
Sensors 2009, 9, 3149-3160; doi:10.3390/s90403149 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Measurement Uncertainty Estimation of a Robust Photometer 
Circuit 

Wilmar Hernandez 1,* and Jesús de Vicente 2 

1 Department of Circuits and Systems in the EUIT de Telecomunicación at the Universidad 
Politécnica de Madrid (UPM), Campus Sur UPM, Ctra. Valencia km 7, Madrid 28031, Spain  

2 Department of Applied Physics in the ETSI Industriales at the Universidad Politécnica de Madrid, 
Calle José Gutierrez Abascal 2, Madrid 28006, Spain ; E-Mail: jvicente@etsii.upm.es; Tel.: +3-
491-336-3125; Fax: +3-491-336-3000 

* Author to whom correspondence should be addressed; E-Mail: whernan@ics.upm.es; Tel.: +3-491-
336-7830; Fax: +3-491-336-7829 

Received: 28 March 2009; in revised form: 22 April 2009 / Accepted: 24 April 2009 /  
Published: 24 April 2009 
 

 
Abstract: In this paper the uncertainty of a robust photometer circuit (RPC) was estimated. 
Here, the RPC was considered as a measurement system, having input quantities that were 
inexactly known, and output quantities that consequently were also inexactly known. Input 
quantities represent information obtained from calibration certificates, specifications of 
manufacturers, and tabulated data. Output quantities describe the transfer function of the 
electrical part of the photodiode. Input quantities were the electronic components of the 
RPC, the parameters of the model of the photodiode and its sensitivity at 670 nm. The 
output quantities were the coefficients of both numerator and denominator of the closed-
loop transfer function of the RPC. As an example, the gain and phase shift of the RPC 
versus frequency was evaluated from the transfer function, with their uncertainties and 
correlation coefficient. Results confirm the robustness of photodiode design. 
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1. Introduction 

In general, there are many parameters that may affect a measurement result. Although it is 
impossible to identify all of them, the most significant can usually be identified and the magnitude of 
their respective effects on the measurement result can be estimated. Further, the way they impact the 
measurement result can, in many cases, be mathematically modeled [1]. 

In this paper, the uncertainty of measurement of a robust photometer circuit (RPC) based on both 
positive and negative feedback compensations was estimated. A rapid communication about the 
performance of the RPC was presented in [2]. Also, a detailed explanation of the electronic design of 
the RPC was given in [3]. The exact closed-loop transfer function (CLTF) of this complex feedback-
controlled system was given in [4], a noise voltage analysis of it was carried out in [5] and an input-out 
transfer function analysis was carried out in [6]. 

In the above-mentioned references the importance of applying robust control techniques [7,8] to 
improve the disturbance rejection performance of photometer circuits was demonstrated. In addition, 
general information about signal conditioning and photodiode monitoring with operational amplifiers 
(opamps) by using non-robust feedback control techniques can be found in [9-11]. Other applications 
of robust and optimal filtering and control techniques to improve the performance of sensors can be 
found in [12-23].  

The knowledge of the photodiode transfer function allows estimation of the RPC input from a 
measurement of its output. However, without an accompanying statement of the estimated uncertainty 
of RPC input, results are incomplete and in order to estimate the RPC input uncertainty, some 
estimation of the transfer function uncertainty is needed. The uncertainty of the measurement is a non-
negative parameter characterizing the dispersion of the quantity values being attributed to the 
measurands based on the information used [24].  

The aim of this paper is to estimate the uncertainty of the RPC transfer function (at a level of 
confidence of approximately 95% [25]) and show how from this information it is possible to estimate 
other RPC parameters, such as its gain and phase response, with their respective uncertainties. The 
description of the RPC transfer function is made through the coefficients of both numerator and 
denominator of this function. 

2. CLTF of the RPC  

In accordance with [2-5], the RPC is shown in Figure 1. Note that in this figure the photodiode 
diode has been substituted by its circuit model, which according to [9-11], among other references, 
consists of a current generator (IP) proportional to the incident light intensity, a junction capacitance 
(Cj ), a shunt resistance (Rj ), and a series resistance (Rs). Also, in this figure, R1, R2, R3 and R4 are 
the feedback resistors previously calculated in [3] that guarantee the robust disturbance rejection 
performance characteristic of the photometer circuit. 
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Figure 1. Robust photometer circuit. 

 
 

Therefore, taking into consideration opamp parameters such as the input resistance (Ri), the input 
capacitance (Ci), the open-loop gain (Ao) and the gain bandwidth product ( TT fw π= 2 ), the CLTF from 
the current generator )(tiP  to the output voltage )(tvo  is given by: 
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where all the coefficients of ( )sn1 and ( )sd1 have been deduced in [4]. In [4] the equation that describes 
the CLTF of the RPC as a function of the above opamp parameters was shown along with the stability 
analysis of the feedback system and some simulations and experimental results. 

Here ω= js  (where 1−=j  and ω  represents angular frequency), ))](([ stvL o  is the Laplace 
transform of the output voltage )(tvo  and ))](([ stiL P  is the Laplace transform of the current )(tiP .  

Thus, taking into consideration (1), the CLTF from the power of the incident light )(tW  to the 
output voltage )(tvo  is given by: 

( ) ( ) )(
))](([
))](([

12 λσ⋅== sT
stWL
stvLsT o             (2) 

where )(λσ  is the sensitivity of the photodiode at a specific wavelength λ  and ))](([ stWL  the Laplace 
transform of )(tW .  

From the above equations, it can be seen the influence of several aspects that are usually of concern 
for circuit designers such as operational amplifier parameters. For the problem at hand, the opamp 
parameters that have been taken into consideration to obtain the above equations are the ones that 
often limit the performance of photometer circuits based on opamps [4]. 
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3. Applications of the Law of Propagation of Uncertainty 

The law of propagation of uncertainty given in [24-25] assumes that the output quantity can be 
represented by a real number y, so that it can be written as a function that depends on one or more 
input quantities (i.e. mxxx ,,, L21 ). The measurement function is given by: 

( )mx,,x,xfy L21=  

However, if there are n output quantities, the relation between the input and output quantities is 
given by: 

)x(fy =  

where [ ]Tmxx ...x 1= ( where the superscript T denotes transposition ) and: 
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Furthermore, the uncertainty matrix of the vector x  is given by: 
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where ( )ixu  is the standard uncertainty of the input quantity ix  and ( ) ( )ijji xxuxxu ,, =  is the 

estimated covariance of the input quantities ix  and jx . The degree of correlation between ix  and jx  

is characterized by the estimated correlation coefficient: 
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,
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where ( ) ( )ijji xxrxxr ,, =  and ( ) 1,1 ≤≤− ji xxr . If the estimates ix  and jx  are independent of each 

other, ( ) 0, =ji xxr , and a change in one does not imply an expected change in the other. 

In addition, the function ( )xfy =  is linearized at 0xx =  and: 

( ) xJyxxfyyy 000 Δ⋅+≅Δ+=Δ+=  

where ( ) [ ]Tnyy 01000 ...xfy == , 0yyy −=Δ , [ ]Tmxx 0100 ...x =  , 0xxx −=Δ  and J  is the 
Jacobian matrix of ( )xf : 
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Thus, the uncertainty matrix of the vector y is given by TJUJU xy ⋅⋅= [27]. 
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The elements ji xf ∂∂ /  of the Jacobian matrix J  are the sensitivity coefficients ijc  of the output 

quantities iy  associated to the input quantities jx . In this paper, in order to build matrix J  numerical 

differentiation was used [28].  
 
4. Results of the Experiment 
 
4.1. Uncertainty of the Input Quantities and Typical Value of the CLTF 

 
According to [26], input quantities represent information obtained from sources such as direct 

measurements, calibration certificates, specifications of manufacturers, and tabulated data. Table 1 
shows the minimum, typical and maximum value of the input quantities, and their standard 
uncertainties as well. 

The information of the parameters of the OP07 and the junction capacitance of the BPW21 was 
taken from their datasheets. The value of the resistors 41 RR −  were the nominal ones, the series 
resistance and the shunt resistance of the BPW21 were measured experimentally by using the 
KEITHLEY Semiconductor Characterization System 4200-SGS, and the sensitivity of the BPW21 was 
measured experimentally by using the 3 mW RS Modulated Laser Diode Module 194-004 at 0 Hz and 
nominal wavelength 670 nm. A photograph of the prototype of the RPC with the 3 mW Modulated 
Laser Diode Module was shown in [4]. 

 
Table 1. Minimum, typical, maximum value and standard uncertainty of the input quantities. 

Input 
quantity 

MIN TYP MAX 
Standard 

uncertainty 

jC  522 pF 580 pF 638 pF 24 pF 

jR  374 MΩ 416 MΩ 457 MΩ 17 MΩ 

sR  5.31 Ω 5.90 Ω 6.49 Ω 0.24 Ω 

1R  900 Ω 1000 Ω 1100 Ω 41 Ω 

2R  90.0 Ω 100.0 Ω 110.0 Ω 4.1 Ω 

3R  90.0 kΩ 100.0 kΩ 110.1 kΩ 4.1 Ω 

4R  19.87 kΩ 22.08 kΩ 24.29 kΩ 0.90 kΩ 

iR  15.0 MΩ 50.0 MΩ 55.0 MΩ 2.0 MΩ 

iC  0 pF 0 pF 0 pF 0 pF 

0A  106 dB 114 dB 125.4 dB 1.46 dB 

Tω  π800.  Mrad/s π201.  Mrad/s π321.  Mrad/s 0.15 Mrad/s 
σ  121.1 mA/W 134.5 mA/W 148.0 mA/W 5.5 mA/W 

 
In accordance with [24,25], taking into consideration the available information concerning the input 

quantities, in this paper the input quantities were described by triangular a priori distributions. Finally, 
using the above typical values and taking into consideration that 0=iC  for the OP07, the CLTF of the 

RPC given by (2) was given by: 
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When 0=iC , coefficients 3a , 4d  and 5d  of (1) are equal to zero (see [4]). Therefore, )(sn1  is a 
second order polynomial and )(sd1  is a third order polynomial. Thus, in (3) the first term of the 
numerator, )(sn2 , is equal to zero and the first two terms of the denominator, )(sd2 , are equal to zero as 
well.  

In order to have dimensionless parameter when possible the following change in polynomial )(2 sn  
and )(2 sd  was made: 
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where 0w  is a conventional value  Mrad/sw 5.10 = . In this paper, the conventional value 0w  has been 
chosen to be equal to the nominal value of the gain bandwidth product Tw  of the operational 
amplifier.  

Please note that a conventional value has no uncertainty. Working in this way, the parameters 2y  to 

7y  are dimensionless and the parameter 1y  (the RPC gain at DC) is expressed in WV . The 
expressions that relate the parameters iy  with coefficients jp  and kq  of polynomials )(2 sn  and 

)(2 sd  are the following: 
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The first parameter 1y  can be easily determined by direct calibration: a power stabilized laser, 
whose power CW  has been previously measured by a traceable laser power meter, is focused onto the 

photodiode and the output voltage of the RPC is measured with a traceable voltmeter. The reading 
provided by the voltmeter is CV , and an estimation of the RPC gain 1y  at DC would be 

CCDC WVg /=  with standard uncertainty )( DCgu : 

22 ]/)([]/)([)( CCCCDCDC WWuVVuggu +⋅=  

At this point it should be pointed out that as we are carrying out a direct calibration procedure, due 
to the fact that DCg  has no relation with the estimations 732 ,,, yyy L , the covariance )( DCgu  is 
equal to zero for iy , 1  i > . 
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Thus, the RPC transfer function is described by using the output quantities 1ygDC ≡ , 732 ,,, yyy L . 
This transfer function allows us to carry out the estimation of the power of the optical signal )(tW  
arriving at the photodiode, through the measurement of the electrical output signal )(0 tv : 

)(
)(

))](([)(
2

01 t 
sT

stvLLtW
⎭
⎬
⎫

⎩
⎨
⎧

= −  

As in this paper the photodiode is operated in the photoconductive mode, the photocurrent is 
linearly proportional to the incident light energy. Thus, assuming we have no nonlinear distortion in 
the opamp, the RPC shown in Figure1 is a linear circuit; and for the case in which the optical signal is 
harmonic, )cos()( 0 αω += tWtW , the output voltage is harmonic as well, )cos()( 00 α+ϕ+ω= tVtv , 
where ω  and α are the angular frequency and phase shift of the optical signal, respectively.  

The amplitude 0V  of the output voltage is determined by: 

)()( 2
0

0 ω=ω= jTG
W
V . 

The gain )(ωG  can be expressed as )()( ω⋅=ω ggG DC , where )(ωg  is: 
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And the phase shift ϕ  is determined by:  
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4.2. Uncertainty of the Parameters Describing the Transfer Function  

The standard uncertainty and the relative standard uncertainty (which is defined as the ratio of the 
standard uncertainty of the parameter to its typical value) of the parameters 732 ,,, yyy L , are shown in 
Table 2. 

 
Table 2. Parameter estimation, standard uncertainty and relative standard uncertainty. 

Parameter 
Parameter 
estimation 

Standard 
uncertainty 

Relative standard 
uncertainty 

2y  0.0053 0.0016 0.30 
3y  0.42 0.12 0.29 
4y  0.148 0.029 0.20 
5y  12.2 2.0 0.17 
6y  55.9 8.0 0.14 
7y  50.3 2.9 0.057 
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The matrix of the estimated correlation coefficients among elements of parameters 732 ,,, yyy L  is: 
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where ( ) ( )jiji yyrxxr ,, =  and i = 2,3 and j = 4,5,6,7. 
At first glance, 3,2y seem to be no correlated with 7,6,5,4y  because they depend on different 

variables, 3,2y  depend on 3,2,1p  while 7,6,5,4y  depend on 5,4,3,2,1q . However, as 3,2,1p  are correlated with 

5,4,3,2,1q , 3,2y  and 7,6,5,4y  are correlated as well.  
The uncertainty matrix yU  of the parameters 732 ,,, yyy L  is: 
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4.3. Using the Transfer Function to Determine Other Parameters: Gain, Phase Shift and Cut-Off 
Frequency of the RPC  

As described previously, the transfer function can be used to determine the gain )()( ω⋅=ω ggG DC  
and the phase shift )(ωϕ  of the RPC when the optical power arriving at the photodiode is harmonic. 
The angular frequency of the optical signal can be expressed as fπ=ω 2 , where f  is its frequency. 

4.3.1. Gain and Phase Shift  

Again, the uncertainty propagation from the transfer function parameters 1ygDC ≡ , 732 ,,, yyy L  
to )()( ω⋅=ω ggG DC  and )(ωϕ  are calculated by using the procedure described in Section 3. At a 
specified frequency f , the gain and phase shift are functions of the parameters 732 ,,, yyy L : 

),,,( 732 yyygg L=         ),,,( 732 yyy Lϕ=ϕ  

The uncertainty matrix of the vector ]  g [ ϕ  is: 

T
2y22

2
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⎢
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where 2J  is the Jacobian matrix of the functions ),,,( 732 yyygg L=  and ),,,( 732 yyy Lϕ=ϕ , and is 

given by: 
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and the partial derivatives of matrix 2J  are evaluated numerically. 

For example, at frequency kHz 7.47=f , we obtain the following results: 
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Figures 2 and 3 show in thick-blue lines the gain g  and the phase shift ϕ  of the RPC versus 
frequency, respectively. The thin-red lines represent the upper and lower boundaries of the expanded 
uncertainty interval. Expanded uncertainties has been evaluated at a level of confidence of 
approximately 95%, using a coverage factor of k = 2 [25]. 

 
Figure 2. Gain g  (dB) vs. frequency f (Hz). 
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Figure 3. Phase shift ϕ (º) vs. frequency f (Hz). 
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4.3.2. Cut-Off Frequency  

Another important parameter is the cut-off frequency cf . For the case under analysis, from the 
frequency response shown in Figures. 2 and 3, it can be seen that, as the first zero is located between 
the second and the third pole and the second zero is located right after the forth pole, the cut-off 
frequency cf  depends mainly on the denominator of )(2 sT . 

In this paper, the cut-off frequency cf was determined numerically in the frequency range shown in 
Figures. 2 and 3, and its partial derivatives with respect to 754 yyy ,,, L were determined numerically 
as well.  

In order to be consistent with the above statements, for the analysis, the partial derivatives of 

cf with respect to 2y  and 3y  were assumed to be equal to zero. Therefore, the standard uncertainty of 
the cut-off frequency, )( cfu , was calculated as follows: 
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Finally, the results are the following: 

kHz 4.1)(   kHz 70.0)(   kHz 0,12 %95 === ccc fUfuf  

where the expanded uncertainty expanded )(%95 cfU  has been evaluate at a level of confidence of 

approximately 95%, using a coverage factor of k = 2 [25]. 

5. Conclusions  

In this paper, the uncertainty of the transfer function of a RPC has been estimated in accordance 
with the Guide to the Expression of Uncertainty in Measurement of the Organization for 
Standardization. The RPC transfer function has been described through seven parameters and the 
uncertainty and correlation coefficients of these parameters have been estimated as well. Also, it has 
been shown that other parameters such as the gain, phase margin and the cut-off frequency can be 
estimated along with their respective uncertainties taking into consideration the information given by 
the RPC transfer function.    
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