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Abstract: In this paper we present and develop a new model, which we have called 
Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data 
sources to simulate the dynamics of a land system. Three main modules are incorporated 
in DLS: a spatial regression module, to explore the relationship between land uses and 
influencing factors, a scenario analysis module of the land uses of a region during the 
simulation period and a spatial disaggregation module, to allocate land use changes from 
a regional level to disaggregated grid cells. A case study on Taips County in North China 
is incorporated in this paper to test the functionality of DLS. The simulation results under 
the baseline, economic priority and environmental scenarios help to understand the land 
system dynamics and project near future land-use trajectories of a region, in order to 
focus management decisions on land uses and land use planning. 
 
Keywords: Land use, land use change, dynamics of land systems, simulation, scenario 
analysis 
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1. Introduction  
 

The dynamics of a land system is a comprehensive process which operates over a range of scales in 
space and time and is driven by more than one variable that can influence the actions of the agents of 
land uses [1-4]. It is of great importance to simulate the dynamics of land systems, which can greatly 
benefit decisions making about land management and land use planning. A number of previous 
investigations have focused specifically on this field [2, 5-8]. Most of the models created for land 
project change uses can be categorized into three types: semi-empirical models, cellular automata 
models and agent-based models [9-12]. Semi-empirical models use statistical techniques to derive the 
mathematical relationships between variables, identifying land use changes and sets of explanatory 
variables of land use changes [9, 13]. The consideration of co-linearity between the explanatory 
variables, however, is always ignored in semi-empirical models. Cellular automata models consist of 
an environment in which the interactions occur among individuals, which are defined by behavioural 
rules and characteristics of grid cells of land uses. However, the impacts from time variant variables on 
the land uses changes are sometime overlooked in the simulation process [14]. In agent-based 
modeling, land use changes are regarded depending on characteristics of a region that are of socio-
economic and biophysical origin and are affected by the behaviors of the land stakeholders and their 
decisions. The reduction of the complexity inherent in land systems to more simple relationships in 
agent-based modelling would lead to large bias contained in the simulation results [10]. In addition, an 
agent-based model requires programming in an object-orientated language such as Java. That is, it 
requires a level of computing skill beyond simple spreadsheet programming and by now some agent-
based software frameworks have been developed to ease the task of the social scientist or business 
analyst in building agent-based models.  

In this paper we present a new model, called Dynamics of Land System (DLS), which is capable of 
solving the problems of the currently available methods, and of integrating multiple data sources to 
simulate the dynamics of land systems. There are two special features in DLS. One is that it reaches a 
balance by incorporating a dual-level strategy: a scenario analysis of land demand at a regional level 
and a spatial desegregation of land uses at a detailed pixel level. The other is shown as the 
consideration of the interactions between influencing factors on land uses and the interactions between 
neighbour pixels for these influencing factors.  

Given the complexity of land systems, which is determined and represented by the interactions 
between land and land users, DLS, at the very top level, integrates five dimensions of influencing 
factors – variability of geophysical conditions, environmental changes, trade environment changes, 
institutional changes and policies closely related with land management (Figure 1). At the bottom level, 
parameters identifying the technical changes, lifestyle changes, economic growth, population growth 
and urbanization are also incorporated in the model framework of DLS. Besides, scenarios of land use 
changes are developed and the changes of land uses are spatially disaggregated into each grid cell in 
accordance with the estimated relationships between land uses and their influencing factors. DLS is 
implemented as a user friendly software tool which provides users with options to define land use 
change scenarios and format the input parameters and edit the regression results between land uses and 
their influencing factors by including a shell with menu bars, view windows, etc. (Figure 1)         
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Figure 1. Modeling framework of DLS. 
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The key modules of DLS are described in Section 2. DLS is then used in Section 3 to perform a 
case study on the Taips County in Inner Mongolia in northern China as a demonstration of the 
functions of DLS. The results are analyzed in Section 4 and conclusions based on the case study are 
given in Section 5. 
 
2. Methodology 
 

There are three main modules in DLS: a spatial regression module to identify the relationships 
between land uses and their influencing factors; a scenario analysis module of land use changes as 
required by the demands of land uses at the regional level and a spatial disaggregation module to 
allocate land use changes from a regional level to the disaggregated grid cells.  
 
2.1 Assumptions 
 

To simulate the dynamics of land systems three assumptions are required in DLS. These 
assumptions include: (1) each patch of land is theoretically convertible [15]; (2) the land use changes 
occur only under agricultural production supply conditions, or in other words, certain kinds of land 
uses, cannot meet the land demand during a simulation period [5] and (3) the trajectories of land use 
changes are affected only by land uses in the base year, the initial year for the simulation, and the 
changes of the influencing factors during simulation period [16].  
 
2.2 Scenario analyses 

 
The scenario module provides one of the indispensable inputs in DLS. By including the scenario 

analyses of land use changes, DLS can export more than one set of spatially explicit simulation results 
of the land use change dynamics. The scenario module of DLS considers the specific needs for the 
case area. Trend analyses methods, e.g. linear interpolations or more sophisticated econometric models, 
are used to develop the scenarios of land use changes during simulation period. For example, in the 
case study of the Taips County, the trajectories of land use changes in the projection period are derived 
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by an interpolation process based on a reference condition from a field trip/household survey and a 
regional land use planning made by local government.  
 
2.3 Spatial regression analyses 

 
The spatial regression analysis provides the model with regression functions to explore the 

relationship(s) between land uses and their influencing factors. A fitted logistic regression function 
with the spatial lag terms of influencing factors to measure the relationship between the influencing 
factors and land uses can be represented in the logit form. The interactions between factors influencing 
land uses and the interactions between adjacent pixels with some certain kinds of land uses are 
incorporated by including the collinear diagnostics in the spatial lag terms (Equation 1), respectively. 
All the influencing factors and the information on the base year’s land uses are incorporated in the 
regression functions.  
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where X is the vector of factors influencing land uses, and π identifies the occurrence probability of a 
grid cell for the considered land use type j. Wmn is the spatial weight identifying the neighborhood 
between m and n. ρ is the estimated coefficient of spatial lag term of Xj. A unit increase of the 
influencing factors is associated with an increase in the exp(bj) plus exp(ρWmn) components of the 
occurrence probability of the considered land uses. bj is the estimated coefficient of Xj. b0 is the 
residual constant of the equation.  
 
2.4 Conversion rule 
 

The conversion rule in DLS determines which conversions are allowed for a certain kind of land 
use or where, identified by a number of grid cells, conversions of land uses which results in direct land 
use changes could occur. It is a possible value, an indispensable input parameter, which describes the 
temporal behavior of land use types or the status of the grid cells [17]. The setting of the conversion 
rule is done by assigning a value between 0 and 1, where 0 means all changes are allowed and 1 means 
that it is prohibited for the current land use type to be converted into other land uses. This value of 1 is 
given to the land use types, or a number of grid cells, which are difficult to convert, e.g., urban 
settlements (which are not likely be converted back into agriculture). If the demand for a certain land 
use type decreases, the possibility of converting land allocated to other land use types back to this kind 
of land use type will be lowered accordingly. This setting strategy can stabilize the land system. The 
higher the value of a conversion rule is, the more difficult it is for this kind of land use type in a 
number of grid cells to be converted to other uses.   
 
 



Sensors 2008, 8                            
 

 

624

2.5 Spatial disaggregation of land-use changes  
 

Following the strategy on modeling procedures of land use changes developed by Verburg et al. 
[17], we incorporate a module for spatially disaggregating land use changes in DLS. The spatial 
disaggregation module is mainly affected by the settings of conversion rule, the existence probability 
of each kind of land use at each grid cell and demands of each kind of lands at regional level. Land use 
type or location specific conversion rules can be specified by the user of DLS. The conversion rules 
are enforced to give each land use type a certain level of resistance to change. Three different 
situations can be distinguished for each land use type: 

Situation 1: For some land use types it is not likely that they can be converted into another kind of 
land use after their initial conversion. Under such circumstances, unless a decrease in area demand for 
this land use type occurs, the areas covered by this kind of land use are no longer evaluated for 
potential land use changes. In this situation, it also holds that if the demand for this land use type 
decreases, there is no possibility of expansion of this land use type in other areas.  

Situation 2: Those land use types with the small value of 0 for the conversion rule can be converted 
very easily. Cultivated land, for example, is easy to be converted into another land use type if there is 
no strict protection of cultivated land. When this situation is chosen for a land use type, there will be 
no restrictions for this kind of land use type converted into other types. 

Situation 3: There are also a number of land use types that operate between situation 1 and 
situation 2. For example, given the high investment required for their establishment, permanent 
plantations are therefore not likely to be converted soon after they have been converted from another 
land use type [17]. However, in the end, when another kind of land use type becomes more profitable it 
is possible that a conversion will occur. This situation is simulated by defining a relative elasticity for 
change (RE) for the land use type considered ranging between 0 (similar to situation 2) and 1 (similar 
to situation 1). The higher the defined elasticity, the more difficult it can be converted to other land use 
types.  The spatial disaggregation of land use change is achieved in an iterative procedure in according 
to the following steps:  

1.   The initial step is to determine which grid cells are allowed to change. Grid cells that are 
either within a protected area or of one kind of land use type that is not allowed to change 
(situation 1 above) are excluded from further calculation. 

2.   For each grid cell i the total probability (TPi,j) is calculated for land use types j according to 
the following equation:  

TPi,j = REj + ITj + πij                (2)  

where REj  is the relative elasticity for change specified in the conversion rules and is only 
given a value if grid cell i is already under land use type j in the year considered. REj equals 
zero if all changes are allowed. ITj is an iteration variable that is specific to the land use 
type j and a preliminary evaluation is made with an equal value of ITj for all land use types 
by evaluating the land use types with the highest total probability for the considered grid 
cell. πij is the occurrence probability of the land use type j in the grid cell of i, which is 
further determined by the integrated effects from the influencing factors estimated in the 
spatial regression. 
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3.  The total disaggregated area of each land uses is now aggregated and compared to the 
demands of land uses under a certain kind of scenario at the regional level. For land use 
types where the allocated area is smaller than the demanded area the value of the iteration 
variable of land use type j, ITj, is increased. For land use types for which too much is 
allocated, the value is decreased.  

4.  Steps 2 to 3 are repeated as long as the demands of land uses at the regional level are not 
fulfilled. When the aggregated area of land uses meet the demands of each kinds of land use 
the disaggregation procedure will stop and a final disaggregated land use map would be 
saved and exported and then the disaggregation procedure move to the simulation for 
another kind of scenarios.  

 
3. Application of the DLS Model 
 

A case study wss conducted in Taips County to test the functionality and illustrate the procedures 
to integrate the multiple data sources to simulate the dynamics of land systems. Taips County is 
located in in the farm-pasture transitional belts in the central part of Inner Mongolia. Its geographical 
location is from 114°51′ to 115°49′ East Longitude and 41°35′ to 42°10′ North latitude (Figure 2), with 
a total area of 3415 km2. With the population growth and the deterioration of environmental 
conditions, the stress on limited land and water resources is increasing, which further result in the 
dramatic changes of land uses. 

 
Figure 2.  Location of Taips County in North China. 

BeijingXinjiang

Heilongjiang

Qinghai

Inner Mongolia

Shanxi

Gansu

Heibei

Jilin

Liaoning

Ningxia

Mongolia

Russia

Tianjin

Taips

 
 
3.1 Data and processing 
 
3.1.1 Dependent variables 
 

The original land use map of Taips County (Figure 3a) was derived from Landsat Tematic Mapper 
images in 1995 and then land uses were reclassified and expressed in a special representation scheme. 
In the new land use scheme, the land use type is expressed by binary values of 1 or 0 for each grid cell 
of 100 x 100 meters to show the existence/non-existence of that kind of land use. The dependent 
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variables for the spatial regression between land use and influencing factors in Taips County are listed 
in Table 1 and Figure 3b. 

Table 1. Reclassification of land uses. 

Code Land use Description  
0 Cultivated land Original data include both paddy and non-irrigated uplands. 
1 Forestry area Natural or planted forests with canopy covers greater than 30%; land 

covered by trees less than 2 m high, with a canopy cover greater than 40%; 
land covered by trees with canopy cover between 10 to 30% and land used 
for tea-gardens, orchards and nurseries. 

2 Grassland Lands covered by herbaceous plants with coverage greater than 5% and 
land mixed rangeland with the coverage of shrub canopies less than 10%. 

3 Water area Land covered by natural water bodies or land with facilities for irrigation 
and water reservation, including rivers, canals, lakes, permanent glaciers, 
beaches and shorelines, and bottomland. 

4 Built-up area Land used for urban and rural settlements, industry and transportation. 
5 Unused land All other lands. 

 
Figure 3. Land use map of Taips County in 1995, (a) Synthetical representation of land 
uses; (b) Representation of the land uses by binary values of 1 or 0, b0 to b5. 
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3.1.2 Influencing factors of land uses in Taips County  
 

As discussed earlier, the dynamics of a land system are actually influenced by a couple of factors. 
In this case study, the influencing factors can generically be categorized into four kinds: geophysical, 
climatic, proximity and socio-economic variables (see Table 2).  
 

Table 2. Influencing factors of land uses considered in DLS in the case study of Taips County. 

Influencing factors Definitions (units between parentheses) 
Geophysical variables
Terrain 0: Hills 

1: Plain 
2: Mesa 
3: Plateau 

Soil pH value 
pH values of soil. The higher the value is, the lower the acidity of 
the soil. 

Depth of soil Depth of top soil (cm) 
Elevation Digital Elevation Model (m) 
Slope Terrain slope derived from DEM (0.01 degrees) 
Climatic variables 
Air temperature  Mean annual temperature (0.1 °C) 
Cumulated temperature (≥0 
degrees Centigrade) 

Annually cumulated temperature of daily mean air temperature 
above 0 °C (0.1 °C) 

Cumulated temperature 
(≥10 degrees Centigrade) 

Annually cumulated temperature of daily mean air temperature 
above 10 °C (0.1 °C) 

Sun-shining hours Sunshine hours rectifying the spatial variability of solar  radiation 
Proximity variables 
Distance to province capital Geometric distance to nearest province capital 
Distance to the highway Distance to the nearest highway (km) 
Distance to the expressway Distance to the nearest expressway (km) 
Socio-economic variables  
Population density  Interpolated population density (persons/km2) based on the 

Surface Modeling of Population Distribution  [18]. 
GDP Interpolated values of Gross Domestic Product (GDP) (10000 

yuan/km2) based on the spatially explicated analyses on the 
relationship between economic growth level and factors that might 
affect economic growth [19]  

 
1) Geophysical variables 
 

In accordance with the practical circumstances of Taips County and the data requirements of DLS, 
all the terrain conditions are aggregated to four categories, and then a lookup table is made to convert 
terrain types into a new representation scheme, using the binary values of 1/0 to identify the existence 
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or non-existence for some certain kind of terrain conditions in each grid cell. The rest of the 
geophysical variables, soil pH values, depth of soil, elevation and terrain slope are with the continuous 
values for each grid cell to identify the regional difference of the geophysical conditions. 

 
2) Climatic variables 
 

All the climatic variables are generated from the site-based observations from the China 
Meteorological Administration. The spline interpolation algorithm is employed to make the surface 
data of climatic variables acquired at observation stations [20, 21). The values for the climatic 
variables during simulation period are estimated using the space-time stochastic model [22].  
 
3) Proximity variables 
 

Proximity variables including the distance from each pixel to the nearest provincial capital or 
highway, provincial road and county road are incorporated into surface to measure the impacts of the 
infrastructure facility on the dynamics of land systems. GIS software is used to calculate the proximity 
variables, based on the geographical database, including the road network and the location information 
of major cities around the case study area. Figure 4 shows the spatial variability of the distance of each 
pixel to the national expressway and the nearest provincial capitals.  
 

Figure 4. Distance from the centroids of each grid cell to the national expressway (a) and 
the nearest provincial capital (b) in the boundary of Taips County. 
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4) Social and economic variables 
 

Social and economic variables, population density and gross domestic product (GDP) originally 
aggregated at the township level, are also spatially interpolated into the surface data. The historical 
data on the population and GDP are collected based on the household survey and field trip.  The trends 
for the population growth and GDP expansion are projected based on the regional long-term planning 
of Taips County. 
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4. Results 
 
4.1 Estimations of the coefficients of the influencing factors 
 

The relationship between land uses and influencing factors is explored based on the spatial 
regression analyses since the year 2000. The regression coefficients identifying the effects from 
influencing factors on the land uses of cultivated land, forestry area, grassland, water area, built-up 
areas and unused land of Taips County in the year 2000 are listed in the column 1 to 6 of Table 3, 
respectively.    

 

Table 3. Regression coefficients of influencing factors of land uses in Taips County, 2000. 

Influencing factors 
Cultivated 
land 

Forestry 
area 

Grassland
Water 
area 

Built-up 
areas 

Unused 
land 

Terrain: plain (0,1) 0.018 
(0.021) 

0.198 
(2.44) 

0.057 
(2.66) 

1.009 
(0.39) 

0.233 
(3.26) 

1.638 
(4.26) 

Terrain:  mesa (0, 1) -1.560 
(-19.00) 

0.394 
(1.71) 

-2.527 
(-57.22) 

6.510 
(2.52) 

0.343 
(2.09) 

5.128 
(13.28) 

Terrain plateau (0, 1) 0.199 
(9.73) 

0.416 
(5.18) 

-0.390 
(-18.28) 

4.537 
(1.76) 

0.738 
(10.78) 

3.484 
(9.10) 

Soil pH value -3.22 
(-16.00) 

1.307 
(1.68) 

0.831 
(3.92) 

38.155 
(7.18) 

0.912 
(1.59) 

-1.293 
(-1.14) 

Soil depth -0.265 
(-7.27) 

-3.587 
(-14.42) 

0.323 
(8.47) 

-4.294 
(-14.00) 

-1.349 
(-12.43) 

-0.187 
(-1.17) 

Elevation -0.001 
(-8.64) 

0.006 
(8.52) 

0.001 
(2.92) 

-0.023 
(-25.25) 

-0.003 
(-9.22) 

0.017 
(35.08) 

Slope 0.001 
(15.14) 

-0.001 
(-0.76) 

-0.001 
(-6.82) 

-0.014 
(-23.46) 

-0.002 
(-11.44) 

-0.002 
(-7.42) 

Air temperature 2.039 
(16.73) 

7.404 
(12.14) 

-1.771 
(-14.07) 

12.609 
(21.27) 

2.421 
(6.90) 

-0.606 
(-1.42) 

Rainfall  -0.008 
(-6.73) 

-0.103 
(-14.54) 

0.007 
(5.51) 

0.029 
(3.68) 

-0.024 
(-6.62) 

-0.029 
(-6.66) 

Cumulative 
temperature(>=0) 

-0.003 
(-3.13) 

-0.013 
(-3.11) 

0.009 
(10.00) 

-0.114 
(-12.35) 

-0.012 
(-5.05) 

-0.010 
(-3.45) 

Cumulative 
temperature(>=10) 

0.001 
(9.58) 

-0.001 
(-1.65) 

0.001 
(8.37) 

0.015 
(1.32) 

0.001 
(2.53) 

-0.015 
(-32.01) 

Sunshine hours 0.397 
(21.91) 

0.481 
(5.84) 

-0.377 
(-20.53) 

1.299 
(13.07) 

0.643 
(13.89) 

-1.138 
(-20.77) 

Distance to provincial 
capital 

0.006 
(10.42) 

0.047 
(16.50) 

0.001 
(1.77) 

-0.026 
(-6.23) 

0.013 
(8.34) 

-0.027 
(-13.66) 

Distance to highway -0.021 
(-12.62) 

-0.119 
(-14.25) 

0.031 
(17.79) 

-0.088 
(-8.59) 

-0.056 
(-12.81) 

0.050 
(8.27) 
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 Table 3. Cont. 

4.2 Scenarios 
 

A scenario analysis, closely related with the land use projections for each year during the 
simulation period, is of necessity to export more than one projected output and strengthen the 
practicability of the simulation results. According to the characteristics of land uses and regional 
developments, three kinds of scenarios –baseline, economic priority and environmental priority – are 
incorporated in DLS to simulate the dynamics of land systems of Taips County in the projection 
periods between 2005 and 2020.  
 
4.2.1 Baseline scenario 
 

Baseline scenario is a reference case depicting a future state of society and/or environment in 
which no new environmental policies or economic policies are implemented, apart from those already 
in use. Most of the variables identifying the scenario are from the field survey conducted in Taips 
County, which reveals the circumstances of land uses in the region in 2005. A large majority of 
variables used to develop the baseline scenario comes from the field survey, which could be the 
reference to design the other two kinds of scenarios. The structure of land uses in 2010 and 2020 is 
derived from the land use planning of the Taips County. The land uses for each year from 2005 to 
2010 and from 2010 to 2020 are calculated based on the linear interpolation within the two sections of 
periods, respectively. 
 
4.2.2 Economic priority scenario  
 

Under the economic priority scenario, the number of livestock would be increased to fulfill the 
increasing demand for meat and milk in Taips County. Under the projections that local economic 
growth is above the average level of the nation in this scenario, the area of cultivated land and urban 
land will expand at a relatively high speed. There would be a trend of intensified use of grasslands as a 
response to the policies of providing special subsidies for farmers who increase the number of 
cropping cycles on their land and the livestock numbers in Taips County.  
4.2.3 Environmental priority scenario 

Distance to the 
expressway 

0.016 
(24.8) 

0.014 
(3.80) 

-0.002 
(-3.31) 

-0.046 
(-10.36) 

-0.013 
(-7.03) 

-0.043 
(-16.25) 

Population density 0.034 
(23.52) 

-0.01 
(-3.78) 

-0.041 
(-252.94) 

-0.025 
(-20.43) 

-0.002 
(-14.17) 

-0.026 
(-37.23) 

GDP -0.089 
(219.49) 

0.011 
(10.34) 

0.090 
(212.67) 

-0.191 
-36.09 

0.040 
(94.63) 

-0.040 
(-14.62) 

Constant -62.17 
(-12.39) 

-28.142 
(-1.27) 

53.852 
(10.47) 

-
303.115 
(-5.99) 

-109.035 
(-8.44) 

331.938 
(17.82) 

Observation numbers 345895 345895 345895 345895 345895 345895 
Pseudo R2 0.237 0.1146 0.2516 0.4690 0.2893 0.2859 
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Under this scenario, the bare hills would be reforested and a number of effective measurements 

would be taken effectively to resist the steppe degradation given environmental protection concern. In 
addition, the reclamation of cultivated land, as well as the expansion of urban land and other built-up 
areas would be maintained at a lower speed.  
 
4.3 Dynamic simulation 
 

Comparing the simulated results among the baseline, the economic priority and environmental 
priority scenarios in the case study of Taips County, we find that there exist competition and 
succession among land uses due to the component effects from the influencing factors (Figure 5).  

 
Figure 5. Projected land use situations under (a) the baseline scenario, (b) the economic 
priority scenario and (c) the environmental priority of Taips County. 

2005（a） 2015（a） 2020（a）

2005（b） 2015（b） 2020（b）

2005（c） 2015（c） 2020（c）

2005(a) 2010(a) 2020(a)

2005(b) 2010(b) 2020(b)

2005(c) 2010(c) 2020(c)

Cultivated land Forestry area Grassland Water area Built-up area Unused land
 

 
Under the baseline scenario, each kind of land use would mainly expand or shrink at the vicinity of 

their formerly existing areas. By 2020, a large amount of unused land distributed in the northeastern 
Taips County would be reclaimed, except those areas where severe soil erosion was maintained intact. 
The expansion of forestry area would be converted from unused land located in the northeastern and 
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northwestern Taips County while the spatial pattern of grassland would almost keep intact. There 
would be a dramatic expansion for urban and rural settlements and other built-up areas, and the newly 
expanded urban land would mainly be shown around the downtown area or residential centers in Taips 
County. Even so, there would be no large-scale, inter-connected urban areas in Taips County by the 
end of 2020. The area of water bodies in Taips County, affected briefly by the annual variation of 
precipitation, would be relatively small compared with other land uses. Therefore, the spatial 
distribution of water bodies would almost remain intact during the simulation period between 2005 and 
2020. The shrinkage of unused land would be very large and the encroachment of cultivated land on 
unused land would occur in the areas where unused land is densely distributed. 

Under the economic priority scenario, the shrinkage of unused land would be mostly obvious. 
Almost all unused land located in the northwestern and northeastern Taips County in the base year of 
1988 would be converted to cultivated land, grassland or forestry areas. Although there would an 
increasing trend for forestry areas, the total projected areas for the three kinds of land use types would 
not be so high. The even distribution of forestry area in the easternmost Taips County under the 
environmental priority scenario would not appear under the development priority scenario. Compared 
with the baseline scenario, the land use change under the environmental priority scenario would be 
characterized by the dramatic expansion of forestry area. A considerable amount of forestry area would 
appear in the northwestern and northeastern Taips County in 2010 and 2020 at the same time a large  

 
5. Concluding remarks  
 

DLS provides an effective framework to simulate the dynamics of a land system. Although the 
model aims at a realistic description of the land use changes the results should not be interpreted as 
forecasts of future events. However, the simulation results indicate possible patterns of land use change 
under various scenarios. The exploration of dynamics of land systems and the identification of ‘hot-
spots’ of land use change can be seen as a policy-supporting instrument. By including an interface to 
input the spatial regression results, DLS gives users the flexibility to accurately measure the 
relationship between land uses and influencing factors and easily incorporate the estimated results 
obtained by specifying more robust spatial econometric functions. The issues on co-linearity between 
the explanatory variables and impacts from the time variant variables on land use changes are 
considered and handled. In addition, the uncertainty resulting from the reduction of the complexity 
inherent in land systems could be reduced by supplying more flexible interface for users to input the 
spatial regression results with more robust model specification and by developing more than one kinds 
of scenarios to simulate the dynamics of land systems under various conditions.  

The simulations of the dynamics of land systems in Taips County under three kinds of scenarios 
uncover the dynamics of land systems along various land use trajectories, which helps to target 
management decisions on rational land uses and effective environment protections of Taips County. 
First, in according to the simulation results and given the situation of grassland degradation and land 
desertification, we suggest that the local government of Taips County should develop overall land use 
planning to achieve a rational exploitation of land resources, adjust the economic structure, and to 
control the population growth and adjust the development paths of economy. Second, the simulation 
results show the northwestern and northeastern Taips County, which was mostly covered by unused 
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land in the base year of 1988, would become the most sensitive area for land-use changes in the 
simulation periods, as warn us to pay more attention to land use change in this area and take effective 
measures to mange the land uses for that area. 

DLS may also offer a tool to integrate multiple data sources to assess pathways of development and 
related effects of land use changes and can easily be applied to a wide range of study areas, one main 
limitation of DLS is that it has not supplied an interface for users to parameterize local characteristics 
on land uses to simulate the dynamics of land systems in those areas without a land use change history. 
This is because the model uses estimated relations based on existing land uses for the allocation of 
land use changes. One possible way to overcome this limitation is to incorporate one input window for 
users to introduce prior knowledges or adjustments on land conversions of the study area, as might be 
solved in the next version of DLS.   
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