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Abstract: Migration is one of the major socio-economic characteristics of China since the 

country adopted the policy of economic reform in late 1970s. Many studies have been 

dedicated to understand why and how people move, and the consequences of their welfare. 

The purpose of this study is to investigate the environmental impacts of the large scale 

movement of population in China. We analyzed  the trend in the Normalized Difference 

Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) 

along with China migration data from the 1 percent national survey during 1982-1987, the 4th 

national census during 1985-1990 and the 5th national census during1995~2000.  We found 

that the internal migration in China has a statistically significant negative impact on vegetation 

growth at the provincial scale from 1982 to 2000 even though the overall vegetation 

abundance increased in China.  The impact from migration (R2=0.47, P=0.0001) on vegetation 

dynamics is the second strongest as among the factors considered, including changes in annual 

mean air temperature (R2=0.50, P=0.0001) and annual total precipitation (R2=0.30, P=0.0049) 
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and gross domestic production (R2= 0.25, P=0.0102). The negative statistical relationship 

between the rate of increase in total migration and the change in vegetation abundance is 

stronger (R2=0.56, P=0.0000) after controlling for the effects of changes in temperature and 

precipitation. In-migration dominates the impacts of migration on vegetation dynamics.  

Therefore, it is important for policy makers in China to take the impacts of migration on 

vegetation growth into account while making policies aiming at sustainable human-

environment relations. 

 

Keywords: Rural-to-Urban Migration, NDVI, Human-Environment Interactions, China 

 

 

1. Introduction 
 
Since the adoption of the policy of economic reform in China in late 1970s, a large amount of 

concealed surplus labor force in the old communal system in the rural area was released (Zhao, 1999; Lu 

et al, 2005). Given the government relaxation in limiting rural to urban migration and the increasing 

income gaps between the cities and rural areas, millions of people from the rural areas migrate to the cities 

to seek better economic fortunes every year. The total migration, including intra-, in- and out-provincial 

migration, from 1982~1987 to 1995~2000 increased from 36 million/year to 165 million/year (Li, 1994; 

Fan, 2005a). The scale and number of human migration in China is unprecedented (Zhao, 1999; Liang, 

2001). The vast resource of cheap migrant labor helps sustain the competitiveness of labor intensive goods 

manufactured in China. Current literature on migration in China primarily focused on why and how 

migrants move from place to place, and the consequences of their welfare (Zhao, 1999; Liang, 2001; 

Liang and Ma, 2004; Fan, 2005a). Little is known about its environmental effects. Migration has two 

potential contrasting impacts on vegetation. On the one hand, the enormous exodus of people from rural 

areas allows regrowth of vegetation and reduces deforestation; on the other hand, huge rural-to-urban 

migration provided an almost unlimited labor force for construction and the expansion of manufacturing 

industry, causing rapid urban sprawl and loss of vegetation (Heilig, 1997). Urban area in China increased 

25 percent from 1990 to 2000 based on satellite observations (Liu et al., 2005). In the southern coastal 

regions, the expansion of urban areas can be as much as 30 percent per year (Ji, et al., 2001). China lost 

approximately 500,000 ha/year of agricultural land to development in the 1990s (Smil, 1999). However, 

several other recent studies found increased vegetation activity in China (Fang et al., 1999; Xiao and 

Moody, 2004). The purpose of this study is to understand the environmental impacts of the large scale 

rural-to-urban migration, which has profound implications on the already fragile human-environment 

connections in China. Rural-to-urban migration is an international phenomenon, particularly in the 

developing countries, such as Viet Nam (Dang et al., 1997) and Brazil (Perz, 2003). Understanding the 

impacts of migration on the environment in China has global implications.  

 

2. Data and Methods 
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Our analysis is based on two sets of data: migration data from census and a vegetation index from 

remote sensing. We used China migration data at the provincial scale published in the literature for 1982-

1987 (1 percent national sample survey), 1985-1990 (4th national census), and 1995-2000 (5th national 

census), as shown in Table 1 (Li, 1994; Fan, 2005; China Data Center, 2006).  For convenience, we will  

 

Table 1. The number of migrants, including intra-, in- and out-provincial migration 

during 1982~1987 (τ1), 1985~1990 (τ2) and 1995~2000 (τ3) (Unit: 103 persons). The 

three municipal cities (Beijing, Shanghai, and Tianjing) are not included in the analysis 

as the process of Land-Cover/Land-Use Change for these cities are very different from 

other provinces and autonomous regions. We do not have data for Taiwan, Hongkong, 

Macao, and Xizang. We merged the data from Hainan with Guangdong, and Chongqing 

with Sichuan for data consistency.  

   τ1    τ2    τ3  

Province Intra Out In  Intra Out In  Intra Out In 

Hebei 942 371 594  819 653 524  3,951 872 769 

Shanxi 800 185 168  632 220 310  3,053 333 382 

Neimenggu 572 207 167  582 305 257  3,280 441 325 

Liaoning 975 231 314  884 296 541  5,437 380 754 

Jilin 918 238 168  605 351 234  2,641 529 254 

Heilongjiang 877 449 192  1,063 613 368  3,382 940 301 

Jiangsu 1,352 324 476  1,198 629 799  6,563 1,240 1,907 

Zhejiang 795 239 124  818 648 343  4,910 968 2,714 

Anhui 856 248 164  877 538 340  3,328 2,892 313 

Fujian 469 112 92  732 240 255  3,766 624 1,346 

Jiangxi 541 149 102  743 297 229  3,112 2,680 235 

Shandong 1,507 339 544  1,188 531 607  6,435 878 903 

Henan 921 326 269  1,254 597 484  4,724 2,306 468 

Hubei 1,633 225 276  1,099 348 435  5,095 2,209 605 

Hunan 1,226 376 220  1,308 532 275  4,047 3,260 362 

Guangdong 2,024 140 268  2,800 357 1,401  10,835 568 11,718 

Guangxi 675 213 60  891 590 144  2,806 1,838 287 

Sichuan 3,294 471 366  2,368 1,330 443  8,351 5,091 660 

Guizhou 556 123 117  467 317 193  2,007 1,231 261 

Yunnan 647 184 95  739 280 250  2,707 397 731 

Shaanxi 784 284 222  713 365 312  1,939 716 420 

Gansu 406 189 93  453 282 198  1,330 555 203 

Qinghai 63 103 29  152 102 115  3,98 120 76 

Ningxia 92 51 92  123 57 92  481 87 129 

Xinjiang 354 238 200  364 280 344  1,419 216 1,142 
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refer the three time intervals as τ1, τ2, and τ3, respectively. The environmental settings for the three 

municipal cities, Beijing, Shanghai and Tianjin, are significantly different from other provinces or 

autonomous regions. We excluded these cities in the analysis. In addition, Taiwan, Macau, Hongkong, and 

Xizang were not included in the analysis due to lack of data in the literature. It is well known that the 

definition of migration is not consistent during the three periods. A migrant before and during the 4th 

census was defined as one who left his/her hukou (household registration) location for more than one year. 

The temporal criterion was revised from one year to six months in the 5th census. It is difficult to assess 

the effect of the change in the definition on the total migration assessment (Fan, 2005b). However, it is 

reasonable to assume that the difference in the definition of migration causes systematic errors which 

would not significantly alter the results of subsequent statistical analysis. There are three types of 

migration with regard to its direction and distance: intra-, in-, and out-provincial migration. Due to the 

differences in the areas and population among the provinces, the total migration do not compare well. We 

normalized the increase in migration to become the rate of increase in migration for better comparison 

among provinces as in the following: 

j

i
ij M

MM
M j−

=∆ ,      (1) 

where ∆M ij (j<i) is the rate of change in migration from τj to τi, and  Mi and Mj is the number of migrants 

in a province at time τi and j.  ∆M ij is calculated for intra-, in-, out-migration and total migration, 

respectively.  

The abundance of vegetation is quantified by the Normalized Difference Vegetation Index (NDVI), 

which is a standard measure of the abundance of active green vegetation with satellite observations. NDVI 

varies within [-1, 1] with a higher NDVI indicating more abundance of green vegetation. It is calculated 

based on the reflectance measured in the red and near-infrared spectra as 

REDNIR

REDNIR

ρρ

ρρ
NDVI

+
−

= ,      (2) 

where ρNIR and ρRED are reflectance in the near-infrared and red bands, respectively. 

The remotely sensed data used in this study is the continuous measurements of time series NDVI from 

the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA-series satellites from 

1982 to 2000 with a spatial resolution of 8×8 km (Tucker, et al., 2005). AVHRR provides daily NDVI 

measurements for the entire globe. However, NDVI can be contaminated by the aerosols and the clouds in 

the atmosphere. The dataset used in this study is a 15-day composite NDVI, which takes the maximum 

NDVI from the 15 daily values for each pixel to minimize the contamination from the atmosphere. 

Therefore, there are twenty four AVHRR NDVI images for China each year. We use the annual total 

NDVI (ATN) as indicator for vegetation abundance in this study. Due to the fact that each census or 1 

percent sample survey spanned six years, we took the mean ATN (MATN) during the same six years as 

the measure of vegetation amount so that the measurement of vegetation abundance corresponds to the 

same period of time over which the migration data were collected.  NDVI for water pixels was set to -1. 

Pixels that remain water for the entire year is excluded from the analysis, i.e. pixels with ATN being -24 
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were not used because their NDVI is not influenced by migration.  After the 15-day composite, some 

pixels remain contaminated by clouds. These pixels were flagged in the NDVI dataset. Single missing 

value due to cloud contamination was filled with the average of the two NDVI values from the same pixel 

that were immediately before and after the missing one in time. If there were two missing values next to 

each other in time, we replaced the first missing value with the NDVI that is immediately before and the 

second one with that immediate after the missing value. If a pixel had three or more missing values within 

a year, the NDVI of the pixel for that year was considered missing, and MATN was calculated with the 

remaining data points during the 6 years.  We did not perform any spatial interpolation to fill missing 

values as the process might change the spatial pattern of vegetation, which is critical to our analysis. We 

then converted the MATN to a point coverage using ArcGIS version 9.1 using the longitude and latitude 

at the center of the pixel as the coordinates for the points.  The point coverages were overlayed on the 

1982 provincial polygons. For the convenience of comparison through time, we merged Hainan province 

with Guangdong and Chongqiang municipal city with Sichuan province as they were separated out from 

the corresponding provinces in 1988 and 1997, respectively. Otherwise, the data from these provinces 

could not be compared through time. We did a point in polygon analysis and calculated the average of 

MATN (AMATN) for all points within a province for each census period. Unlike migration, changes in 

NDVI are comparable among provinces without normalization. We evaluated the change in vegetation 

abundance in each province as in the following: 

 
,AMATNAMATNV iij j−=∆      (3) 

 

where ∆V ij (j<i)  is the change in vegetation abundance from τj to τi, and AMATNi and AMATNj are the 

provincial Average of the Mean Annual Total NDVI during τi and  τj, respectively. ∆V31 is the change in 

AMATN from τ1 to τ3 as shown in Figure 1.  We did not present results for the analysis from τ1 to τ2 due 

to the overlap and short interval in time.  

Growth of vegetation without human disturbance is primarily determined by temperature and 

precipitation (Lieth, 1972). Due to the trend of global warming, changes in temperature and precipitation 

can also alter vegetation dynamics in China. Therefore, we also analyze the relationship between change 

in temperature and precipitation and the change in vegetation abundance. The annual mean temperature 

and annual total precipitation for each province in China were obtained from the global monthly 

climatology dataset available at Oak Ridge National Laboratory (http://www.daac.ornl.gov). We did not 

normalize the changes in temperature and precipitation as we did for migration as they are comparable 
across the provinces. The change in temperature is calculated as ΔTij=Ti-Tj, where j<i, and Ti and Tj are 

the provincial mean annual temperature during τi and τj, respectively, and the change in precipitation is 

calculated similarly as ∆Pij=Pi-Pj. Due to the fact that climate change is related to human activities (Zhou 

et al., 2004; Kaufmann et al., 2007), we need to remove these effect in the climate data in order to fully 

understand the impacts from human activities. Our data show there is a statistically significant relationship 

between migration and changes in temperature and precipitation.  Therefore, we first regressed ∆Tij and  
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Figure 1. The difference between the average mean annual total NDVI (AMATN) from 

1982~1987 to 1995~2000. To get AMATN, we first calculate the annual total NDVI 

(ATN) for each pixel from the 24 NDVI images, and then we take the mean of the ATN 

(MATN) for all pixels within a province. We took an average for MATN (AMATN) for 

all years within 1982~1987 or 1995~2000. There are a lot of decreases in NDVI in the 

eastern part of China where most of the migrants go. 
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∆Pij with ∆M ij, separately, and obtain the residuals from the regressions, r∆Tij and r∆Pij. These residuals of 

change in temperature and precipitation would not contain the effect from migration. We then did a 

multiple regression of ∆V ij with r∆Tij and r∆Pij, and obtain the residuals, r∆V ij, from which the impacts of 

changes in temperature and precipitation are removed, while the impact from changes in migration 

remains. We finally did a regression between r∆V ij with ∆M ij to evaluate the impact of migration on 

vegetation dynamics controlled for effect of the changes in temperature and precipitation.   

In addition to temperature and precipitation, we also studied the impact of the change in gross primary 

production (GDP) (China Compendium of Statistics, 2005) on vegetation abundance to account for 

possible impact from other sectors of the economy. Similar to migration, change in GDP was normalized 

to become rate of increase in GDP from τj to τi (∆GDPij). 

 

3. Results and Discussions 
 

The three data points, 1982~1987 (τ1), 1985~1990 (τ2), and 1995~2000 (τ3), allow us to examine the 

impacts of migration on vegetation dynamics between three periods. However, the first two data points 

have a two-year overlap, thus results between these two periods were not included here. We analyzed the 

relationships between ∆V ij and ∆M ij for intra-, in-, and out-migration as well as for the total migration 

during [τ1, τ3] and [τ2, τ3].  Regression results are given in Table 2, indicating that all forms of migration 

negatively influences vegetation abundance. The influence of in-migration on vegetation abundance is 

statistically significant for both periods, and dominates the effect of migration. In-migrants are pulled by 

existence of better economic opportunities. Migrant workers often take low-skill labor intensive 

manufacturing jobs in the cities, thus more in-migrants are indicative of industrial expansion, which is 

usually associated with urban sprawl and causes dramatic decrease in NDVI.  Though the influences from 

intra- and out-provincial migration are not statistically significant either for [τ1, τ3] or for [τ2, τ3], the 

negative impacts are increasing. Intra-provincial migration has similar effect on vegetation as in-migration, 

but to a much smaller extend. Net economic gain is the driving factor for rural-to-urban migration. In 

general, there is a high cost associated with migration from one province to another. There must be a 

greater economic return at the destination for in-migrants. A greater vigor of industrial growth is needed 

to attract people from another province than attracting people within the province. Therefore, a greater 

deal of urban expansion is associated with in-migration than intra-provincial migration, leading to stronger 

negative impact on vegetation growth for in-migration compared with intra-provincial migration.  

Contrary to our expectation, out-migration also negatively influences vegetation abundance, though not 

statistically significant. We originally hypothesized that reduction of population in the rural areas allows 

the regrowth of vegetation. However, remittance sending back from out-migrants may expedite land-

cover/land-use change in the rural area, reducing vegetation growth. Based on a recent trip to the rural 

areas in Anhui province, a major out-migration province, the first author of this study observed that a 

large proportion of households with people working away built a new house with the money earned. 

Therefore, the negative effect on vegetation from out-migration outweighs the positive effect at the 

provincial scale.  



Sensors 2008, 8                            
 

5076 

Table 2. Regression analysis between change in NDVI and rate of change in migration 

from 1982~1987 to 1995~2000 and from 1985~1990 to 1995~2000: ∆V ij = b0 + b1∆M ij. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relationship between change in NDVI and rate increase in total migration, 

including intra-, in- and out-migration, from 1982 to 2000 for each province listed in 

Table 1 after controlling the effects from changes in temperature and precipitation. 
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Independent Variable b0 b1 R2 P-value 

1982~1987 - 1995~2000     

Total Migration  0.30211 -0.05801 0.4743 0.0001 

In-Migration 0.14768 -0.01023 0.3589 0.0016 

Out-Migration 0.14499 -0.01045 0.0848 0.1579 

Intra-Migration 0.22401 -0.035241 0.0903 0.1443 

1985~1990 - 1995~2000     

Total Migration 0.15402 -0.07095 0.3370 0.0023 

In-Migration 0.02560 -0.03412 0.4495 0.0002 

Out-Migration -0.00720 -0.00442 0.0067 0.6963 

Intra-Migration 0.02185 -0.01147 0.0114 0.6112 
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The statistical results in Table 2 contain the confounding effects from other factors, particularly 

changes in temperature, precipitation, as well as other economic activities. Therefore, we evaluated the 

percent increase in vegetation abundance with temperature, precipitation and GDP (Table 3). The 

relationship between change in vegetation abundance from τ1 to τ3 (∆V31) is also statistically significant 

with rate of increase in gross domestic production (∆GDP31), but its R2 is lower compared to changes in 

temperature and precipitation as well as the rate of increase in migration.  GDP reflects the economic 

activities in all sectors of the economy, many of which are not directly influenced by rural-to-urban 

migration though migrant related manufacture is a significant component of GDP in China. Therefore, 

GDP should be significantly related to decrease in vegetation, but to a less degree compared to migration. 

Figure 2 shows the negative relationship between the rate of increase in total migration from τ1 to τ3 and 

change in AMATN during the same period for each province as listed in Table 1 after controlling the 

effects from changes in temperature and precipitation. The relationship is stronger compared to that in 

Table 2, indicating climate change obscured the impacts of migration on vegetation dynamics.  

 

Figure 3. Relationship between changes in temperature and precipitation from 

1982~1987 to 1995~2000. The negative relationship explains the opposite relationship 

of changes in temperature and precipitation with vegetation abundance in Table 3.  
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Both changes in temperature and precipitation significantly influence change in vegetation abundance. 

Increase in temperature increases vegetation abundance. This agrees with satellite observations in other 

parts of the world as a result of global warming (Myneni et al., 1997; Zhou et al., 2003). However, the 

change in vegetation abundance is negatively correlated with changes in precipitation. Further analysis 

found that the change in precipitation is negatively correlated with change in temperature in China from τ1 
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to τ3 (Figure 2). The R2 between ∆Tij and ∆V ij is much higher than that between ∆Pij  and ∆V ij in Table 3, 

thus temperature dominated the effect of climate change on vegetation dynamics during this time in China.  

 

Table 3. Regression analysis between change in NDVI,  rate of change in gross 

domestic production (GDP), changes in mean annual temperature and  total annual 

precipitation from 1982~1987 to 1995~2000: ∆V31=b0+b1X, where X is ∆GDP31, ∆T31, 

∆P31 and ∆M31
* , respectively. Here ∆M31*  indicates the effect of changes in temperature 

and precipitation on ∆V31 is removed before it is regressed with ∆M31. 

 

X b0 b1 R2 P-value 

 ∆GDP31 0.38024 -0.03307 0.2542 0.0102 

∆T31 0.11244 0.10218 0.4992 0.0001 

∆P31 0.13597 -0.00169 0.2962 0.0049 

∆M31* 0.197511 -0.05706 0.5572 0.0000 

 

Though the negative relationship is statistically significant and strong between the change in vegetation 

abundance and the rate of increase in migration in Figure 2,  the overall NDVI in China increased during 

1982~2000 (Fang et al., 2004). Figure 2 does not contradict the finding as the change in vegetation 

abundance for most of the provinces are positive. Despite the rapid urbanization and many other 

environmental problems created by the fast economic growth (Liu et al., 2005), a positive feedback from 

the economic growth is the increased investment in environmental projects (Nei, 2005), which would not 

be affordable otherwise. As a result, China’s forest cover increased dramatically from 12.0 percent in 

1982 percent to 18.2 percent in 2003 (Zhang and Song, 2006). China returned over 24 million hectares of 

low productivity agricultural land to forest since 1999, increasing forest cover by 2 percentage points 

(People’s Daily, August 26, 2007). Given that there are many other factors that may influence vegetation 

growth in China, it is impressive that total migration alone explained 55 percent of the variation in the 

change in NDVI at provincial scale after controlling for temperature and precipitation effects. Therefore, 

migration should be an important factor in making environmental policies, such as those aiming at carbon 

sequestration via increased vegetation growth.   

 
4. Conclusions 
 

There are statistically significant empirical evidences that large scale internal migration in China from 

1982 to 2000 negatively influences vegetation growth in China based on satellite observations of 

vegetation abundance and migration data at the provincial scale. The statistical relationship is stronger 

after controlling for the effect of changes in annual mean air temperature and annual total precipitation. 

All three forms of migration, in-, intra- and out-provincial migration have negative impacts on vegetation 

growth. In-provincial migration dominates the impacts. Though neither intra- nor out-provincial migration 

has a statistically significant impact on vegetation dynamics, their influences are increasing with time. It is 
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important for policy makers in China to take the impacts of migration on vegetation growth into account 

while making policies aiming at sustainable human-environment relations.  
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