the interpretation. As can be observed in the 

figure, the differences in the relative frequency shift are of about 2.5% for the thickness employed in 

previous simulations, which is of the order of magnitude of the discrepancy observed in fig.2 between 

the experimental measurements and the theory. Therefore, both values are compatible in the assumed 

error range. 

 

Figure 6. Theoretical calculation of the frequency shift as a function of the adsorbate 

thickness for three different values of the Young’s Modulus: 1Gpa (solid line), 100 Mpa 

(dashed line) and 500 Mpa (dotted line). 

Conclusions 

We have presented a method to accurately determine the adsorbed mass on a cantilever when 

adsorbates are inhomegeneously distributed over the cantilever surface. The measurement of the 

cantilever profile is needed to determine the position and extension of the adsorbed material. Then, 

these data can be used, together with the measured resonance shift, to derive the adsorbed mass by 

using the presented theoretical model. By recording the profile, the local surface stress induced by the 

adsorbates can also be measured.  

In addition, we have theoretically demonstrated and experimentally tested that the use of higher 

vibration modes gives a relative frequency shift smaller than the first mode. This is due to the presence 

of vibration nodes. At these positions the amplitude of oscillation is zero, hence the added mass has no 

effect in the dynamic response. Therefore, when the added mass has a size comparable to the node – 
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antinode separation, the use of higher flexural modes overestimates the measured mass values. Thus, to 

improve the sensitivity by working at high frequencies it is necessary to shrink the cantilevers.  

As a model system, we have chosen the detection of E.Coli bacteria. We have also shown that by 

placing the bacteria close to the clamping region, we can measure its rigidity by recording the 

resonance frequency and the cantilever profile. From the results shown in this work, we conclude that 

the design of highly sensitive cantilevers to be used for pathogen detection must take into account the 

inhomogeneous nature of the adsorbed layers and also the important effect of the mechanical 

properties of the adsorbates in the dynamic response. Designs of microcantilevers that promote 

adsorption near the clamping region will take advantage of the large positive resonance shifts produced 

due to the local increase of stiffness given by pathogen adsorption. These new designs can produce 

highly sensitive biosensors that rely on the response due to the mechanical properties of the adsorbed 

pathogens rather than on the change of mass.  
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