
ANTITUMOR ACTIVITY OF 1-TRIPHENYLGERMYL-4-PROPIONO-SUBSTITUTED SEMICARBAZIDES, THIOSEMICARBAZIDES AND THEIR HETEROCYCLIC DERIVATIVES

Fengfu Li¹, Zhongbiao Zhang¹ and Huan Gao*²

¹ Institute of Elemento-Organic Chemistry ² Institute of Polymer Chemistry Nankai University, Tianjin, 300071, P. R. China

ABSTRACT

Five organogermanium compounds with the formulae Ph₃GeCHR' CH₂CONHNHC(X)NHR" and

 $(R' = H, Ph; R'' = Ph, p-CH_3-Ph; X = S, O)$ were found to possess inhibitory effects on gastric carcinoma MGC-803 *in vitro*.

Key words: germanium, organogermanium, antitumor activity

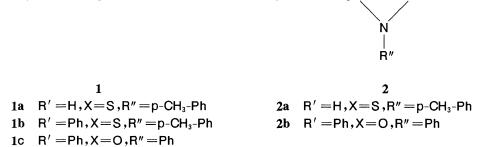
It has been reported that trialkylgermylpropanoic acids and their derivatives showed antibacterial activity^[1] and the selectively inhibitory action on the decomposition of enzymes^[2]. However, no antitumor properties of these compounds have been known in the literature. In our previous work^[3], we have reported the syntheses of some 1-triphenylgermyl-4-propiono-substituted semicarbazides, thiosemicarbazides (1) and their heterocyclic derivatives (2). In the present paper, we report the antitumor activity of these compounds.

Table 1	Effects of 1 and 2 on gastric carcinoma MGC-803	

Compounds		Inhibition rate $(\%)^*$	
	1ppm⁵	10ppm	100ppm
1a	38.4	32.8	18.4
1b	20.0	28.8	60.8
1c	8.0	21.6	28.0
2 a	28.0	40.0	48.0
2 b	0.00	4.80	15.2

^a Inhibition rate reported in this paper was tested according to reference 4.

^b Dimethyl sulfoxide was used as solvent, the same in Tables 2 and 3.


Table 2 Effects of 1 and 2 on gastric carcinoma BGC-823	Table 2	Effects of	1 and 2 on	gastric	carcinoma	BGC-823
---	---------	------------	------------	---------	-----------	---------

Compounds	Inhibition rate(%)			
	1ppm	10ppm	100ppm	
1a	-6.82	-12.5	-1.55	
1b	-4.55	-2.27	68.18	
1C	-14.77	-9.09	19.32	
2 a	-9.09	-4.45	9.09	
2 b	-34.15	-15.85	-6.10	

C = X

Compounds	Inhibition rate(%)			
	1ppm	10ppm	100ppm	
1a	-11.63	-8.53	-3.10	
1b	-7.75	20.93	56.59	
1c	-1.55	4.65	25.58	
2 a	-13.18	7.75	18.60	
2 b	-6.20	-9.30	-3.80	

Table 3 Effects of 1 and 2 on nasopharyneal darcinoma KB

Ph₃GeCHR'CH₂C

As shown in Table 1, to some extent, compounds 1 and 2 are all effective against gastric carcinoma MGC-803 under the experimental conditions. However, no inhibitory effects were found against gastric carcinoma BGC-823 or nasopharyneal darcinoma KB under the same conditions as above (see Tables 2 and 3).

Acknowledgement. The authors are grateful to the State Key Laboratory of Elemento-Organic Chemistry for financial support of this project, also to Beijing Medical University for their testing of antitumor activity.

REFERENCES

- 1. Kakimoto, N; Yashihara, T; Akiba, M. and Takada, T., *Japanese Patent*, 6200093; CA, 106, 196613b.
- 2. Kakimoto, N; Katayama, T; Mori, M. and Hasato, T., *ibid*, 6200092;CA, 106,196614c.
- 3. Chen, R. and Li, F., Appl. Organomet. Chem., 1995, 9, 277.

Ph₃GeCHR¹CH₂C(O)NHNHC(X)NHR["]

4. Denizot, F. and Lang, R., Journal of Immulogical Method, 1986, 89, 271.

Received: May 7, 1996 - Accepted: June 7, 1996 - Received in revised camera-ready format: October 3, 1996