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ABSTRACT

Superoxide dismutase (SOD) is the scavenger of superoxide anion (Oz) and functions as a protector of

living bodies. Study of a model compound of SOD is important when searching for the relationship between

functions and structures of enzymes. Furthermore, SOD model compounds have potential for therapeutic

usefulness. Although many SOD model compounds have been reported, their structures are quite different

from those of the native enzyme. Cu,Zn-SOD has been proposed for clinical uses. Unfortunately, many

problems such as half-lifetime and antigenicity have not been overcome even though several copper(II)

complexes are known to show SOD activity. Active oxygen species such as superoxide (Oz’), being formed

by leakage of electrons to oxygen (Oz) from various components of the cellular electron transport chains, and

provided during the respiratory burst of phagocytic cells, have been implicated both in the aging process and

in degenerative diseases, including arthritis and cancer. Therefore, the biological system posseses the

protective mechanisms against active species.

Abbreviations: Cu,Zn-SOD; copper, zinc-containing superoxide dismutase; SOD, superoxide dismutase;

Mn-SOD; manganese-containing superoxide dismutase; Fe-SOD, iron-containing superoxide dismutase.

INTRODUCTION

The reactive superoxide radical anion, Oz, is a product of the oxygen metabolic cycle/1/. The radical

anion is a highly reactive toxic species in many biological systems. Superoxide dismutase (SOD) catalyses

Oz dismutation very efficiently and it serves as an important means of defense against oxygen toxicity. It has

been discovered /2/ that the superoxide dismutase enzymes catalyze disproportionation of the toxic

superoxide ions into molecular oxygen and HzOz (Eq. 1).

2Oz + 2H + SOD Oz + HzO_ ()
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The in vivo ubiquity of the SODs makes them very efficient in normal conditions. However, in the case of

an oxygen burst (during reperfusion following ischemia, for instance) the natural defenses of the organism

are insufficient, leading to lipid peroxidation, membrane damage, and cell death. These effects are not

directly due to the superoxide anion, but rather to the more potent oxidant, the hydroxyl radicals, which is

generated in situ. In order to make up for the SOD deficiency, the first idea was to introduce supplementary

SODs into the organism. However, SODs have molecular weights too high to cross cell membranes/3/and

can only provide extracellular protection/4/. In order to circumvent this difficulty, low-molecular mass

synthetic compounds that mimic SODs have been investigated/5/. As copper has been proven to be the

active metal center in the best studied SOD (Cu,Zn-SOD), many cuprous complexes have been synthesized

and tested for SOD-like activity/3, 5, 6/and most them appeared to be very efficient. The problem is that

they lose their activity in vivo/3, 7/. Proteins appear to have better affinities for copper than the studied

ligands, so Cu is inactivated once it is embedded in the proteins. The other two classes of SODs, which

contain iron or manganese, have received less attention, and their structures have only recently been

described/3, 8/. However, some Fe/7, 9, 10/and Mn/7, 9, 11/SOD mimics have been reported, and some of

them show a marked SOD activity and seem to keep it in living cells/10, 11/.

From all these results on native SODs or low molecular weight SOD mimics, it seems that the presence

of coordination sites belonging to nitrogen heteroaromatic rings such as imidazoles or pyridines is important

to have high SOD activity that is not affected by biological chelators/3, 10/. The problem to solve when

searching for SOD-like complexes is to find a balance between a sufficient stability necessary to survive in

vivo conditions and a certain flexibility that allows the change of metal coordination occuring during the

catalytic process. Apart from the use of various metalloporphyrins/3/, only a few mono- /12/ and bitopie (13)

macrocyclic Cu (II) complexes have been investigated as potential SOD-like derivatives, but as aeyelie Cu

(II) complexes, they do not resist biological chelators. Recently, two Mn (II) macrocyclic complexes have

been shown to exhibit catalytic SOD activity maintained in vivo conditions (13). Many research groups have

been pursuing the possibility of developing such "synzymes" (synthetic enzymes) as an approach to

managing various types of diseases. Tremendous progress has been made in this area in recent years, both in

defining a role for such a synthetic enzyme as a human pharmacological agent by utilizing a number of

animal models for disease, and in progressing toward development of actual drug candidates. The following

review briefly introduces the chemistry of the SOD enzymes, surveys recent advances in the synthesis of low

molecular weight SOD mimics, and attempts to introduce some of the issues involved with the testing for

SOD activity and the chemical design constraints one must satisfy in order to synthesize a highly active

enzyme mimic which can function as a human pharmaceutical agent. In particular, emphasis will be made in

this review on considerations of development of functional models for a SOD for the metal complexes

reported to possess SOD synzyme activity and recent developments in the chemistry of SOD which may have

implications for these areas.
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MECHANISTIC ASPECTS

The major function of superoxide dismutase (SOD) is to catalyze the dismutation of superoxide anions

(02) and to control intracellular and extracellular concentrations of 02"/14/. 02" is the mediator of many

diseases. It is involved in radiation injury, DNA damage, lipid peroxidation and vascular diseases/15, 16/.

Although SOD has been considered for application as a pharmaceutical for many years/17/, some problems

have been encountered in clinical trials, because SOD has some disadvantages such as high cost, instability,

cell impermeability and immunogenicity. Therefore, the stable, non-toxic, low molecular weight metal

complexes (model compounds) which catalyze the dismutation of 02 have attracted much attention/18-23/.

It is of great importance to study the structures, thermodynamic and kinetic properties of SOD model

compounds and their mechanism of catalytic dismutation of 02 when searching for relationships of

structures, properties and functions and medical uses of metal complexes/24, 25/. Until now several Cu (If)

complexes for mimicking Cu2Zn2SOD have been described, such as Cu (II) complexes of polypeptides/26,

27/, polydentate Schiff bases/16, 28/, mixed ligand/12, 29/, imidazolate-bridged heterobinuclear Cu-Zn

complexes/30, 31/, and complexes of macrocyclic ligands/31, 5/. Some of them were shown to mimic the

structures of Cu2Zn2SOD to different extents, and others can mimic their functions.

Reactive oxygen species such as superoxide anion, hydroxyl radical, hydrogen peroxide, and single

oxygen have been postulated as playing an important role in a wide variety of pathological processes/32/.

Cu,Zn-superoxide dismutase (SOD), which controls reactive oxygen species via disproportionation of 02"
radicals into 02 and H202, has been proposed for clinical uses/33, 34/. Unfortunately, intravenously injected

SOD disappears from the circulation with a half-life of the order of some minutes/35/. Most SOD research

has been directed at prolonging the half-life and, of course, maintaining full enzymatic activity/36/. Even if

substantial advances have been made in the development of SOD derivatives that enhance lifetimes/37, 38/,

the limiting factor in the use of such compounds, antigenicity, has not been overcome/39/. A variety of low

molecular weight SOD mimics have been prepared, both as antioxidants and pharmaceutical agents.

Manganese/17/, iron/40/, or copper ions/5/either free or complexed, are known as efficient catalysts of the

dismutation process. A variety of copper complexes of 1, 10-phenanthroline, amino acids, peptides,

salicylates, macrocycles, and Schiff base derivatives have been verified as catalysts for superoxide

dismutation/41, 12/. Even if SOD mimics, based on complexed copper, can be stoichiometric rather than

catalytic scavengers of oxygen radicals, copper, once freed from the complexity agent, might catalyze

hydroxyl radical formation. Furthermore, some potent effects of copper (II) compounds with antioxidant

activity have been registered/42, 43/. Recently, kinetic and thermodynamic considerations have shown that

Cu, Zn-superoxide dismutase is unique in its ability to catalyze 02 dismutation in vivo in contrast to copper

compounds which have this feature in vitro, due to different reactivity towards dioxygen (low for SOD and

high for copper complexes)/44/. If, by means of this contribution, it is suggested that copper compounds may

efficiently replace SOD only in those pathological processes in which the local concentration of 02" can be

rather high, it is not clear which parameters are involved in the differing dismutation ability shown by

different copper complexes in vitro. Although some hypotheses have been put forward/45, 46/, there is some

doubt that the proposed activity-structure relationships are correct. In fact, not considering that copper forms

labile complexes, the scavenger activity is attributed to the same species obtained in the solid state as well as
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dissolved in the reaction medium. In a medium where competitive ligands such as buffer, xanthine, and OH"

are present; this type and concentration of copper compounds can change, invalidating any structure-activity

correlation. Recently, Costanzo et al. have found that some copper complexes have a productive effect

against photohemolysis sensitized by 2-(3-benzoylphenyl) propionic acid (ketoprofen)/15/, a drug which

undergoes photodegradation involving a superoxide radical as a reactive intermediate /47/. Site-directed

mutagenesis is an important tool in studying and understanding the factors determining enzymatic

mechanisms and the role of the residues involved in the catalytic reaction/48, 49/. Substitution of some of

the potentially critical residues in the active site cavity of CuzZn2 superoxide dismutase (SOD hereafter) has

recently led to a better understanding of their role in the catalytic mechanism/50, 51/.

SODs are, in the majority of cases, cytoplasmic enzymes, predominantly found in eukaryotes, which

protect cells against the toxicity of superoxide, a by product of aerobic metabolism. SOD is a very efficient

catalyst for the dismutation of superoxide to molecular oxygen and hydrogen peroxide/2, 52/. Moreover

SOD is a dimer of identical subunits, each of them containing one copper and one zinc ion/53/, the copper

ion being essential for the catalytic reaction. The. efficient catalytic properties of SOD depend on the redox

potential of the Cu+Z/Cu+ pair, which is intermediate between the potentials of the pairs O2/02 and Oz/O2"2.
During the catalytic reaction, the copper ion is cyclically reduced and oxidized with the consequent

production of O2 and H202 respectively/54/. Both reactions have rate constants of about 2 x 109 S"1 M"1/55/;
such high rates are thought to be due to increased substrate attraction towards the active channel due to

positive electrostatic field at its entrance/55/.

CuZn-SUPEROXIDE DISMUTASE

CuZn-SOD is a metalloprotein which catalyzes the scavenging of superoxide anion 02" (Eq. 2)/56/.

202" + 2H
/ + Cu-SOD H20 + 0 + Cu-SOD (2)

The catalytic site is composed of a copper (II) ion ligated by four histidines and water molecule in a

distorted five-coordinated geometry and a Zn (II) ion ligaTed by three histidines and an aspartate in a

distorted tetrahedral environment/57/. Only the copper (II) ion undergoes oxidation-reduction cycling during

the dismutation of O2/58/. The zinc ions are not involved in the redox cycle, but maintain ,the configuration

of the active site and facilitate the oxidation step/59, 60/. In recent years particular attention has been paid to

synthetic analogs of Cu, Zn-SOD /61, 62/. In this perspective, the coordination structures and redox

potentials of each Cu (II) ion in the synthesized copper (II) complexes which can be considered to possess

SOD-mimic activity were found to play a significant role/57/. Copper-zinc-superoxide dismutase (Cu-Zn-

SOD) is believed to protect cells from the toxic effect of superoxide ion by catalyzing the dismutation

reaction of O2/2, 11/. X-ray crystal structure analysis shows that the active site of Cu, Zn-SOD from bovine

erythrocytes comprises two identical subunits, each of which contains a histidine (imidazolate)-bridged Cu

(II)-Zn (II) active center. In Cu-Zn-SOD/63/, the subunits contain fully active imidazolate-bridged bimetallic

centers in which Cu (II) has replaced Zn (If).

Numerous imidazolate-bridged binuclear copper (II) complexes have been prepared and characterized as

12
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models for Cu, Zn-SOD active site. Two imidazolate-bridged mononuclear complexes proved to be

insufficient as models because their imidazolate bridge in aqueous solution is stable only in a very narrow pH

range. In order to obtain imidazolate-bridged binuclear copper (II) complexes that are stable over a larger pH

range, several imidazolate-bridged dicopper (II) complexes with macrocyclic ligands have been reported/64,

65/and been considered to be better Cu, Zn-SOD (or Cu, Cu-SOD) mimics due to their enhanced stability by

the presence of the binucleating macrocycles or macrobicycles. Two of these cycles seem to be better ligands

for the imidazolate bridge to accommodate in: one is the 24-membered alicyclic hexaazamacrocycle/64/and

the other is the 24-membered octaazamacrocycle with three xyls/31/.

One of these metalloenzymes is Cu, Zn-SOD which is a dimeric protein (MW=31200) with two identical

subunits, each containing one Cu+2 and one Zn+z ion. The direct utilization of this natural enzyme as a

pharmaceutical agent is limited because of low membrane permeability as a consequence of its high

molecular weight/66/. Therefore, considerable efforts were made in order to obtain nontoxic, low molecular

weight biomimetic molecules, which are able to catalyze the dismutation of superoxide anion and therefore to

provide a suitable alternative to superoxide dismutase in clinical application/17/. A variety of low molecular

weight complexes of transition metals, especially those of copper, were prepared and studied as SOD mimics

/64, 12/. Examples of such complexes include derivatives of the antiinflammatory drugs salicylates, amino

acids, peptides, and amines/12/.

Valproic acid (2-propylpentonoic acid) in the form of its sodium salt, (CH3CH2 CHz)2CHCOONa+, has a

wide spectrum of activity as an anticonvulsant drug/67/. The observation that copper (II) complexes of

anticonvulsant and antiinflammatory drugs are more active agents than the activity of such drugs may be due

to the in vivo formation of metallic complexes/68/. Physical studies of copper (II) valproate /69/ have shown

that it contains binuclear units with bridging carboxylate ligands similar to other copper (II) carboxylates

/70/. Several binuclear copper (II) carboxylates of antiinflammatory drugs such as salicylates /12/,

indomethacin/71/, and lonazoloc /72/ were studied as SOD mimics, but not of anticonvulsant drugs such as

valproate. In addition, it was reported that the presence of coordination sites belonging to nitrogen

heteroatomic rings such as imidazoles or pryridines is important for SOD activity/5/. And since complexes

with bipyridines and phenathrolines are DNA intercalators, showing an ability to inhibit nucleic acid

synthesis in vivo/73/, these ligands are used in this study to form ternary copper (II) valproate complexes.

Mn-SUPEROXIDE DISMUTASE

The Mn- and Fe-containing superoxide dismutases (SODs) are a family of enzymes which is widely

dispersed in microorganisms/74/. Two types of superoxide dismutases have been distinguished. The first

type includes those SODs for which the apoenzymes are active with only one of the metals: manganese or

iron, and replacement of that metal by the other results in loss of activity. For example, the E. Coli MnSOD is

active with manganese, but not with iron/75/, and FeSOD frown P. ovalis is active with iron only/76/. The

second type includes those SODs which are active with both metals. Such enzynes have been termed

"cambialistic SODs"/77/, an example being the SOD isolated by Matsumoto et al./78/, which was found to

be active either with nanganese or iron. Iron and manganese superoxide dismutases from bacterial sources

13
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have been shown by several crystallographic studies to be structural homologs. Their active sites of the iron

and manganese SODs share the same metal ligands, with silnilar ligand coordination geometries/74/. The

metal cofactor specificity of some enzymes is unclear in light of the structural similarities, but it is reasonable

to suppose, as it was suggested previously by others/74/, that the immediate environment of the metals in the

enzymes must differ.

The isolation of MnSOD from the Ba bacterium was reported /74/. This is a moderately halophilic

halotolerant microorganism which can withstand large variations in external salt concentrations. The enzyme

contains an inactive iron, which differs in its environment from the iron in E. coli FeSOD. The presence of

manganese and iron in SOD from Bal raises the question of their role in the enzyme’s activity. The fact that

H201, known to inactivate FeSODs/79, 80/, did not affect the activity of SOD from Bal does not contribute

to clarify their activity in the enzyme.

SUPEROXIDE DISMUTASE ACTIVITY

The superoxide disnutase-mimetic activity of the binary Cu2(valp)4 complex and their ternary complexes

with diimines was studied using the alkaline MezSO-NBT method /12, 80/. A unit superoxide dismutase

activity is the concentration of complex or enzyme which causes 50% inhibition of alkaline Me2SO-nediated
reduction of NBT; this concentration is expressed as IC50 for comparative purposes. The data for SOD

mimetic activity of the complexes under investigation are shown in Table 1/80/. In addition, to ascertain the

effectiveness of the present complexes as functional SOD mimics, a comparison was made/80/of the IC50

of several known Cu (II) complexes (Table 1), which were previously demonstrated as SOD mimics/12/, by

the NBT method under the same conditions. The data suggest that the activities of the present complexes are

higher than those of other copper (II) complexes. The mechanism believed to be operating in both Cu, Zn-
SOD and Cu (If) complexes involves the initial binding of superoxide to be axial Cu (If) site, with

subsequent redox cycling of the Cu (II) ion (Eq. 3 and 4)/64/.

Cu+2 + 02 Cu+ + 02 (3)

Cu+ + 02" + 2H+-- Cu+2 + H202 (4)

Some factors were suggested which may discriminate among the dismutation features of the copper (II)

complexes in vitro, and these may include: First a fast exchange of molecules axially linked to the center and

a limited steric hindrance to the approach of the superoxide anion are considered essential requirements for

the successful binding of the 02 radical/80/. Second the flexibility of the copper (ll) arrangement, which

facilitates the interaction of the 02" radical, followed by the rapid electron transfer reaction which results in

reduction to copper (ll)-O2" species /32/. Third the favorable response of rt-electrons of the coordinated

ligands in stabilizing the Cu(tl)-O2" interaction/7/.

The control of the free radical flux derived from, oxygen is jeopardized in many circumstances in which

superoxide (SO) anion production is excessive. This overproduction of SO can overwhelm the body’s ability

to catalytically dismute superoxide and reduce or eliminate the radical burden. This deleterious oxygen-

derived free radical has been demonstrated to be a mediator of reperfusion diseases, such as those following
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Table 1

Superoxide dismutase-Mimetic Activity/80/

Compound

_Cu2(valp)4, )

(Cu(valp)2(2,2-bpy)) HEO, (2)
Cu(valp)E(phen), (3)...

_Cu(valp)a(dmph), (4)

(Cu(valp)E(-4,4"-bpy),, (5)

(CUE(valp)4(t-4,4"-bpy)) (6)
Cu(salicylate)2
Cu(as irinate)2(py.rid ine)2

-Cu(glycylglyc.inate)(2,2 "bPY), 3H20
_Cu(glycylglycinate)(phen), 3H20

Cu(cimetidine)2(C104)2
Cu,Zn-SO

IC50"/lm
10.4

4.2

4.5

6.3

18.3

5.0

44

13

25

32

4.0

0.72

aI50 is defined as the concentration of complex or enzyme which produces 50%

inhibition ofNBT reduction.

acute myocardial infarct or stroke, and shown to be associated with development and continuation of

inflammatory processes, involved in diseases such as arthritis, and to play a major role in the initiation of

neurological disorders such as Parkinson’s disease/81/. Given the high reactivity of the superoxide radical,

however, it was hypothesized that Cu, Zn-SOD might also associate with the membrane surfaces of

mitochondria and peroxisomes, both of which generate substantial amounts of this radical. To test this

hypothesis the subcellular localization of Cu, Zn-SOD was examined in rat brain and liver as well as in

cultured human fibroblasts with the use of antibodies specific for Cu, Zn-SOD, Mn-SOD. This test provided

direct evidence that Cu, Zn-SOD is associated with both mitochondria and peroxisomes in the brain, liver,

and fibroblasts/82/. Higher organisms produce superoxide anion as an occasional byproduct during the one-

electron reduction of dioxygen; this occurs in respiration and photosynthesis. Also, in animals, macrophases

generate superoxide as part of the immune response. Organisms must therefore have ways to regulate

superoxide concentrations since excess amounts can inactivate enzymes containing iron-sulfur clusters and

can lead to the formation of highly oxidizing species damaging to other cellular constituents/83/. Recently,

the three-dimensional structure of Cu, Zn-SOD from photobacterium leiognathi has been reported and

interesting differences with respect to the eukaryotic SODs have been described concerning the dimer

interface region and the assembly of the electrostatic loop forming the active site/84/. This enzyme catalyses

a very rapid two-step dismutation of superoxide to dioxygen and hydrogen peroxide through an alternate

reduction and oxidation of the active-site copper ion/85/.
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CONCLUSION

Our vast knowledge of superoxide dismutase (SOD) chemistry and biology is moving the field towards

new and exciting directions. There are detailed issues relating to the mechanism and its biological functions

that are being addressed. It is important to note that these enzymes are involved in the biosynthesis of

metabolites, which form the largest pool of compounds from which numerous pharmaceutical substances

have been discovered. We can expect new and exciting developments in this area in the near future. Several

model studies have advanced our understanding of the interacting SOD in biological systems.
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