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Introduction

Queueing theory can be used in analytical chemistry if a
large number of samples need to be analysed. It can be
applied to optimizing the work organization of a real
laboratory and for estimating performance and the
utilization factor. However, most important application
of this method is in the design of new laboratories.

For a laboratory design, the minimum number ofanalysis
channels, the running time (the running time waiting
time + service time), the waiting time, the performance
characteristics of a channel and so on, can be determined
by the help ofqueueing theory ifthe distribution ofarrival
time and of service time and the priority of different
samples are known.

This paper reports on the background to the development
of an automated analytical system for headspace gas
chromatographic analysis of some 50 000 bloodsamples/
year.

All blood samples should be analysed by three indepoen-
dent parallel measurements. This means that the samples
are prepared by three different people and the chromato-
graphic measurements are made on three different
instruments. The laboratory was constructed on the basis
of arrival information on blood samples over a five-year
period. The running time of the samples, work-load and
the fact that 10% of the measurements have to be
repeated were taken into account in the design.

Preliminaries

The first application ofqueueing theory was the design of
telephone lines. One of the most popular monographs in
this field was written by Kleinrock ]. There is very little
information in the literature concerning the use of
queueing theory in analytical chemistry, although it is
very useful in the design of an analytical system and in
estimating its efficiency.

Adeberg and Doerffel [2] investigated average waiting
time in terms of the number of service personnel and they
established an optimum staffing level with queueing
theory.

Massart et al. [3] investigated the M/M/1 and M/M/n
systems from queueing systems. They assumed that these
systems are the most typical in analytical laboratories,
where the distribution of both inter-arrival and service
time are exponential. They discussed effects of the
fluctuation of the analysis time, the number of channels,
the number of service personnel, and the use of priorities
on the waiting time.

Vollenbroek [4] also used the M/M/1 model in the design
ofthe working order ofa laboratory for structural analysis
(IR, MS, 1H-NMR, 13C-NMR) and produced a model
simulating a real laboratory.

Vandeginste [5] has looked at the possibility ofconstruct-
ing a useful model to analyse the structure ofa laboratory.
The author dealt with data collection, data independence
proof, construction ofthe model, the validity ofthe model,
and the conclusions drawn from the queueing model.

Design of the automated analytical system

The data shown in table and the number ofarrivals per
working day with different priorities were used in the
study. The distribution of the number of samples per
working day are indicated in figure 1.

Distribution of inter-arrival and service time can be
approximated with the help of a probability density
function. The analytical solution may be used if the
successive values ofthe probability variables (for instance
the inter-arrival time intervals) are independent.

An independence test was performed on inter-arrival
times with the mean square successive difference test [6].
The D-values of the tested years (table 1) were obtained
from the following equation:

" (Xi+ 1-- Xi) 2
i=1 n-1

(xi + x)2(n-1)

where X the number of samples arrived on the ith day
the mean value of samples in a working day

n the number of working days in a year.

The critical D-value is 0"99935 and this means that the
sample arrival in the last five years was not independent
(see table 1). So a numerical method based on the
appropriate model of the laboratory was used instead.
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Table 1. Number of blood samples arriving for analysis and the
D-values ofthe mean square successive difference tests in theyears
1980-1984.

Number of
Year samples D-value

1980 39 500 0"82
1981 42 700 0"94
1982 43 300 0"82
1983 47 300 0"93
1984 48 100 0"88

The construction of a proper model of the laboratory is a
very complicated task and it is difficult to control validity.
The ’appropriate’ model is simple enough for numerical
calculation, but it adequately describes the laboratory
and is capable of dealing with data which are not
independent.

The work was divided into two steps. In the first stage,
the laboratory as a whole was tested on the basis of the
empirical sample arrival by the help ofa black-box model
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Figure 1. The distribution of the number of blood samples per
working day. (a) in 1980; (b) in 1981; (c) in 1982; (d) in 983;
and (e) in 1984.

88



T. L. Pap and L. Leisztner Queueing theory in automated systems

sample J
arrival -I laboratory

oufpuf of

results

Figure 2. The black-box model of the laboratory for the
determination ofalcohol-content ofblood sample.
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Figure 3. Block-scheme of the computer program. Where Nk,
the number of blood samples with priority, arrived in the kth
working day ofthe testedyear; rf= repetitionfactor (rf= 1"1); Y

the number ofblood samples with priority arrived in the tested
year; m the tested smallest capacity in a working day; M the
largest possible value of m; A 1, for calculation of running
times; B 1, for calculation of loading; lmin the smallest
priority; lmax---- the largest priority; tr running time; Lm-=
loading at m samples day capacity.

shown in figure 2. In the second stage, the working
processes in the laboratory were divided into serials and
parallel processes and the necessary capacity was deter-
mined in view of service times.
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Figure 4. Flow chart of the testing algorithm of the simplified
queueing model ofthe laboratory. Where index,from 1 to kmax;
kmax the number of working days in a year; k the serial
number ofa working day; priority; lmax the largest priority;
lmin the smallest priority; Nk, the number ofblood samples
with priority, arrived in the kth working day ofthe testedyear; m

the tested smallest capacity in a day; mz,i,t the number of
blood samples with priority, analysed within z working days on
the ith working day.
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Figure 5. The average running times in thefunction ofthe capacity
in a working day on the basis of1982’s data.
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The numerical calculations can be reduced, when the
service times are constant, because it is only necessary to
consider the inter-arrival times. Calculations were made
on the basis of the measured samples batched by day so
differences in service times could be equalized. These
expectations were later controlled experimentally.

Because of contradictions between analytical results and
the medical symptoms of 10% of the measurements must
be repeated. Repeated blood samples were considered as
new samples, and the number of samples arriving was
increased according to the ratio of repetitions.

Investigating the model discussed above is more simple,
because the number of blood samples arriving in a
working day are tested with different priorities in the
function ofthe maximum measurable number ofsamples
per working day. For such a model we can use a
numerical method for the calculation in applying an
appropriate algorithm. This solution is also applicable to
inter-arrival times that are not independent.

In order to make the calculation the number of blood
samples which had arrived in the previous years had to be
transformed to the designed capacity of 50000 samples
per year. The transformed capacity in a working day was:

50 000
Ni,k,t N, rf

Table 2. The probable running times at the capacity of 260
samples day and 50 000 samples

Running time
(days)

Ratio ofthe
samples
(%)

77"4
2 21"8
3 0"8
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Figure 6. The distribution, ofthe probable loading ofthe measuring
system at 50 000 blood samples/year and capacity of 260 blood
samples day on the basis of1982"s data.
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whereNi, k, the number ofblood samples with priority
l, transformed from the data of the tested
year and probably arriving on the k th
working day (blood samples/working
day).

Nk, t= the number ofblood samples with priority
l, arriving on the k th working day of the
tested year.

rf= repetition factor (rf 1" 1).
Yt the number ofblood samples with priority

l, arriving in the tested year.

On this basis an algorithm was elaborated describing the
function of the simplified black-box model of the labora-
tory. Figure 3 shows the block-scheme of the computer
program and figure 4 shows flow chart ofthe algorithm of
the black-box model ofthe laboratory. The running times
in the case of different measuring capacity per working
day were calculated on the basis of the algorithm above
from the data collected over the previous five years. For
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Figure 7. The distribution ofthe probable loading ofthe measuring
system at 50 000 blood samples and capacity of300 blood
samples day on the basis of1982"s data.
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Figure 8. The scheme of the organization of the designed
laboratory. Where 1 arrival of samples; 2.1 the ith
composition ofthe samples; 3 the handling ofinstruments; 4.1.1

the ith parallel analysis ofthe samples with odd serial number
using headspace gas chromatographic method; 4.2.1 the ith
parallel analysis of the samples with even serial number using
headspace gas chromatographic method; 5 data input; 6 data
control and other administration; 7 computerized data
acquisition; and 8 the quality control ofanalytical results.
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these five years very similar results were obtained,
therefore we are showing a typical running time (figure
5).

It can be seen that at first the running times decrease
exponentially with an increase in measuring capacity in a
working day, and later there is no significant effect of the
increasing capacity from the 240-260 blood samples/
working day. The obtained capacity must be increased
with the number of the measurements for control of
reliability of the analytical results. There are typically 20
measurements/instrument.

On the basis of the analysis of the running times it
appears that it is not reasonable to increase capacity over
260 blood samples/working day, because the running
time decreases only very slowly with capacity increases
(see figure 5). The probable running times can be seen in
table 2 at capacity of260 blood samples/working day and
50 000 bloood samples/year.

The probable loading of the measuring channels was
calculated, and their distributions can be seen in figures 6
and 7. The probable average loading of the laboratory is
84% in the case oftwo measuring channels and 260 blood
samples per working day (figure 6). Comparing figure 7
with figure 6, it is evident that a 15% increase in capacity
decreases effective laboratory performance: the number
of working days loaded to 100% decreased to about
one-third.

When the necessary total laboratory capacity is known,
the necessary total capacity of internal processes of the
laboratory is discovered: in further designs the incidental
character of arrival ofbloood samples should not then be
taken into consideration.

The work of the laboratory was divided into internal
processes, and the necessary times for performance of
these processes were obtained by the help of model
experiments. Only the results of this planning phase are
shown: sample preparation needed 1.3 min, while the gas
chromatographic analysis took 2 min. The data input to
the computer of a sample takes about 1.4 min, the
controlling data input is.about 0"8 min, and all other
administration takes 0"6 min. The time for real-time data
acquisition is negligible.

The engineer controlling the work of the laboratory
qualifies the analytical results with a computer, so this
process ought not to be taken into account as a capacity
determining factor. The running time seems to be as

quick as possible, but at the same time there is the
requirement to achieve the largest possible loading. As a
result of these two contrasted effects the optimal running
time is two days.

With these assumptions, the construction of the labora-
tory shown in figure 8 is considered optimal.

Conclusions

An important use of queueing theory is the test of the
independence of inter-arrival times. This is rarely done:
more commonly, the numerical method based on the
algorithm, which describes an appropriately simplified
model of the laboratory is employed for calculating
queueing parameters. Queueing theory helps to obtain a
consistent description of a complex system but its
usefulness is limited. The method proposed by the
authors is based on the basic principles of the queueing
theory and some simplified model and could lead to a
better understanding and to the solution ofvery complex
problems in the future.
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