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Introduction

Quality control materials are usually described by their
means and ‘total’ standard deviation (s;). Analysis of
variance can be used to separate the total standard
deviation into its within-run (s,) and between-run (s)
components [1]:

5 = (SwQ + 5b2)1/2 (1)

Most assays performed in chemistry and endocrinology
laboratories have values of 5, which are non-zero with the
ratio s,/s,, varying from 0.3 to 3 [2 and 3]. Westgard, Falk
and Groth have recently used computer simulations to
show how s, and s, affected the performance character-
istics of various control rules [4 and 5]. Their simulations
were based on a model that incorporated s, s, and errors
of varying sizes, either systematic or random. The
simulations were used to obtain the probability of false
rejection (p4), the probability of a rejection signal when
no analytical error was present; and the probability of
error detection (p,4), the probability of a rejection signal
when an analytical error was present. They found that
with significant s,, there was deterioration in the perfor-
mance characteristics of rules sensitive to systematic
error, i.e. there was a tendency for p; to increase and p,4 to
decrease. They concluded that the optimal detection of
systematic errors was difficult in the presence of signifi-
cant s,.

An alternative model, which more realistically describes
the interpretation of control observations by the labora-
torian, is presented. Use of this model yields performance
characteristics which differ significantly from the West-
gard approach and demonstrates how a specific control
procedure, the mean rule, can be optimized for analytical
methods. The mean rule is a simple, powerful procedure
for the detection of systematic errors and has been
recommended in various quality control schemes [6]. Its
simplicity permits direct calculation of the probability of
rejection without computer simulations.
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Models and methods

Mean rule

A mean rule, Xg g1, refers to the control rule for which the
mean of a set of N measurements exceeds the control
limits which give a 1% frequency of false rejections (Pj =
0.01) [7]. When a method is in control, the mean of the
controls for each run is distributed about a grand mean x
with a standard deviation of (s,2/N + s5;2)1/2 [5]. For a
Gaussian distribution, the limits for the x4, rule are:

Upper Limit = L;; = x + 2.58 (5,2/N + 5,2)1/2 (2)
Lower limit = L; = x — 2.58 (5,2/N + 5,2)1/2, (3)

Westgard Model (Model 1)

In this model, groups of control data with given means,
Sw, §p and variable amounts of systematic error or random
error are simulated and inspected for violation of
particular rules or sets or rules [4]. To simulate control
results, the error components, s, and s, are first added to
the true mean, x. Because s, and s, can either be positive
or negative, the resulting control data are distributed
symmetrically about #. Then to simulate systematic error
(SE), the shift ASE is added to the control results. The
control results are then distributed about x + ASE.
Figure 1(a) shows the symmetrical distribution of the
control observations about ¥ + ASE; the standard
deviation is (s, 2/N + 5,2)1/2. The exact probabilities of
rejection by the mean rule can be calculated. The control
mean will be distributed about ¥ + ASE and the
normalized distance between the mean and the control
limits will be:

Distance 1: Zy; = (Ly — (x + ASE))/(s,2/N + s,2)1/2 (4)
Distance 2: Z; = (L; — (x + ASE))/(s,2/N + 5,2)1/2. (5)

The probability that the control mean is outside either the
upper or lower control limits is equal to the sum of the
probabilities that correspond to the upper and lower
normalized distances (found in any Z-distribution table).

Alternative Model (Model 2)

To determine the presence of systematic error in an
analytical run, one or more control rules are used to
compare the control results to the stable mean. In the
application of the mean rule, the total shift (shift,) or the
difference between the stable mean and the current batch
mean is monitored. The total shift is equal to the sum of
any systematic error plus the shift due to the between run
component. Model 2 duplicates the manner in which
individual runs are reviewed in the laboratory. In this
model only shift, is added to the true mean. As shown in
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Figure 1. Comparison of the location and distribution of the means
of N control observations. Figure 1(a) shows Model 1; figure 1(b)
shows Model 2.

figure 1(4), the mean of controls is distributed about ¥ +
shift,, Within a run, s, is the only source of random error
and the normalized distance between the new mean and
the upper and lower control limits become:

Distance 1: Zy = (Ly — (% + shift,))/(s,2/N)¥/2  (6)
Distance 2: Z; = (L; — (x + shift))/(s,,2/N)1/2  (7)

The probabilities that the new mean is outside either the

upper or lower control limit can be calculated as for
Model 1.

Methods

For Model 1, the systematic error was varied from 0 to 5 s,
in multiples of 0.5 s, for the following values of s,/sw: 0, .5,
1, 2, and infinity (s,, = 0). The probability of the mean of
one and four observations exceeding its control limits was
calculated with equations (4) and (5). The probability
was then plotted against the size of the systematic error,
expressed in multiples of s,.

For Model 2, the total shift was varied from 0 to 5 s, in
multiples of 0.5 s, for the following values of 5,/s,: 0, .5, 1,
2, and infinity (s,, = 0). The probability of the mean of
one and four observations exceeding its control limits was
calculated with equations (6) and (7). The probability
was then plotted against the size of the total error expressed
in multiples of s,.

To illustrate the differences between Model 1 and Model
2, power functions were generated as described above for
splspw=1land N=1,2,4and8.
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Results

Power function curves for the mean rule for Models 1 and
2 are shown in figures 2 and 3, respectively. Figure 2
(Model 1) shows the performance characteristics of the
mean rule for the detection of systematic error expressed
in multiples of 5. With one control the probability of
detecting a systematic error of 2 s,is 0.28, regardless of the
ratio, s,/s,,. However, with four controls and increasing
sp/$,, there is a marked reduction of efficiency. For
example, the probability of detecting a systematic error of
2 5, decreases from 0.92 to 0.28 as s, increases from O to s,.

MODEL 1
N=1
PROBABILITY
SB/SH=0
1\.
SB/ SH=0.5
o84 s
SB/ SH=1.0
0.6F S8 / SW = 2.0
0.4} SB / SH = CO
0.2f
% 1 2 3 4 5
SYSTEMATIC ERROR (St)
MODEL 1
N =4
PROBABILITY
SB/SH=0
1.
SB / SW =0.5
o8t S S 7T
SB/ SN=1.0
0.6F SB / SW = 2.0
0.4 SB / SW = O
0.2

SYSTEMATIC ERROR (St)

Figure 2. Power function curves for the %p.o; rule using Model 1 for
N =1 (figure 2[a]) and N = 4 (figure 2[b]). The ratio, sp/5,,, is
varied from 0 to .

In figure 3 (Model 2) the scale on the abscissa is also
expressed as multiples of s,, When s, = 0 (s,/5,, = 0), the
Model 2 power functions are identical to those of Model
1. For Model 2, the ratio s,/s,, affects the curves even for
N = 1. As s5,/s,, increases, small shifts are detected less
frequently and large shifts more frequently. For N = 4 the
curves are steeper and are displaced to the right in
proportion to the importance of s,. For s,/s,, approaching
infinity the power functions approximate a step function
and are not influenced by V.

Figure 4 shows the effect of averaging different numbers
of controls for both models. As N increases, both models
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Figure 3. Power function curves for the %p.o; rule using Model 2 for
N =1 (figure 3[a]) and N = ¢ (figure 3[b]). The ratio sp/s,, is
varied from 0 to .

show improved performance. For model 2 and large N,
the curve approaches a step function and indicates
certainty about the presence and magnitude of the shift.

Discussion

In Model 1, for each run generated, the total systematic
deviation from the true mean is given by ASE plus the
contribution given by s,. Since the contribution of s, can
be either positive or negative, the total deviation can be
greater or smaller than ASE. For all the runs generated,
the mean deviation is thus ASE. ASE may be thought to
represent a long-term error that occurs over many runs,
while s, represents the short-term shifts occurring from
run to run. In Model 1, an effort is made to separate the
contribution of s, from that of ASE; s, becomes a source of
noise that impairs the detection of the long-term system-
atic error ASE. The distinction between ASE and s,
explains the general degradation in performance for rules
used to detect systematic error (ASE) with increasing
ss/s,. The laboratorian does not distinguish, however,
between the long-term and short-term shifts at the end of
an analytical run. He is interested in their total effect.
These considerations prompted the adoption of Model 2
in which only two components are required to describe a
run, the systematic comporent, expressed by shift, and
the random component by s,,.

The power function plots of the mean rule derived from
Model 2 for nonzero s, differ significantly from the Model
1 plots, both for p; and p,,. The pj of the mean rule, xg.1,
is fixed at 0-01 for both models. In Model 1, pj is
represented by the y intercept. For Model 2, 5, represents
the standard deviation of shift, for a series of acceptable
runs in which no systematic error is present. Approxi-
mately 95% of these acceptable runs will have a shift,
below two times s5;. By transforming this two times s, to a
corresponding multiple of s,, a zone of low shift, can be
defined which includes 95% of these acceptable runs. The
probability of rejection should be low in this zone. The
runs with a very low shift, will have a probability of
rejection far below 0-01 for the xo.9; rule. Acceptable runs
with a shift close to twice 5, will have a probability of
rejection higher than 0-01. Overall, for the %o.q, rule, the
average p ; for the acceptable runs will be 0-01.

Two observations emerge regarding the detection of large
shifts. First, for high s,/s,, the probability of rejection
changes abruptly, from a very low level to a high level as
shift, increases: This reflects a high certainty about the
size of the shift when the noise produced by s,, is low. The
power function curves do not change significantly with
replicate analysis. Second, with low s/s,, the increased
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Figure 4. Power function curves for the %g.g; rule for Model 1
(figure 4[a]) and Model 2 (figure 4[b]) with s4/5,, = 1 and N =
1,2,4and 8.
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pea With increasing shift, is more gradual and reflects the
noise produced by s,. Replicates improve the efficiency
markedly and allow detection of even small shift,.

Use of the mean rule with actual laboratory data yields a
low p for ‘in control’ runs and a high p,; with significant
total shifts. The creatinine method, for example, on the
Hitachi 705 has been shown to have ratios of s;/s,, ranging
from 0.5 to 1 depending on the concentration of the
control [2]. For a ratio s,/s,, of 1, s, = 5,/V2—equation
(1). A shift, of 25, is equivalent to 1-4 5, and implies that
approximately 95% of the ‘in control’ runs have a shift,
below 1-4 5, As expected, figure 4(b) indicates a low
probability of rejection for shift, below 1+4 5, because the
mean rule with a low p; was used. The probability of
detecting a significant shift increases greatly with
increased numbers of observations. Figure 4(b) shows
that for a total shift of 2'5 5,, the probability increases from
045 (N =1) to 099 (N = 8).

Model 2 indicates that the performance of the mean rule
is not degraded with s,. On the contrary, only one or two
controls are required to detect shifts larger than usual
when the ratio s;/s, is high. A high s,/s, must not be
perceived as ideal as it only reflects the fact that large
shifts are accepted as part of the normal variation. The
ideal situation, in which no significant shift (s,/s,, is low)
occurs between runs, necessitates meticulous attention, to
reduce the between-run sources of errors, for example
calibration errors. In addition, as shown in figure 3, many
control measurements are necessary to obtain the desired
probability of error detection in order to maintain the
performance. In practice, there is often a trade-off

between the effort for control and the size of the tolerated
shifts.

While the mean rule can be a powerful tool for the
detection of systematic deviation, its use is not always

practical. For most instruments, two different levels of
control material are analysed per batch. Averaging the
normalized values of each level may not be acceptable
because the systematic shifts might be different at cach
level. In this situation, a multi-rule approach is probably
more appropriate [9]. However, long-term averages of
successive values of control material can easily be
computed. Cembrowski e/ al. described an application of
the mean of controls that permits an accuracy trend
analysis by the continuous monitoring of the mean [10].
We think that this accuracy trend analysis will increase
the usefulness of the information provided by reference
samples. Moreover, because of its excellent performance
characteristics for the detection of systematic shifts, the
mean should be used to analyse patient data [8].
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