
Journal of Automatic Chemistry Vol. 11, No. 2 (March-April 1989), pp. 70--75

Decision-theoretical formulation of the
calibration problem

Miroslav Kirnff
Institute of Information Theory and Automation, Czechoslovak Academy of
Sciences, Pod voddrenskou vf 4, 18208 Prague 8, Czechoslovakia

and Katalin M. Hangos
Computer and Automation Institute, Hungarian Academy of Sciences, Kende u.
13/17, l-Budapest, Hungary

The choice ofcalibration policy is ofbasic importance in analytical
chemistry. A prototype of the practical calibration problem is

formulated as a mathematical task and a Bayesian solution ofthe
resulting decision problem is presented. The optimum feedback
calibration policy can then befound by dynamic programming. The
underlying parameter estimation and filtering are solved by
updating relevant conditional distributions. In this way: the
necessary information is specified (for instance, the need for
knowledge of the probability distribution of unknown samples is
clearly recognized as the conceptually unavoidable informational
source); the relationship of the information gained from a
calibration experiment to the ultimate goal ofcalibration, i.e., to
the estimation ofunknown samples, is explained; an ideal solution
is given which can servefor comparing various ways ofcalibration;
and a consistent and conceptually simple guideline is given for
using decision theory when solving problems ofanalytical chemistry
containing uncertain data. The abstractformulation is systematic-
ally illustrated by an example taken from gas chromatography.

Introduction

The correct choice of calibration method has extreme
importance in analytical chemistry and many papers can
be found on this, topic (see, for example, Hilton et al. [1],
Kateman [2], Hunter and Lamboy [3]). The usual
formulation of the calibration problem considers calibra-
tion as a separate preliminary phase of the measurement
process which results in an estimate of some parameters
of the calibration graph. In the course of the real
measurement this calibration result is used only for the
determination of the desired quantities from the measure-
ment results.

When analysing in depth this seemingly simple (at least
from the statistical point ofview) problem, we found that
the full range of statistical decision theory is needed when
formulating it. Much has remained to be done in order to
construct a feasible suboptimum calibration policy as the
optimum one is the well known non-feasible dual control
design.

The paper is organized as follows. Based on the practical
calibration task the exact formulation of the problem is
given as a special case of the statistical decision model.
The solution takes the form of dynamic-programming
optimization. The optimization requires to solve identifi-
cation and filtering problems is discussed in the final
section before the conclusions.

The concepts in the paper are illustrated by a simple
calibration example arising in gas chromatography. The
parts related to this example are printed in italics.

The practical calibration problem

A measurement device evaluates a set of samples. The
result of the tth measurement is denoted byy(t) and is
called (discrete) time. The goal ofthe measurements is an
estimation of a related quantity, say x(t). The mapping

C:x(t)-->y(t) (1)

characterizes the measurement device and it is stochastic
in nature. The measurement process is to be designed in
such a way that relation (1) is: as deterministic as

possible; (almost) invertible, allowing the construction of
the backward mapping

C-l:y(t)-->x(t) (2)

simple enough to be practically feasible; and stable
through the time course.

In automated analytical measurements of large
sequences of samples, the above two phases cannot be
separated artificially. In automated laboratories it is
common practice to insert known samples into a sequence
of unknown samples in order to control the validity of the
previous calibration and/or to re-calibrate the measure-
ment system. There is a need to determine the optimum
way of performing such checking and re-calibration. The
aim of this paper is to propose a consistent formulation of
this problem which enables the optimum calibration
policy to be established.

Author to whom correspondence should be addressed.

Fairly often the deterministic constituent of the mapping
C is an (almost) linear function characterized by an
absolute term and by a slope. The calibration problem
arises when the mentioned pair or, more generally, a

finite-dimensional vector of parameters w determining
fully the mapping C is unknown.

The calibration is usually performed in such a way that to
the sequence of samples with unknown values of x(t), a

portion is added with known values of x(t) (control
samples). The results of the calibration measurements
are then used to specify C more completely (by estimating
the vector ofunknown parameters and by substituting its
point estimate for the unknown parameter vector).
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In gas chromatography, the tth measurement resulty(t) can be the
area or the height ofthe peak corresponding to the component to be
determined. The estimated quantity x (t) is the concentration ofthat
component.

The mapping C is the relationship between the measuredpeak area
or the peak height and the concentration of the component. It is
usually assumed to be a linear function (the case of linear
calibration), i.e., oftheformy(t) ax(t) + b + e(t) where a and
b are constants and e(t) is a random measurement error with zero
mean.

The unknown vector parameter w consists of a, b and of
parameter(s) characterizing the error distribution (typically,
dispersion and mutual correlation of measurement errors for
different samples).

The calibration problem consists essentially of: the choice
of calibration policy, that is, the choice of a rule which
selects values of control samples and time instances at
which the control samples are to be added; and the
specification of how the results of measurements should
be used when determining the value of the unknown
sample. The Bayes solution given below solves (concep-
tually) both of these tasks.

The formal calibration problem

This section ’translates’ the calibration problem outlined
above into the framework of the statistical decision
model. We refer to De Groot [4] for more detailed
information about this topic. The vital part of the
solution, i.e., Bayesian identification (presented in con-
trol engineering terms), can be found in Peterka [5].

Our explanation consists essentially ofthe specification of
key concepts of the decision theory, such as sample space,
state space and decision space, in terms of the optimum
calibration policy design. We start with the description of
variables met throughout calibration. They are imbedded
in three (overlapping) ’spaces’ according to the way in
which they influence the calibration and measurement
process.

Sample space
A sequence of outputs y(1...M) (y(1)y(2),...y(M))
measured within a given finite-time horizon M and the
control samples x(ti) at checking time instances
tie{ 1,2,...,M} are the sources ofmeasured information for
the calibration task, they form so called sample space. We
assume that both the measured outputs y(t) and inputs
x(ti) are real scalars.

In our example, the sample space consists ofall measured data, i.e.

ofthe peak areas or the peak heights and ofthe concentrations ofthe
control samples.

State space
The measurementsy(1 ...M) are fully determined both by
the values for the samples x(1...M) (x(1),
x(2),...,x(M)) and by the measuring device (charac-
terized by the mapping C). Possible x(1...M) and

mappings C form so called state space of the calibration
problem. To avoid subtleties of the non-parametric
estimation, we assume that the mapping C is completely
characterized by a finite-dimensional vector of unknown
parameters w, i.e., the state space consist of possible
values of x(1...M) and w.

Note that the control samples {x(ti)} belong both to the
sample and state spaces, and are the directly measurable
state entries.

The concentrations of unknown and of control samples are the
x-component of the sample space. The random mapping C is
’parametrized’ by assuming that the case of linear calibration is
relevant for gas chromatography and the measurement noise
e (1...M) has normal, mutually uncorrelated entries with a common
dispersion r. The parameter vector completing the state of the
problem is then w (a, b, r).

Decision space
The triplet of decisions u(t) (ul(t), u2(t), u3(t)) have to
be accepted at each moment t. The entries are given the
following meaning:

ua(t)" a known sample will be/will not be added (3)

u2(t)" a value of the known sample chosen (4)

u3(t)" an estimate of the unknown quantity x(t) (5)

The sequences u(1...M) ofadmissible values ofu(t) fill so
called decision space and they are specified entrywise in the
calibration case: ui(t)eUi, 1, 2, 3.

Any numerical value can be assigned to ul. For instance, U1 {1,
O) {add control sample, do not add control sample} can be used.
In practice, the admissible values of a known sample are given
beforehand because standard, high-precision etalons are used for
this purpose. Thus, Ue {values ofavailable standards}. The
choice of possible estimates from Us {possible values of
unknown concentrations) is natural.

Any reasonable calibration policy has to balance its
contribution to the measurement precision and its cost (in
terms oftime, money, energy, etc.). For automated design
of the calibration, the degree of (dis)balance must be
quantified. The following two elements of the discussed
decision model are concerned with this aspect.

Loss function
The lossfunctionJ is a scalar function of the data d(1...M)

(d(1), d(2)..., d(M)), d(t) (y(t), u(t)) and of the state
x(1...M) (the parameter w is not argument of the loss
function as it is of secondary interest in the case treated).
The following additive form of the loss is appropriate for
the majority of the practical cases:

J(1...M) J(d(1...M)), x(1...M))
M M

--t=l q(d(t))= .__1 q(t) (6)

The partial loss related to the tth measurement q(t)
q(d(t), x(t)) should usually be a smooth function of both
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arguments and a function bounded from below (hence it
can be scaled to be non-negative).

The partial loss can often be structured as

q(t) c(u2(t))ul(t) + (1 ul(t))-(t)

CUl(t -- (1 Ul(t)) (u3(t), x(t)) (7)

where: the first term, given by the function c(.), which
depends generally on the value ofthe control sample u2(t),
counts for the overall ’price’ of the control sample (both
price for the preparation of a control sample and the loss
in the measuring productivity); and the second term,
given by the function (.,.), should reflect the loss due to
mis-determination of the unknown sample. It is reason-
able to assume that this function has its absolute
minimum for the correctly determined value of the
inspected sample, i.e., for u3(t) x(t).

Under the above widely acceptable assumptions, the loss-(.,.)
measuring estimation error of an unknown sample can be
approximated (using Taylor’s expansion and the proper scaling)
by the quadratic function

with an appropriate weight cq.

Taken into account that the function c(u2(t)) can often be
approximated by a constant, the partial loss can be written in the
simple form

q(t) cul(t) + (1 ul(t))(u3(t) x(t)) (9)

where the constant c has now the meaning ofa relative price ofthe
control sample cost versus the price of a particular error in the
determination ofthe estimated concentration.

Criterion

The loss function assigns values to various calibration
and estimation outcomes after the measurement and it is
not suitable for a prior comparison of possible calibra-
tions and so is not suitable for the design purposes. For
this, at the design stage, we shall minimize the expected
value of the above loss function taking as the optimized
criterion

K(1...M 0)= EU(...M) 0] (10)

where E[a b] denotes the expected value of a under the
condition of b and with the abbreviation

E[. [d(1...t), b] E[. It; b] (11)

In this notation, the definition (10) denotes the expected
value of the loss function with no available measured
information, i.e., with prior information only.

The expectation has to convert the loss function into the
performance index, which can be evaluated a priori; it has
to ’remove’ all random and unknown quantities which
prevent a priori evaluation of the consequences of the
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decision proposed. In this respect the unknown and
random constituents of the relation u(t) > y(t) are

operationally indistinguishable. It supports the basic
Bayesian postulate which states that the random and
unknown quantities should be described in the same

probabilistic way. this means that the expectation is
applied both to random quantities in the usual sense and
also to unknown parameters.

In the illustrative example, the expectation is taken with respect to
measurement noise e(1...M), generally randomized decisions
u(1...M), unknown values of samples x(1...M) and unknown
parameter w (a, b, r).

The conceptual plausibility of the Bayesian design

K(1...M 0 >) min (12)

has the significant advantage that no policy exists which
would achieve a uniformly smaller loss (irrespective of
state realization) that does the Bayesian calibration
policy.

Admissible decision rules

The last but very important part of the formalization
specifies the admissible decision rules. When making deci-
sions under uncertainty, the information available for it is
the dominant optimization restriction.

The particular ui(t) can be chosen by a (generally
random) mapping to the set Ui from its information set:

u(t)’d(1...t- 1) > U (13)

u2(t) d(1...t 1), u(t) > U2 (14)

u3(t)" d(1...t ), u(t), y(t) > u, (5)

The above restrictions formalize that different entries of
u(t) can use different information sets. This fact can be
explained easily if one takes into account the interpreta-
tions of the entries (see the discussion of the decision
space). Note that this structure is not usual for standard
formulations of decision tasks.

Having measured the peak area height data up to the time

1 we have to decidefirst ifa known or an unknown sample will
be measured next [u(t)]. The measured data can be usedfor this
decision.

Ifwe have decided to measure an unknown sample, i.e., ifwe know
not only data up to the time 1 but also the value ofu(t), we

have to choose the value ofknown sample concentration u(t).

Selecting an unknown sample [u(t) 0], its estimation, i.e., the
choice ofux(t), is additionally based on the measured sample value
y(t)

Summary of the formal calibration problem

Having specified all elements of the formal calibration
problem, we are ready to summarize its formulation, as

follows:
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1. Specify the loss function J(1...M) which reflects the
goals.

2. Specify the ranges Ui of the decision variables U

3. Select as the (sub)optimum one the calibration policy
consisting of the sequence ofmappings (13), (14), (15)
from the admissible information sets to the chosen
decision ranges which (approximately) minimizes the
expected values of the loss function.

Conceptual solution of the calibration problem

The most effective procedure for the design of the
optimum calibration policy, with the information restric-
tions of the type (13), (14) and (15) on admissible
decision rules, is dynamic programming. We shall write
the form which is specific to our case.

It can be shown that the optimum calibration policy can
be taken as a non-randomized one. For any fixed data
from the admissible information set the optimally chosen
decision is the minimizing argument in the following
functional (Bellman) equation:

K(t...M t-1)= min E rain. E{q(t)
Ul(t)eUl,u2(t)eU2 u3(t)ec/3

+ K(t + 1...M t) t} It- 1;u(t),u/t)] (16)

this equation has to be solved recursively backward:

t= M,M- 1,...,1 (17)

starting with

K(M + 1...M M) 0 (18)

The term K(t + 1...M) t) denotes the function of data
d(1...t) which can be interpreted as the optimum
expected loss-to-go (after the time t):

K(t + 1...M It min E .l:__t+ q() (19)

where the minimum is taken over admissible decision
rules.

When illustrating the above optimization we assume that the
necessary moments oftreated random variables are available. Their
construction is described in the next section.

Starting the optimization for M we shouldfirst minimize the
inner expectation:

min E[cu,(M) + (1 u,(M)) (ux(M) x(M)) M]
u3(M)

cu (M) + (1- u (M)) dis (x(M) M) (20)

where dis(a b) El(a-E[alb])e b] denotes the dispersion
of the variable a conditioned on b. The minimum is achieved for
ux(M) E[x (M) M]

When choosing ul(M), ue(M) we have to minimize the outer
expectation

min E[cu (M) +
ul(M) UI,ue(M eU2

(1 ul (M))dis(x(i) M) i- 1; Ul(M), ue(M)]

For u,(M) 1 (add a control sample) we would have
K(M...M M 1) c, irrespective ofthe value ofthe control
sample ue(M).

For u,(M) 0 (measure an unknown sample) we would have

K(M...M M- S) E[dis(x(M) M) M; Ul(M),
ue(M)] E[(x[M) E[x(M) M])e M- ]

Even in this case, the value of the control sample ue(M) does not

influence the result; it can influence the quality ofthe estimation of
the calibration graph and consequently dis(x(t) t) for > M
only.

The solution ofthefirst stage consists ofa simple comparison ofthe
two possible values ofthe loss-to-go. It gives no guideline on how to
choose the value ofthe control sample; therefore, at least because of
this, the horizon M > I has to be used. The computational price is,
however, substantial as the conditional moments involved, such as

E[(x(M) E[x(M) M]) M- 1], are, as a rule, complex
functions of data with respect to which the expectation and
minimization should be performedfor M 1, M 2, A
more complete discussion ofvarious aspects ofthe design as well as

further references can be found in Kdrnj et al. [6].

State estimation for calibration purposes
The dynamic programming consists of the sequence of
taking the conditional expectation and its minimization.
Let us study which information is needed for these
evaluations. The state estimation task will be formulated
and also solved in this way. It splits in the measurement-
output prediction which relies on the parameter estima-
tion (called also identification) and in the estimation of
unknown samples (called filtering).

Equation (16) contains the two different conditional
expectations. We shall express them in terms ofrespective
conditional probability densities c.p.d.f.s). When dealing
with c.p.d.f.s, we shall use the short-hand notation
similar to that used for the conditional expectation:

p(a It;b)= p(a d(1...t),b) (22)

and particularly

p(a It) -p(a d(1...t))

For a generic discrete time the inner expectation in
equation (16) can be written as

E[. It]- Y.P(x(t) t)dx(t) (24)

and the outer expectation as

El. t- 1; u,(t), u(t)] y .p(y(t) t- 1; u,(t), u2(t))dy(t)
(25)
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It exemplifies that a model building and a state estima-
tion have to supply the predictive c.p.d.f."

p(y(t) t- 1; ul(t), u2(t)) (26)

and the filtering c.p.d.f.:

p(x(t) It) p(x(t) t- 1;y(t), u(t), u2(t), u3(t)) (27)

where the last equality follows from the definition

p(. It)= p(. d(1...t))= p(. d(1...t- 1), d(t))
p(. d (1...t- 1),y(t), u(t)) (28)

As we search for strategies with u3(t) being the determi-
nistic mapping specified by expression (15), this entry
can be omitted in the condition of the filtering c.p.d.f.
This makes it clear that both c.p.d.f.s under consideration
are just factors in the chain-rule decomposition of the
joint c.p.d.f, of x(t) andy(t). For further manipulations it
is advantageous to deal with this joint c.p.d.f., which can
be viewed as the outer probabilistic description of the
calibration graph. The term ’outer’ stresses that the
description is based on the prior information and the
measured data only. This model can be expressed as
follows:

p(x(t),y(t) It- 1; ul(t), u2(t))

y p(x(t),y(t), w t- 1; u(t), u(t))dw

y p(y(t) t- 1; x(t), w, u(t), u(t))

p(x(t) t- 1; w, u(t), u(t))p(w t- 1; u(t), u(t))dw

y p(y(t) x(t), w)p(x(t) w, u,(t), u2(t))p(w t- 1)dw

(29)

The two leading expressions in the above equation are
implied by elementary calculus with c.p.d.f.s. The
simplifications in the last step are a consequence of the
assumptions which are discussed separately for each of
the three factors involved. These c.p.d.f.s have definite
meanings reflecting the modelling of the measurement
process, the choice ofmeasured samples and the Bayesian
experience accumulation.

The probabilistic model of the measurement process."

The outputy(t) of the measurement is assumed to be fully
determined by the value of the measured sample x(t) and
by the parameters w. No additional information for
output prediction can be gained observing the data d( 1...t

1) and u(t), u(t). In probabilistic terms, the pair (x(t),
w) is a sufficient statistics for output prediction.

The c.p.d.f, p(y(t) lx(t), w) is the measurement model
describing in probabilistic terms the mapping C [equa-
tion (1)].
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Assuming our linear normal calibration case, the discussed c.p.d.f
has the form

p(y(t) x(t), w) Ny(t)(ax(t) + b, r) (30)

where p.d.f. Ny(m, r) ofa normally distributed random variabley
with a mean m and dispersion r has the known form

1 f- (Y-m) ] (31)Ny(m,r)=exp 2r j
The probabilistic description ofmeasured samples:

p(x(t) w, u,(t), u(t))
For the simplifications related to this c.p.d.f, we have
used the fact that the type ofsamples chosen (unknown or
control) is determined by u(t). The value of the control
sample coincides with u(t). The unknown samples are
assumed to be mutually independent with a fixed known
(up to the parameter w) common c.p.d.f, p(x(t) w).

It should be noted that the samples could be assumed to
be independent of w, i.e., of the measuring device.
Sometimes, however, it is advantageous to relate
parameters of the p.d.f, describing the distribution ofx(t)
to the precision of the measuring device. Moreover, by
extending the parameter vector w by parameters charac-
terizing distribution of the unknown samples, the incom-
plete knowledge of their distribution can also be faced.
For simplicity, this approach will not be followed here.

The above consideration and assumption imply that the
relevant sufficient statistics required are just the triple
(u(t), u2(t), w). The explicit form of the discussed c.p.d.f.
is

t(x(t) w, u(t), u(t)) u,(t)6(x(t) u(t))
+ (1 -u(t))p(x(t)]w) (32)

where 6(.) denotes the Dirac function.

The newly introduced c.p.d.f describes simply the distribution of
an unknown sample typical for the measured concentrations. For
instance, p(x(t) w) Nxt)(-, rR) can be often used. The mean
x and the multiple of the measuring device precision R are either
known or they extend the vector of unknown parameters of the
problem.

Bayesian identification: p(w 1)
Both of the assumed inputs u(t), u(t) are restricted
to be deterministic functions of the observed history
d(1...t 1); they provide no additional information about
the parameters of the calibration graph and can be
omitted from the condition.

The discussed c.p.d.f, contains available information
about unknown parameters; it includes the results of the
Bayesian estimation of the calibration graph (in the
extended case it also identifies the population of the
analysed samples).

The Bayes rule applied to the admissible decisions gives
the following recursion for the c.p.d.f, under considera-
tion:

p(w It) ocp(y(t) t-1;w,u(t),u2(t))p(w It-l) (33)
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where c denotes the proportionality up to a w-indepen-
dent factor and the recursion starts with a user-supplied
prior c.p.d.f, p(w) p(w 0).

The model required for this recursion [note that x(t) is
missing in the condition] is given by

p(y(t) 1; w, ul(t), u2(t))
y p(y(t)lt- 1; x(t), w)p(x(t) w, u,(t), ,2(t))dx(t) (34)

where the above-discussed models and simplifications
have been used.

Applying the identification equations to our particular calibration
case, we assume the known parameters , R) of the c.p.d.f
p(x(t) w) describing the distribution ofthe measured samples. In
the calibration phase [u(t) 1J, the sample value is known and
equal to ue(t) so that equation (34) reduces to

p(y(t) 1; w, u(t), u,(t)) Ny(o(ax(t) + b, r)
Nyco(au,(t) + b, r) (35)

In the estimation phase [u(t) 0], the assumed normality of
p(x (t) w) and equation (34) lead to

p(y(t) It- ; w, u,(t) o, u,(t))
Ny(t)(a- + b, r (Ra2 + 1))

i.e., the studied c.p.d.f, is again normal with the unknown value of
the sample x(t) replaced by the population mean -. Compared with
the calibration step the dispersion is increased, @ending on the
slope and the dispersion ratio R.

Having the c.p.d.f, p(y(t) 1; w, u(t), u(t)), we are able to
apply the Bayes equation (33). It is computationally advantageous
to start it with the self-reproducing prior p.d.f, p(w O) which
guarantees p(wlt) to have a fixed functional form. In the
assumed normal case, the self-reproducing c.p.d.f of unknown
parameters is

p (w t) ocr- (Ra + 1) -c(-7-

exp { [-1,a,b] V(t,a) [-1,a,b]’ (37)

where the prime denotes transposition, the scalar v(t) counts the
overall number of samples and Vc(t) the number of unknown
samples. The (3,3) positive definite (information) matrix V (t, a)
evolves as follows:

V(t,a) V(t- Za) + d’(t,a)d(t,) ()

using the data vector

d(t,a) [y(t), u2(t), 1]for u 1 (39)

[y(t),,]
d(t,a) V,Ra + 1 for ul 0 (40)

The above quantities are to be given the initial conditions which
express the user’s available prior knowledge. The discussion ofthis
choice is outside the scope ofthis paper and the reader is referred to

Kdrnfi [7].
The evaluation of the integral (29) would provide the solution of
the experience accumulation in the calibration task. It is, however,

numerically difficult owing to dependence of the matrix V on the
unknown parameter a. This is a consequence of the fact that not
only control but also unknown samples are used for gaining
information about the measuring device. We shall not enter into the
computational details. Instead, the independence ofthe information
matrix on the slope a is reached by the crude approximation

d(t,a) d(t,d(t 1)) (41)

where d(t 1) is an estimate of the slope a based on the data
d(1...t 1). Assuming this simplified case, the required c.p.d.f
(29) becomes a two-dimensional Student distribution [8], charac-
terized by v(t) degrees offreedom, by the expected value

f= E{[y(t),x (t)] 1; u (t), u(t))
[V13, V3]
v

IV V(t 1, d(t 2))] and the covariance matrix

cov{[y(t),x(t)]]t- 1; u,(t), u2(t))
(Vyx V3xfJ) -’
(v (t- # ) v,,

(43)
where Vyx is the left-upper corner (2,2) submatrix of V.

The evaluation of the above characteristics can be shown to be
formally equivalent to well known recursive least squares. Note that
the measured data enter into the second moment in a very non-linear

fashion (cf discussion ofdynamic programming).

Conclusions

The performed formalization of the calibration problem
could be useful in the following directions: it clarifies the
necessary models, assumptions and informational
sources for the systematic solution of the problem; and it
gives a conceptual solution of the problem which
combines all informational sources (field and expert
knowledge together with data) in a consistent way.

Application of the described methodology is far from
trivial. It gives, however, guidelines both to experts in
chemistry (which models are necessary and in which
form) and associated mathematicians (the set of equa-
tions to be numerically handled is uniquely given). In our
experience these claritications are ot such importance
that they justify adding another paper to the literature
dealing with calibration problems.
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