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Abstract
The initial events (virus adsorption and fusion with the cells) in the replicative cycle of

human immunodeficiency virus (HIV) can serve as targets for the antiviral action of metal-binding
compounds such as polyanionic compounds (polysulfates, polysulfonates, polycarboxylates,
polyoxometalates, and sulfonated or carboxylated metalloporphyrins), bicyclams and G-octet-
forming oligonucleotides. The adsorption and fusion of HIV with its target cells depends on the

interaction of the viral envelope glycoproteins (gpl20) with the receptors (CD4, CXCR4) at the
outer cell membrane. We are currently investigating how the aforementioned compounds interfere
with these viral glycoproteins and/or cell receptor.

Introduction
There are ten steps in the replicative cycle of human immunodeficiency virus (HIV) that

could be considered as targets for chemotherapeutic interventions (Table 1) (1). The early events
in HIV infection, i.e. virus adsorption to the cells and virus cell fusion, have been shown to be the

points of attack for some metal complexes or organic compounds containing metals. Here I will
discuss those compounds among the metal complexes that interfere with the virus adsorption
and/or virus cell fusion (i.e. polyanionic substances, bicyclam derivatives and G-octet-forming
oligonucleotides).

Table 1. HIV replicative cycle

2.
3.
4.
5.
6.
7.
8.
9.
10.

Virus adsorption to the cells
Virus-cell fusion
Virus uncoating
Reverse transcription
Proviral DNA integration
Proviral DNA replication
Proviral DNA transcription to viral mRNA
Viral mRNA translation to viral precursor proteins
Maturation (proteolysis/myristoylation/glycosylation)
Budding (assembly/release)

The key molecule in the viral adsorption/fusion process is the viral envelope glycoprotein
gp120 (Fig. 1), which has a highly convoluted structure containing several regions referred to as
variable regions such as V3 and V4, which are assumed to interact with the corresponding
receptors at the host cell surface.
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Polyanionic substances
Foremost among the polyanionic substances that have been shown to interact with the

binding of HIV to the cells are the polysulfates such as dextran sulfate, dextrin sulfate, curdlan
sulfate, pentosan polysulfate, mannan sulfate, sulfoevernan, fucoidan, polyacetylal polysulfate
(PAPS) and polyvinylalcohol sulfate (PVAS) (Fig. 2) (2). These compounds inhibit HIV-induced
cytopathicity in cell cultures at an 50% effective concentration (EC0) of about 0.1 to pg/ml, that
is at a concentration which is 1,000- to more than 10,000-fold lower than the concentration
exhibiting cytotoxicity [50% cytotoxic concentration (CC0)] (Table 2).

In addition to the polysulfates, polysulfonates such as suramin, Evans blue,
bis(naphalenedisulfonate), polystyrene sulfonate (PSS), and polyvinyl sulfonate (PVS) (Fig. 3) and
polycarboxylates [in particular polymerized aurintricarboxylic acid (ATA)] (Fig. 4) have also been
shown to inhibit HIV replication with EC0 values similar to those of the polysulfates (1).

Fig. 1. The HIV-1 envelope (surface)glycoprotein gpl20

A large series of polyoxometalates (Fig. 5), i.e. JM1590, which corresponds to
K3[Ce(SiW O39)2].26H20, are known to inhibit HIV replication at an EC0 of 0.3 to 3 Mg/ml with
CCs0 values higher than 100 lg/ml (Table 3). Akin to the polysulfates and polysulfonates, the
polyoxometalates inhibit the HIV replicative cycle at the level of virus adsorption to the cells (3).
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Fig. 2. Sulfated polysaccharides and polymers

A new class, that of the anionic (sulfonated or carboxylated) metalloporphyrins, have been
recently shown to inhibit HIV replication (Table 4) (4). Metals (such as Fe or Ni) play an
important role in the selectivity of the compounds, for their presence significantly reduces
cytotoxicity while maintaining antiviral activity (Table 4).

An interesting feature of the polyanionic substances is that their antiviral activity is not
limited to HIV but also extends to various other enveloped viruses such as herpesviruses [herpes
simplex virus (HSV), cytomegalovirus (CMV)], influenza A virus, respiratory syncytial virus
(RSV), arenaviruses (Junin virus, Tacaribe virus) and rhabdoviruses [such as vesicular stomatitis
virus (VSV)] (Fig. 6). This broad spectrum antiviral action considerably enhances the therapeutic
potential of these compounds for the treatment of viral diseases.
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Table 2. Inhibitory effect of sulfated polysaccharides on the cytopathicity of HIV-l(III) in MT-4
cells

Compound ECs0 (lag/ml) CC50 (tg/ml) Selectivity index
(CCs0/ECs0)

Dextan sulfate (MW 5000)
Dextrin sulfate (MW 3000)
c-Cyclodextrin dodecasulfate
13-Cyclodextrin tetradecasulfate
qt-Cyclodextrin hexadecasulfate
Pentosan polysulfate (MW 3100)
Fucoidan
Heparin (MW 11000)
-Carrageenan
Mannan sulfate (MW 30000)
Sulfated E.coli K5 glycan
Periodate-treated heparin
Polyacetal polysulfate (MW 30000)
Polyvinylalcohol sulfate (MW 20000)

0.5 > 2500 > 5000
2.1 > 500 > 238
6.5 > 2500 > 385
0.8 > 2500 > 3125
0.2 > 2500 > 12500
0.19 > 2500 > 13150
1.4 1060 757
0.58 > 2500 > 4310
0.54 > 625 > 1157
1.2 > 2500 > 2083
0.67 260 388
0.52 > 2500 > 4807
0.4 > 2500 > 6250
0.18 > 2500 > 13800

We have recently succeeded in obtaining mutants resistant to polyanionic substances after
passaging HIV in the presence of dextran sulfate (5). It thus appears possible for the virus to

develop resistance to these polyanionic substances (Fig. 7). The resistance mutations appear to be
located predominantly in the V3 loop of the gpl20 glycoprotein (Fig. 8) and render the overall
charge of the V3 loop less positive, thus resulting in a diminished electrostatic interaction with the
polyanionic compounds.

Polyanionic substances such as polyoxometalates (i.e. polyoxosilicotungstates) inhibit the

replication of HIV, HSV and CMV at the virus adsorption step. They inhibit influenza A virus and
RSV at the virus-cell fusion step (6).

Little is known about the therapeutic/prophylactic potential of the polyanionic substances in
the clinic. Protective effects with these compounds against HSV and influenza A virus infections
in vivo (mice) have been described with polyoxotungstates and polysulfonates when administered
systemically (intraperitoneally) or topically (intranasally), respectively (7,8). In particular, topical
administration of the polyanionic compounds, for instance as a vaginal formulation, seems to be
an attractive modality for the prevention of sexually transmitted HIV and HSV infections (9).

Bicyclams
The bicyclams (10) represent a new class of highly potent and selective HIV inhibitors.

They originated from the serendipitous discovery of anti-HIV activity in a monocyclam
preparation that contained bicyclam as contaminant. Starting from this lead compound, several
bicyclam derivatives were prepared that showed increased anti-HIV activity (Fig. 9) (11). The
most active of this series is the bicyclam JM3100 (Fig. 10) which has been found to inhibit HIV-
induced cytopathicity at a concentration of a few nanograms per ml, while not being toxic to the
host cells at concentrations up to 500 tg/ml, thus achieving a selectivity index of 100,000 or

higher (Table 5) (12).
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Table 3. Anti-HIV activity of polyoxometalates

Compound ECso (tg/ml) CCo (lag/ml) Selectivity index
(CCso/ECso)

JM1583 Ks[BWO4o]

JM1590: Ks[Ce(SiW O39)].26HO

JM1591: KHPWOa8.24HO
JM1596" Ko[PW8Zna(HO)O68].20HO

JM1809: K8HP2WsV306.34HO
JM2766" K6[BWGa(H20)O39]

JM2815" Ks[SiW (CsHs)TiO39]

JM2820: [MesNH]8[SiW8Nb6077]

1.4 654 467

0.7 230 328

0.3 339 1130

0.7 466 666

1.1 293 266

2.8 > 500 > 178

1.9 > 500 > 263

3.2 > 500 > 156

Table 4. Anti-HIV activity of metalloporphyrins

R M ECsoa (tg/ml) CC5ob (tg/ml) SIc

H3C SO3Na
\ /

CH3

H3C SO3Na

H2

Mn 36
Fe 4

H2
Fe
Ni

0.9
0.5

4
> 100
> 100

23
> 90
> 90

4
>2.8
>25

25
> 180
> 9O
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Fig. 7. Rate of resistance development of HIVo NL4-3 to dextran sulfate (MW 5000)

MT-4 cells were infected with virus in the presence of 5 x the ECs0 (passage 0). Every 5 to 6 days
supematant of the cell culture was used to re-infect fresh MT-4 cells in the presence of the same or a 2- to 5-
fold higher compound concentration, depending on the cytopathicity observed.
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Fig 8 Portion of the I]IV, envelope g!ycoprotein gp 120 with the mutations conferring resistance
to dextran sulfate
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Fig. 9. Bicyclams: bis(1,4,8,11-tetraazacyclotetradecane) derivatives

Time-of-addition experiments indicated that the bicyclams (i.e. JM2763) inhibit the HIV
replicative cycle at a time point that is situated between virus adsorption and reverse transcription
(Fig. 11). From these time-of-addition experiments we must conclude that the bicyclams interact
with the fusion/uncoating process (13). This process involves the removal of the envelope as well
as capsid proteins from the viral RNA genome so that the latter can be transcribed by the reverse
transcriptase. Theoretically, any of the viral envelope glycoproteins (gpl20, gp41) or capsid
proteins (plT, p24, p9, p7) could be considered as possible targets for the interaction with the
bicyclams (Fig. 12). Originally (13,14), we envisaged the capsid protein p7 (Fig. 13) as a possible
target for the bicyclams, as this protein contains two zinc fingers that could possibly make zinc-
coordination complexes with the bicyclams.
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After painstaking efforts, we succeeded in obtaining mutants that were resistant to the
bicyclams JM2763 and JM3100 (Fig. 14) (15,16). Sequence analysis of these mutants revealed the
presence of several mutations within the gpl20 glycoprotein located in the V3-V4 region (Fig. 15)
(17). Although it is not clear yet which and how many of these mutations are required for
engendering resistance, it is obvious that the primary site of interaction for the bicyclams is the
gp 120 rather than any of the other viral glycoproteins or capsid proteins.

The role of several metals in the interaction of the bicyclam JM3100 with HIV has been
assessed. From Fig. 16, it is evident that Zn facilitates the binding of the bicyclams to the virus.
Equilibrium analysis studies revealed that the optimal binding of JM3100 with the virus is
achieved at Zn concentrations of 0.2 to 0.6 mM (Fig. 17). That Zn may play a key role in the anti-
HIV activity of the bicyclams is also evident from Table 6. Only the Zn complex with the
bicyclam JM3100 (i.e. JM3479) was equipotent to JM3100. The other metal bicyclam complexes
(JM3462, JM3469, JM3461 and JM3158) containing Ni, Cu, Co, Pd, respectively, showed gradual
loss in activity, the Pd complex being inactive as an anti-HIV compound.

JM3100 has been found efficacious in vivo, in decreasing the virus load in the SCID-hu
Thy/Liv mice (that is, severe combined immune deficient mice reconstituted with human fetal
thymus and liver) infected with HIV (18), and the antiviral efficacy of JM3100 was enhanced
when combined with other anti-HIV drugs such as zidovudine (AZT) and didanosine (ddI). This
opens interesting perspectives for the clinical use of JM3100 in HIV-infected individuals. Clinical
trials with JM3100 (now referred to as AMD 3100) have been planned.

NH N NH HN]

8 HCI 2H20

Fig. 10.1,1 ’-[ 1,4-phenylenebis-(methylene)]-bis-1,4,8,11-tetraazacyclotetradecane
octahydrochloride dihydrate (JM3100)

Table 5. Anti-HIV activity of bicyclam JM3100

Virus Strain Cell line ECso (tg/ml) CC5o (tg/ml) Selectivity index
CCso/ECso

HIV- IIIB MT-4 0.005 > 500 > 100000
HIV- RF MT-4 0.001 > 500 > 500000
HIV- 1 HE MT-4 0.003 > 500 > 167000
HIV-2 ROD MT-4 0.007 > 500 > 71400
HIV-2 EHO MT-4 0.004 > 500 > 125000

SIV MAC251 MT-4 > 100 > 100
SIV AGM3 MOLT-4 > 100 > 100
SIV MNDGB MOLT-4 > 100 > 100
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Table 6. Inhibitory effects of different bicyclam-metal complexes on HIV-induced cytopathicity
and syncytium formation

Compound Complexing ECs0 (pg/ml)
metal

Vral cytopathicity Syncytium formation

ttIV, (lll) ttIV-2(ROD) HIVo (1 ll) t[IV-2(ROD)

JM3100 0009 0.021 0o 1.8
JM3479 Zn 0.008 0.025 0ol 0.2
JM3462 Ni 0.01’7 0028 0.3 03
JM3469 Cu 0048 0.21 1.5 2.4
JM3461 Co 9.74 18.21 62.5 125
JM3158 Pd 68.62 > 250 > 250 > 250

Fig. 11. Time of addition experiment

Compounds dextran sulfate, polyoxometalates JM1590 and JM1657, bicyclam JM2763, AZT, DDI, TIBO
R82913 and protease inhibitor Ro31-8959 were added at different times [0, 1,2, 3, hours after infection of
MT-4 cells with. HIV-1 (lII)], and viral capsid p24 antigen was measured 29 hours post infection.
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Fig. 12. Schematic cross-section of HIV-1 particle with glycoproteins (gpl20, gp41), capsid
proteins (p 17, p24, p9, pT), RNA genome (2 segments) and reverse transcriptase
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Fig. 14. Rate of resistance development of HIV-1 NI4-3 to the bicyclams JM2763 and JM3100,
and to TIBO R86183

At different passages of the virus in MT-4 cells, EC_0 values were determined and compared with wild-type
ECs0. The ratio of ECs0 (passage n) to EC.o (passage 0) is displayed in fimction of passage n for JM2763 (n),
JM3100 (o) and R86183 ().

Fig. 15. Portion of the HIV- envelope glycoprotein gp 120 with the mutations conferring
resistance to the bicyclam JM3100
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Fig. 16. Equilibrium dialysis binding study (part I)

Binding efficiency of metal-bound (B) versus free (F) bicyclam [4C]JM3100 to HIV-1 lysate. Final
concentrations: 10 tg/ml (12 tM) for bicyclam; 0.6 mM for ZnCI2, CaC12 and CoC12 and 0.4 mg/ml for viral
protein. Incubation for 4 hr at 37C.
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Fig. 17. Equilibrium dialysis binding study (part II)

Binding effficiency of metal-bound (B) versus free (F) bicyclam [4C]JM3100 to HIV-1 lysate. Final
concentrations" 10 tg/ml (12 tM) for bicyclam; varying concentrations for ZnClz and 0.4 mg/ml for viral

protein. Incubation for 4 hr at 37C.
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G-octet-forming oligonucleotides
The oligonucleotide 5’GTGGTGGGTGGGTGGGT3’ which forms a G-octet with potassium

in the middle (Fig. 18) (19) has been shown to exhibit activity against different HIV strains in cell
culture. As shown in Table 7, the G-octet forming oligonucleotide T30177 (also referred to as
AR177 or Zintevir) shows activity against the HIV-I(III) and HIV-I(RF) strain at an EC0 of
0.15-2.8 and 0.03-0.3 laM, respectively (20). The anti-HIV activity of T30177 in cell culture
persists for several weeks after an initial 4-day exposure of the cells to the compound and
subsequent removal of the drug. This contrasts with the behavior of other anti-HIV compounds
which rapidly loose their activity when removed after the original 4-day exposure (Fig. 19).

It has been shown that the T30!77 inhibits the HIV-1 integrase (Fig. 20). The HIV DNA
integration is an highly complicated process involving at least 3 steps (endonuclease, strand-
transfer and DNA ligation) (Fig. 21) and the T30177 would interfere with the first step
(endonuclease) of the integration process (21,22).

However, it is doubtful that the inhibitory effect of T30177 on the HIV integrase would
account for the anti-HIV activity observed with the compound in cell culture experiments, as time-
of-addition experiments with T30177 have indicated that the compound inhibits HIV replication, at
a step which coincides with virus adsorption and/or fusion (Fig. 22). Also, resistant HIV strains
selected under continuous pressure of T30177 revealed the presence of mutations in the gpl20
molecule, but not in the integrase gene (23), again pointing to the viral adsorption/fusion process
as the primary target for the anti-HIV action of T30177.

Clinical studies with zintevir (T30177) have been initiated. When administered

intravenously as-single- or repeat-doses to cynomolgus monkeys, zintevir did not cause significant
hemodynamic toxicity (unlike other oligonucleotides) at plasma drug concentrations that have
shown anti-HIV activity in vitro (24,25).

Fig. 18. Structure/model for the G-octet forming oligonucleotide T30177
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Table 7. Anti-HIV activity of T30177

Virus (strain) Cell line ECs0 (pM) CC50 (taM) Selectivity index
CCso/ECso

HIV- I(IIIB)

HIV-I(RF)

HIV-2(ROD)
HIV-2(EHO)
SIV(MAC25)

CEM-SS
MT-2
MT-4
CEM-SS
MT-2
MT-4
MT-4
MT-4
MT-4

2.83 92 32
1.94 61 31
0.15 70 466
0.075 92 1226
0.270 61 226
0.037 70 1892

27.5 70 2.5
5.98 70 11.7
1.5 70 46

3000

2500

2000

1500

1000

o
0 5 10 15 20 25 30

Days Post-Removal of Drug

Fig. 19. Long-term suppression of HIV-1 (IIIB) after treatment of infected cell cultures with
T30177

MT-4 cells were infected with HIV-I(IIIB) at an MOI of 0.01 and were then cultured for 4 days in the

presence of T30177 (1), AZT (F-I), DS 5000 (0) or JM3100 (A) by using concentrations of drugs equivalent
to 100-fold the respective ECs0 values. After 4 days the cells were washed extensively and were further
incubated in drug-free medium. The level of viral p24 antigen in the culture medium was monitored at
various times after removal of drug from the infected cell cultures.

189



Vol. 4, No. 3, 1997 Antiviral Metal Complexes

20-mer----

18-mer--

inhibitor

integration
products

--substrate

.--cleaved product

Fig. 20. Inhibition of the HIV-1 integrase by oligonucleotides
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Fig. 21. Mechanism of HIV DNA integration
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Fig. 22. Effect of time of drug addition on the inhibition profiles ofT30177 (O), AZT (0) and DS
5000 ()

MT-4 cells infected with HIV-1 (IIIB) at an MOI of were treated at various times during (time zero) or after
virus infection with the test compounds at a concentration 100-fold greater than their respective ECs0 values.
Viral p24 levels in the culture medium were monitored at 29 h postinfection.

Fig. 23. Virus adsorption to the cells Fig. 24. Virus fusion with the cells
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Conclusion
To enter the cells, HIV must first interact through its viral envelope gpl20 with the CD4

receptor of the host cell (virus adsorption) (Fig. 23) before the viral envelope can fuse with the
outer cell membrane (Fig. 24). This virus cell fusion is made possible only after the viral envelope
gpl20 has also interacted with the second receptor [ioe. fusin (CXCR4)]. Our current investigations
are aimed at elucidating the interactions of the compounds described here (polyanions, bicyclams,
zintevir) with the viral envelope gp 120 glycoprotein and the cellular receptors that are involved in
the virus adsorption/fusion process.
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