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Abstract: This paper presents the synthesis, the structural determination and the sensing 

capabilities toward Volatile Organic Compounds (VOCs) of a new class of fluorescent 

indolizine-cyclodextrin sensors. Two different pathways, both involving bipyridinium 

ylides and 6-amino-β-cyclodextrin, have been used to carry out the synthesis of these 

sensors. The macrocycle structures were dominantly established by 1H-NMR spectra and 

systematically studied by molecular modelling (MM3, AM1, AM1-COSMO methods). The 

sensing capabilities of the sensors were evaluated by emission of fluorescence, during the 

inclusion of the guest (adamantanol or aromatic derivatives) into the cyclodextrin (CD) 

host cavity. The host/guest complex formation was investigated by formation constant 

determinations, using experimental methods, coupled with theoretical calculations of 

formation energies using a specific docking procedure. Both experimental and theoretical 

results suggest that some compounds would make very attractive sensors for VOC 

detection. Some compounds could also be taken into consideration as biological markers.  

Keywords: Indolizine-β-cyclodextrin, sensor, formation constants, docking, sensing 

capabilities, detection, Volatile Organic Compounds 

 

1. Introduction 

Cyclodextrins (CDs) are a family of cyclic oligosaccharides that are composed of α-1,4-linked 

glucopyranose subunits [1-3]. CDs are produced from starch by enzymatic degradation. The most 

common CDs are of three types: α-cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-

CD), referred to as first generation or parent CDs (six, seven and eight glucosyl units, respectively). 
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Among the parent CDs, β-CD is the most accessible, the lowest-priced and generally the most useful 

(see Figure 1) [4]. Chemically modified β-CDs with higher solubility than the first generation are 

commercially available. 

 

Figure 1. Schematic representation of β-cyclodextrin. 

 

 

 
 

 

CDs present a doughnut-like annular structure with wide and narrow hydrophilic tops delineated by 

O(2)H and O(3)H secondary and O(6)H primary hydroxyl groups respectively, and by a hydrophobic 

annular core lined with H(3), H(5) and H(6) hydrogen atoms and O(4) ether oxygen atoms. Generally, 

CDs can form host-guest complexes with a large variety of solid, liquid and gaseous organic 

compounds by a molecular inclusion phenomenon. This inner inclusion exerts a profound effect on the 

physicochemical properties of the guest molecules as they are temporarily locked or caged within the 

host cavity, giving rise to benefic modifications on the guest molecule properties (solubility, reactivity, 

volatility) [5]. That is why the native CD modifications are effective templates for generating wide 

ranges of molecular hosts [6]. 

Therefore, CDs are employed as carriers for biologically active substances [7], enzyme models [8], 

separating agents [9], catalysts [10], mass transfer promoters [11], additives in perfumes, cosmetics, 

aliments or food [12], environmental protection agents [13], or sensors for organic molecules [14]. 

CDs are essentially inert to photochemical excitation but their chemical modification with 

chromophoric moities may associate spectroscopic properties to the inclusion of guest molecule [15]. 

Therefore, they could be considered as biological markers or sensors for the detection of volatile 

organic compounds (VOCs). 

This paper presents, in a synthetic way, our experimental and theoretical studies and results on a 

new class of fluorescent sensors, based on β-CD fragment bonded to some indolizine units conceived 

in our laboratory. 
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2. Results and Discussion  

2.1. Synthesis and conformational study of the indolizine-β-cyclodextrin derivatives 

 

The attachment of fluorophores to natural or synthetic receptors has received increased interest over 

last years in endeavours to furnish new fluorescent sensors. In particular, fluorescent CDs generated 

considerable interest among the synthetic community as witnessed some articles dealing on sensoring 

properties [16]. Alternatively, indolizine derivatives are relevant as biologically active products and are 

well known for exhibiting a variety of pharmacological effects, including cardiovascular, anti-

inflammatory and antioxidant properties [17]. Besides, some indolizine compounds are also 

distinguished for their fluorescence properties. Some of them have already been used as dyes and 

biological markers [18]. That is the reason why we were gradually interested on the synthesis of new 

fluorescent sensors incorporating a fluorescent indolizine unit on the 6-amino-β-cyclodextrin fragment 

[19-21].  

The literature data offer several methods for the indolizine synthesis. Among them, the 

cycloaddition reactions involving cycloimmonium ylides and 1,3-dipolarophiles containing double or 

triple bonds were revealed as a highly effective and powerful strategy to build this heterocyclic scaffold 

[22]. Two different synthetic ways were employed (Scheme 1). 

Briefly, the salt method [23] was applied to obtain the bipyridinium ylides 4. The commercially 

available 1,4-bipyridine 1 is quaternized with active brominated organic derivatives 2, forming the 

bipyridinium monosalts 3 with high yields. These salts form “in situ” in presence of triethylamine 

(TEA) the monosubstituted carbanion ylides 4. These undergo a 1,3-dipolar cycloaddition reaction with 

4-nitrophenylpropinoate 5, to furnish primary dihydroindolizine cycloadducts 6, which spontaneously 

provide the indolizine compounds 7 in good yields after a dehydrogenation reaction. However, the 

presence of the leaving group (4-NO2-Ph-O-) used for the first time in our experiments does not affects 

the yield compared to other dipolarophiles usually in use [24]. 

The mono-6-amino-6-deoxy-β-CD 8 was synthesized via a three steps pathway involving (i) a 

regioselective tosylation into the β-CD primary face, (ii) a substitution of the tosyl leaving group with 

NaN3 and (iii) azido group reduction using the Staudinger procedure [25]. Afterward, the mono-6-

amino-6-deoxy-β-cyclodextrin 8 react with the indolizine derivatives 7 in homogenous conditions: 

dimethylformamide (DMF) or N-methylpyrrolidone (NMP), 50-60 °C, argon atmosphere, light absence 

during 18-24 hours, in order to provide the crude fluorescent β-CD sensors 9. 

In parallel, the identical sensors 9 were obtained by a 1,3-dipolar cycloaddition reaction connecting 

bipyridinium ylides 4 and propynamido-β-cyclodextrin 10 [26]. The primary cycloadducts 11 

subsequently eliminates dihydrogen to furnish crude fluorescent indolizine-β-CD 9. These reactions 

must be carried out without light, in order to prevent the cleavage of the ylide C+-N- bond [27].  

By both synthetic routes a and b (Scheme 1) the crude product 9 was isolated by precipitation from 

acetone and then successively purified using Sephadex CM-25 and G-15 chromatography. By 

comparing the yields for the eleven obtained derivatives, both synthetic ways a and b could be 

performed in accordance with the nature of the desired sensor. Systematically, the way a is 

recommended for the sensor 9 due to a better yield in all cases. Indeed, the leaving group p-NO2-Ph-O- 
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is included in the macrocycle cavity inducing a favourable position for the coupling of the 

pyridinoindolizinic part. The synthetic yields of the compounds are between 25 and 35%. 

Scheme 1. Synthesis of indolizine-β-cyclodextrin sensors. 
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Some other bis-CD sensors appear also in literature [28]. Thus, we have synthetised the 1,3-[bis-N-

6A-deoxy-β-cyclodextrin-6A-yl-aminocarbonyl]-7-pyridin-4-yl indolizine (Scheme 2) as a part of our 

outgoing research program to develop a new range of fluorescent β-CD sensors [29]. 

Scheme 2. Synthetic pathway for the dimeric β-cyclodextrin sensor 16. 
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To our knowledge, it is the first sensor containing in its structure two CD fragments linked to a 

fluorescent indolizine group. 

Among these fluorescent molecular sensors, the compound 9a was classified as a new pH-driven 

molecular switch [30] with a pKa value of 5.01. Indeed, it was shown that the decrease of pH into 

acidic domain leads to a drastic quenching of the fluorescence emission (figure 2) with a bathochromic 

displacement of the maximum emission.  

Figure 2. Reversible pH-dependence of the emission spectra of 9a (0.0008mM, λexc.= 

366 nm) in H2O at 25 °C. 
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To elucidate this phenomenom, we have carried out a 2D ROESY NMR experiments. It was clearly 

observed that spectrum recorded at neutral pH displays strong dipolar interactions between the protons 

localized inside the β-CD core and the aromatic protons of fluorophore. These through space 

interactions disappeared at acidic pH and reappeared following addition of alkaline deuterium solution. 

Thus these correlations clearly display the inside-outside molecular motion of fluorescent moiety, 

controlled by the protonation of free pyridyl nitrogen, inducing an extinction of fluorescence emission 

under acidic condition by exclusion of hydrophobic fluorescent moiety toward a bulk water 

environment (scheme 3). 

Scheme 3. Structures of pyridin-4-yl indolizine β-cyclodextrin 9a at pH 3 and pH 7. 

 

 
 

 

 

All fluorescent β-CDs depicted in Scheme 1 and 2 have been characterized as sensors for some 

VOCs. Our strategy concerning the inclusion of VOCs on fluorescent indolizine sensors 9 and 16 was 

conducted in three steps: (i) the determination of the experimental formation constants of the 

sensor/VOC complexes using UV-Visible spectroscopy by either a direct titration or a spectral 

displacement method, (ii) the determination of sensor sensitivity towards 1-adamantanol and some 

representative aromatic VOCs and (iii) the calculation of the computed complexation energy by a 

specific molecular docking protocol [31]. 

2.2. Determination of the formation constant  

Since the fluorescence sensitivity is depending on the fraction of the complexed sensor, we have 

first determined the inclusion ability of each sensor towards three guests: 1-adamantanol, because of its 

ability to bind strongly to β-CD, phenol and p-cresol, semi-volatile compounds which may be 

considered as the water soluble models for benzene and toluene VOCs. The determination of the 

formation constants has been realised by means of a spectrophotometric spectral displacement with 

methyl orange (MO) [32]. 

The complexation of MO by the CD cavity leads to a decrease of the absorbance, as a consequence 

of the encapsulation of the diazo part of the dye. Then, the addition of any guest implies a partial 

dissociation of the CD/MO complex, which results in an increase of the absorbance since a greater part 

of the MO is in free form. Such an increase is depending on the inclusion compound stability and on 

the guest total concentration. In addition, it has to be mentioned that the MO concentration and the 

observed wavelength range have been optimised to give the greatest variations upon inclusion with the 

pH=7 pH=3 
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various guests. Such variations then allow a precise determination of the formation constants, by means 

of a dedicated algorithmic treatment [33].  

An example of spectral variations is shown in Figure 3, in the case of sensor 9j, which has been 

found as our most fluorescent sensitive modified cyclodextrin. The resulting formation constants are 

summarised in Table 1. 

 

Figure 3. Absorption spectra (25 °C) for solutions containing (a) methyl orange 0.1mM, 

(b) methyl orange 0.1mM and Sensor 9j 0.1mM, (c) methyl orange 0.1mM, Sensor 9j 
0.1mM and benzene 4.35mM, (d) methyl orange 0.1mM, Sensor 0.1mM 9j and toluene 

6.95mM, (e) methyl orange 0.1mM, Sensor 9j 0.1mM and phenol 13mM and (f) methyl 

orange 0.1mM, Sensor 9j 0.1mM and p-cresol 4.8mM. 
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Table 1. Formation constants (M-1) of the inclusion compounds formed between the 

sensors and various guests at 25 °C. Uncertainties are equal to ±10%. 

 

 β-CD Sensor 9c Sensor 9j Sensor 9k 

Benzene 82 55 53 46 

Toluene 102 60 55 61 

Phenol 115 122 85 110 

p-Cresol 195 194 215 202 

1-Adamantanol 34100 33800 33400 32100 

 

First of all, if one compares the genuine β-CD to the sensors, it seems that the inclusion compounds 

stabilities are very similar, leading to think that few steric interactions occurs between the various 

guests and the indolizine moiety of the sensor. This is in agreement with the so-called open cavity 
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structures of the sensors, since the guest encapsulation does not imply any expulsion of the fluorescent 

moiety. In addition, and as could be expected from the β-CD inclusion ability, there is a strong 

difference of recognition between the aromatic guests and 1-adamantanol. While the stabilities are 

closed for phenol and p-cresol, 1-adamantanol leads to a significantly greater value of formation 

constant. Indeed, the 3-dimensional geometry of 1-adamantanol, if compared to the planar phenol and 

p-cresol, should lead to a greater filling of the internal cavity, thus increasing the Van der Waals 

stabilisation of the inclusion compound.  

2.3. Determination of the sensing factors 

1-Adamantanol was chosen as guest to determine the sensing activity of the fluorescent sensors 9 

and 16 for its ability to bind strongly into the inner cavity of β-CD and also for its non-fluorescent 

nature, which will not interfere with subsequent fluorescence measurements. An example of the 

fluorescence spectra obtained for sensor 9j is given in figure 4. 

 

Figure 4. Fluorescence spectra of (a) the sensor 9j in aqueous solution (0.08mM, 25 

°C), at various concentrations of 1-adamantanol (b) 0.002mM, (c) 0.008mM, (d) 

0.0125mM, (e) 0.02mM, (f) 0.05mM, (g) 0.08mM and (h) 0.2mM. 
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The sensitivity factor ∆I/I0 was used to quantify the sensing abilities, where ∆I is I-I0, with I and I0 

the emission intensities in the presence and absence of guest, respectively [34]. The obtained ∆I/Io 

values for the eleven sensors are summarized in Table 2. 
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Table 2. Sensitivity factors ∆I/Io towards 1-adamantanol, calculated for the maximum 

of emission of each sensor at pH 7 and [1-adamantanol]= 10*[sensor]. 

 

Sensor 9a 9b 9c 9d 9e 9f 
∆I/Io + 0.024 + 0.110 + 0.110 - 0.220 - 0.449 - 0.306 

Sensor 9g 9h 9j 9k 16  
∆I/Io - 0.094 - 0.321 - 0.530 - 0.060 0.140  

 

Generally, the fluorescence spectrum of sensors 9 and 16 alone exhibit their fluorescent peak in the 

range of λmax of 438-470nm, the excitation wavelength being between 274 and 370nm. By studying the 

quantitative data shown in Table 2 we find that two opposite behaviours of these indolizine sensors 

could be observed during the inclusion of the guest. The positive values of the sensing factors show an 

increasing of the emission intensity during the inclusion of 1-adamantanol in their inner cavity. In 

contrast, the negative values of the same factor suggest an emission intensity decrease during the 

inclusion. Nevertheless, the fluorescent indolizine sensors with little values of sensing factors could be 

considered as possible markers. The results obtained with these fluorescent indolizine sensors are 

comparable with those described in the literature for various fluorescent sensors containing β-CD and 

even greater for sensor 9e and 9j compared to the 6-O-dansyl-β-CD (∆I/I0 = 0,39 for 1-adamantanol) 

[35]. 

We performed the same experiments for two semi-volatile compounds, phenol and p-cresol. The 

results obtained for some of the sensors are presented in Table 3.  

 

Table 3. Sensitivity factors for four different sensors and the semi-volatile guests. 

 
 ∆I/I0 

Sensor Phenol p-Cresol 

9b 

9c 

9d 

9j 

-0.07 

-0.11 

-0.23 

-0.66 

-0.10 

-0.10 

-0.28 

-0.65 

 

As one can see, whatever the increase or decrease of the fluorescence emission intensity during the 

inclusion of 1-adamantanol, each sensor presents a decrease during the inclusion of the aromatic 

guests. Some bathochromic shifts upon inclusion of the guest have also been observed. As example, 

figure 5 depicts the fluorescence spectra of sensor 9c in presence of the three studied guests. 
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Figure 5. Fluorescence spectra of sensor 9c, in aqueous solution (0.0002mM, 25 °C), in 

presence of 1-adamantanol 0.4mM, p-cresol 5mM and phenol 10mM. 
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From these results we find that the most potent sensor in this class of compounds, is the N-6-deoxy-

β-cyclodextrin-6-yl)-1-aminocarbonyl)-3-(4-fluorobenzoyl)-7-pyrridin-4-yl indolizine 9j (see Scheme 

1). So, we determine its sensing abilities for two VOCs, benzene and toluene. The obtained spectra are 

presented in Figure 6 in the case of toluene and the values of the sensitivity factors are given in Table 

4. 

Figure 6. Fluorescence spectra of (a) the sensor 9j in aqueous solution (0.1mM, 25 °C), 

at various concentrations of toluene (b) 2.7mM, (c) 5.4mM, (d) 13.5mM, (e) 18.9mM, 

(f) 27mM. 
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Table 4. Sensitivity factors of sensor 9j towards volatile organic compounds. 

 
Guest Benzene Toluene 

∆I/Io  -0.54 -0.67 

 

The sensitivity factors obtained for the two VOCs are close to those of their semi-volatile 

analogous. This result can be explained because the only difference between these compounds is the 

hydroxyl group and validate the use of these compounds as models for our studies. 

2.4. Molecular modelling  

A multiconformational search has been realised on the sensors alone and has been followed by final 

geometry optimizations with two stages: a preliminary minimization with the MM3 method, and then 

an AM1 minimization without imposing any restrictions. Between the two general types of structures 

that could be identified, the open cavity type is more stable than its corresponding conformer with a 

capped cavity. The most stable structure orients the fluorescent moiety in such a way that few 

interactions occur with the CD cavity and that no self inclusion is observed (Figure 7).  

 

Figure 7. Structure of the most stable conformers of sensors 9c and 9d. 

 

 

9c 

 

9d 

It should be emphasised that the various dihedrals linking the CD to the fluorescent adduct are only 

constrained by the CD steric influence, so that the dynamical behaviour of such sensor should lead to 

the coexistence of many open conformations. The conformations thus only represent an instantaneous 

picture of the modified β-CD, but may show in what extent the sensors are able to make inclusion 

compounds with organic guests.  

Within this scope, we evaluated the energy gain upon association of the guest molecules (benzene, 

toluene, phenol and p-cresol) with the sensor 9j, taking into account the 1:1 host-guest complex. In 

other words, we calculated the stabilization energy ∆E due to the inclusion of guest in the inner cavity 

of the sensor. The corresponding values and conformations are presented in Table 5 and Figure 8 

respectively. 
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Table 5. Computed energy of complexation, ∆E (kcal/mol). 

 
Guest Benzene Toluene Phenol p-Cresol 

∆E (kcal/mol) -7.2 -8.9 -11.4 -12.7 

 

As the fluorescent moiety is kept outside of the cavity, there is no steric hindrance during the 

docking for any guest. This result explains that the formation constants observed for the sensors were 

closed to those of the genuine β-CD, the fluorescent adduct having little influence on the 

complexation. Moreover, since Van der Waals interactions are known to be the dominant part of the 

energetic stabilisation, the inclusion of toluene is predicted to be more stabilised than benzene, while 

cresol is better recognised than phenol. Both hydroxylated compounds also present more negative ∆E 

than their corresponding apolar species. Such results are in agreement with the experimental values, as 

the same order of stability is obtained. Since the four guests present similar structure, the entropic 

component of the complexation is likely to be proportional to the enthalpic part, in accordance with the 

enthalpy/entropy compensation. Thus, it is not surprising that the calculated enthalpic variation ∆E 

may be qualitatively correlated to the formation constants. 

Figure 8. Representation of the top view of the conformation of host-guest complexes 

(a) benzene, (b) toluene, (c) phenol and (d) p-cresol with sensor 9j. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Sensor 16 was built like the other sensors from structural database, using the Cache library. The 

most stable structure was optimized after a multiconformational search based on MM3 force field, with 

the AM1 Hamiltonian in gaseous state and also in water. The most stable conformation is illustrated in 

Figure 9. 

Figure 9. Predicted structure for the dimeric sensor 16. 

 

 

As can be observed, the bipyridine moiety of the indolizine fragment covers up the primary face of 

one of the two CDs frames. Moreover, the two cavities are directed in such a way that no cooperation 

could occur. Definitely, the inclusion of guest such phenol, p-cresol or 1-adamantanol requires the 

“face to face” conformation of the dimer to allow the simultaneous interactions of the guest with both 

cavities. Such results could explain the relatively poor efficiency observed in fluorescence detection: 

the sensing inclusion coefficients of phenol and p-cresol with sensor 16 are equal to -0.05 and -0.09 

respectively. 

We developed a new class of sensor for VOCs, by coupling the β-CD cavity with fluorescent 

indolizines. The sensing ability obtained for the most efficient of our compounds is among the highest 

observed in the CD field. As a consequence, we envisage immobilizing these CD sensors on solid 

support, in order to incorporate these compounds in portable badges for the detection of VOCs. In 

addition, some of our fluorescent CDs does not show such sensing ability and may thus be used as 

biological markers, since they maintain their inclusion ability. 

3. Experimental Section 

3.1 Chemicals 

Benzene, toluene, phenol, p-cresol, 1-adamantanol, methyl orange, sodium hydroxide and potassium 

dihydrogenophosphate (Aldrich) were all of analytical reagent grade and were used as received. 

Deionised water was used throughout this work.  

 

 

 



Sensors 2008, 8                            

 

 

3702

3.2. Fluorescence measurements 

The measurements were carried out with a Perkin Elmer LS-50B fluorimeter at 25 °C and a quartz 

cell with an excitation angle of 90°. Excitation and emission slits were 4 nm. The absorbances of the 

studied guests are negligible at the excitation wavelengths used. The molar concentrations of the sensor 

in water range from 0.01mM to 0.00025mM. The emission spectra were recorded from 300 nm to 700 

nm with a scan rate fixed to 120 nm/min. The control of temperature is realised by the use of a 

thermostated bath linked to the cell holder (accuracy: ± 0.1 °C).  

3.3. Visible Spectra 

Spectra were recorded using a Perkin Elmer Lambda 2S double beam spectrometer and a quartz cell 

with optical path length of 1.00 cm at 25 °C. All compounds were dissolved in phosphate buffer at pH 

5.8. The control of temperature is realised by the use of a thermostated bath linked to the cell holder 

(accuracy: ± 0.1 °C). The stability of the complexes formed between MO and the hosts (sensors and β-

CD) is first obtained by the use of the direct titration method; then, the complexing ability of the hosts 

is evaluated towards benzene, toluene, phenol, p-cresol and 1-adamantanol by means of a spectral 

displacement method with MO. Dedicated algorithmic treatments were applied to the first derivatives 

of UV spectra in order to avoid any spectral influence of diffraction phenomena [33]. Spectra were 

recorded between 520-530 nm for a MO concentration fixed at 0.1 mM. This wavelength range 

corresponds to the optimal spectral variation between the free and complexed forms of MO. 

3.4. Molecular modelling 

The sensor molecule was built starting from data provided by structural Database System of the 

Cambridge Crystallographic Data Center. The calculations were made using Spartan and Cache 

Libraries [36-37] on a PC computer. In order to obtain the most stable conformers for the sensors 9 and 

16 we use a general procedure based on a MM3 multiconformational search [38]. This search consists 

in studying the ∆E potential energy variation according to the variation of different torsion angles by 

rotational increments of 15°. 

The various torsion angles defining the sensor conformations are described in Figure 10. The 

rotation corresponding to dihedral angles φ7 and φ5 are not directly involved on our positioning of the 

fluorescent fragment in respect to the primary face of the β-CD fragment. The torsions according φ1 

and φ2 present a high proximity with the toroidal cycle of β-CD and consequently a reduced freedom. 

Thus, we may conclude that the two rotations described by φ3 and φ4 are adequate to locate the most 

stable conformations by systematic search. As consequence, only φ3 and φ4 are explicitly varied during 

the conformational search study, while φ1, φ2, φ5, φ6 and φ7 are only energy minimized. Once the 

minimum was obtained by this MM3 search, each conformation is freely minimized according to AM1 

Hamiltonian in gas phase or in aqueous medium (COSMO solvent field).  

 

 

 

 



Sensors 2008, 8                            

 

 

3703

Figure 10. General structure of sensors 9. φ1 to φ7 are the dihedrals controlling the 

sensor conformation. 
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3.5. Inclusion compounds conformation 

The docking of each guest into the β-CD unit has been performed using four dummy atoms [31]. 

Each orientation has been taken in consideration for each guest. Three parameters were varied to 

explore the conformational space of the inclusion compound: the distance between host and guest, the 

orientation of the guest ring inside the host cavity, and its tilt angle. For this purpose, a sequential 

conformational search has been employed with the MM3 force field, with a systematic variation of 

each parameter. The most stables structures obtained by this procedure are then energy minimised 

without any constraint. The difference (∆E, kcal/mol) between the energy of the inclusion complex and 

the sum of their individual components in their optimized ground states was then used as the 

theoretical parameter to evaluate the inclusion ability of sensor 9j. 
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