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This paper presented a novel method named wavelet packet transform-based partial least squares method (WPTPLS) for simul-
taneous spectrophotometric determination of α-naphthylamine, p-nitroaniline, and benzidine. Wavelet packet representations of
signals provided a local time-frequency description and separation ability between information and noise. The quality of the noise
removal can be improved by using best-basis algorithm and thresholding operation. Partial least squares (PLS) method uses both
the response and concentration information to enhance its ability of prediction. In this case, by optimization, wavelet function
and decomposition level for WPTPLS method were selected as Db16 and 3, respectively. The relative standard errors of prediction
(RSEP) for all components with WPTPLS and PLS were 2.23% and 2.71%, respectively. Experimental results showed WPTPLS
method to be successful and better than PLS.
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1. INTRODUCTION

Many efforts have been made in order to resolve overlap-
ping signals in spectrophotometry. As a consequence of peak
overlapping, the quality of analytical information is lower
than what is derived from isolated peaks; the extent of the
loss depends on the extent of overlap. In complex samples,
however, spectral overlap is often occurring. Strongly over-
lapped signals do not permit direct determination by tra-
ditional methods without previous separation. To overcome
this difficulty, multivariate analysis [1–3] such as partial least
squares (PLS) and principal components regression (PCR),
and so forth have been proved to be useful. When PLS and
PCR methods were applied to analyze samples, the first prob-
lem encountered is to determine the number of components
that they contain. Unfortunately, data obtained from instru-
mental measurements can be contaminated by noise. The
presence of noise often causes overestimating the true num-
ber of chemical components. In order to eliminate noise,
wavelet packet (WP) denoising method was used as a pre-
processing step. Wavelet packet transform (WPT) is an im-
portant extension of wavelet transform (WT). WT is a pow-
erful tool with a very rich mathematical content and great
potential for application [4, 5]. WPT inherits the property
of having a sparse representation of the original signal and
time-frequency localization, and offers more flexibility than

wavelet analysis [6, 7]. A novel approach tried here is to com-
bine WPT with PLS to eliminate noise and improve the qual-
ity of regression. Aniline-type compounds are widely applied
in industries such as chemistry, printing, and pharmacy, and
are one of the most important raw materials for synthetic
medicine, dye, insecticides, polymer, and explosives. Aniline-
type compounds are highly poisonous, and can also cause
cancer. Therefore, it is very important to test and analyze
aniline-type compounds in environmental samples. Simulta-
neous determination of aniline-type compounds is very diffi-
cult due to their overlapping spectra. In this paper, WPTPLS
method was developed and used to perform simultaneous
determination of α-naphthylamine, p-nitroaniline, and ben-
zidine. Experimental results showed the proposed method to
be successful and better than PLS.

2. THEORY

2.1. WPT denoising

A wavelet packet Wjnk is generated from the base function

Wjnk(x) = 2− j/2Wn
(
2− jx − k

)
, (1)

where indices j,n, k are the scale, the oscillation, and the
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localization parameter, respectively. j, k ∈ Z, Z means the
set of integers, n = 0, 1, 2, . . . , 2 j − 1. The discrete wavelet
transform (DWT) can be implemented by means of Mallat’s
pyramid algorithm [8]. DWT can be characterized as a re-
cursive application of the high-pass and low-pass filters that
form a quadrature mirror filter (QMF) pair. The theoretical
background about DWT has been described in details [9].
The difference between WT and WPT is the decomposition
path. In WPT, both the approximations and details are an-
alyzed. The recursion is simply to filter and downsample all
output of the previous level. A fast wavelet packet transform
(FWPT) is expressed as

Wj+1 2n = HWjn,

Wj+1 2n+1 = GWjn,
(2)

where W0,0 indicates the measured signal f , H = {hl}l∈Z and
G = {gl}l∈Z are the low-pass and high-pass filters matrices.
The first and second indices ofW indicate the level of decom-
position and its position at that level. The reconstruction can
be implemented by

Wjn = H∗Wj+1 2n + G∗Wj+1 2n+1, (3)

where H∗ and G∗ represent the conjugate matrices of H and
G.

The wavelet packet denoising procedures include four
steps: (1) WPT, (2) estimation of the best basis, (3) thresh-
olding of wavelet packet coefficients, and (4) reconstruction.
The best basis is selected according to entropy-based crite-
rion proposed by Coifman and Wickerhauser [6]. Shannon
entropy was applied in this case. The thresholding operation
is implemented by the SURE method proposed by Donoho
[10] based on Stein’s unbiased risk estimation.

2.2. The wavelet packet transform partial
least squares method

In the method, WPT is used as a tool for removing noise
from original data. The denoising is applied to the wavelet
packet domain as described above, prior to backtransform-
ing it to original domain. The reconstructed matrices from
standard and unknown mixtures were obtained for further
PLS operation. The PLS algorithm is built on the properties
of the nonlinear iterative partial least squares (NIPALS) algo-
rithm by calculating one latent vector at a time. The NIPALS-
PLS algorithm and calculating details were described previ-
ously [11].

According to this algorithm, the program called PWPT-
PLS was designed to perform data compression and denois-
ing as well as simultaneous determination.

3. EXPERIMENTAL

3.1. Apparatus and reagents

The Shimadzu UV-240 spectrophotometer furnished with
OPI-2 function was used for all experiments; a legend Pen-
tium IV microcomputer was used for all the calculations; pH

measurements were made by a pH-3B digital pH-meter with
a glass-saturated calomel dual electrode. All reagents were of
analytical reagent grade. The water used was doubly distilled
and deionized. Stock standard solutions of 2.000 mgml−1α-
naphthylamine, p-nitroaniline, and benzidine were prepared
from correspondent reagents with water as solvents. Stan-
dard solutions were then prepared from their stock standard
solutions by serial dilution as required. Acetic acid (HAc)-
sodium acetate (NaAc) buffer solution (pH 6.30) was used.

3.2. Procedures

A series of mixed standard solutions containing various ra-
tios of the three kinds of organic compounds was prepared
in 25 ml standard flasks, 10.00 ml of HAc-NaAc buffer solu-
tion (pH 6.30) was added, and dilution with distilled water to
mark. A blank solution was prepared similarly. Spectra were
measured in 1 cm cuvettes between 250 nm and 460 nm at
2 nm intervals with respect to a reagent blank. An absorption
matrix D was built up. All the values measured were means
of three replicate.

3.3. Evaluation of the performance of the test methods

Absolute and relative standard errors of prediction (SEP and
RSEP) were used as the criteria for comparing the perfor-
mances of the test methods. The SEP for a single component
is given by (4); that for all components by (5). The RSEP is
given by (6) [12]:

SEP =

√√
√
√
∑m

j=1

{
Cij − Ĉi j

}2

m
, (4)

SEP =

√
√
√√
∑n

i=1

∑m
j=1

{
Cij − Ĉi j

}2

nm
, (5)

RSEP =

√
√√
√
√

∑n
i=1

∑m
j=1

{
Cij − Ĉi j

}2

∑n
i=1

∑m
j=1C

2
i j

, (6)

where Cij and Ĉi j are the actual and estimated concentra-
tions, respectively, for the ith component in the jth mixture,
m is the number of mixtures, and n is the number of compo-
nents.

4. RESULTS AND DISCUSSIONS

4.1. Absorbance spectra of the system

Figure 1 shows the absorption spectra of p-nitroaniline α-
naphthylamine, and benzidine and their mixed solution. The
maximum absorptions of three components were 380 nm,
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Figure 1: The absorpation spectra 4.000 μgml−1 p-nitroaniline (1); 12.00 μgml−1α-naphthylamine (2); 3.200 μgml−1 benzidine (3), and their
mixture compounds (4).
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Figure 2: The parts of WP coefficients obtained by wavelet packet transform.

302 nm, and 278 nm, respectively. It can be seen from
Figure 1 that the absorption spectra of three components

exhibited are seriously overlapped in their absorbing regions,
so that for mixed solution only one peak can be recognized.
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Figure 3: Original raw spectra (row 1), reconstructed spectra (row 2), and their difference obtained by means of WP denoising (row 3) for
different amounts of noise added (indicated at the head of columns).

4.2. Wavelet packet transform and wavelet
packet denoising

Here, we selected mean spectra of D matrix as original sig-
nal f . WPT of the signal f was carried out using FWPT al-
gorithm. The part of WP coefficients obtained by FWPT is
shown in Figure 2. Each coefficient is identified by the cou-
ple of index ( j,n), where j is the level of decomposition and
n is the position at that level. From Figure 2, it is obvious
that the w( j, 0) only contains a positive part and is similar to
the original signal. The others are composed of both positive
and negative parts. Each block of the coefficients describes
the components of the signal f related to a certain frequency
band. This flexible time-frequency resolution enables the WP
to characterize locally the most relevant parts of a signal and
hence to adequately represent a signal with relatively small
number of coefficients. In the spectrophotometric measure-
ments, the analytical signals usually center in low-frequency
part, whereas the noise in high-frequency part. The aim of
WP denoising is to extract the desired signal from a complex
instrument output, where the signal is present along with

noise. Random Gaussian noise was added to the mean spec-
tra for assessing the WP denoising method. Original and re-
constructed spectra as well as their difference with different
added noise are displayed in Figure 3. It was found that WPT
provides an appropriate approach for denoising even in case
where 2% noise is added. Thus the method is safe for pre-
processing two-dimensional raw data matrix in the following
WPTPLS operation.

4.3. The wavelet packet transform partial least
squares method

Each of the wavelet functions has different characteristics.
The wavelet function, which is optimal for a given sig-
nal, is not necessarily the best for another type of signal.
Thus, the choice of the wavelet functions is very impor-
tant for this technique. In this work, the wavelet functions
tested were Coiflet 1, 2, . . . , 5, Daubechies 4, 6, . . . , 20, Symm-
let 4, 5, . . . , 8. It is possible to use the predictive parameters
SEP and RSEP to find the optimum choice of functions. In
similar way, one-to-six decomposition levels L were tested
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Table 1: Optimization of wavelet functions.

Wavelet function SEP ( μgml−1) RSEP (%)

Daubechies 2 2.62 0.227

Daubechies 4 2.66 0.230

Daubechies 6 2.70 0.233

Daubechies 8 2.76 0.239

Daubechies 10 2.52 0.217

Daubechies 12 2.57 0.222

Daubechies 14 2.41 0.208

Daubechies 16 2.23 0.192

Daubechies 18 2.47 0.214

Daubechies 20 2.43 0.210

Symmlet 5 2.71 0.234

Symmlet 6 2.72 0.235

Symmlet 7 2.75 0.238

Symmlet 8 2.71 0.234

Coiflet 1 3.35 0.289

Coiflet 2 2.73 0.235

Coiflet 3 2.72 0.235

Coiflet 4 2.69 0.232

Coiflet 5 2.74 0.237

too. The influence of wavelet functions and decomposition
levels is listed in Tables 1 and 2. According to these experi-
mental results, wavelet functions and decomposition level for
WPTPLS method were selected as Daubechies (Db) 16 and 3.

A training set of 16 samples formed by the mixture of
the three organic compounds was designed according to
four-level orthogonal array design with the L16(45) matrix.
Table 3 summarizes the composition of the training set. The
experimental data obtained from the training set were ar-
ranged in matrix D, where each column corresponds the ab-
sorbance of different mixtures at a given wavelength and each
row represents the spectrum obtained at a given mixture.
With FWPT, one can treat each spectrum at a given mix-
ture. Therefore, in the same way each row vector of matrix
D and Du was decomposed, and denoised by best-basis se-
lection and thresholding operation, then reconstructed by
applying inverse FWPT. Determining the number of fac-
tors is one of the most important steps in PLS method. The
essence of the step is the pseudorank determination of the
raw experimental data. Three principal factors for the case
were selected based on previously reported methods [13].
Before starting the WPTPLS calculation, mean centering and
data standardization were performed as preprocessing. Af-
ter this transform, the matrix where each column had zero
mean and a variance equals to the unity was obtained. Using
program PWPTPLS, the concentrations of the three organic
compounds for a test set were calculated. Actual concentra-
tions, found concentrations, and their recoveries are listed in
Table 4. The experimental results showed that the SEP and
RSEP for all components were 0.192 μgml−1 and 2.23%.

Table 2: Optimization of wavelet decomposition level.

L SEP ( μgml−1) RSEP (%)

1 0.234 2.71

2 0.236 2.74

3 0.230 2.66

4 0.302 3.49

5 1.39 16.1

6 1.95 22.6

Table 3: Composition of the training set.

Sample no.
Concentration (μgml−1)

I II III

1 0.8000 2.000 0.4000

2 0.8000 4.000 2.4000

3 0.8000 16.00 5.600

4 0.8000 24.00 8.000

5 2.400 2.000 2.400

6 2.400 4.000 0.4000

7 2.400 16.00 8.000

8 2.400 24.00 5.600

9 5.600 2.000 5.600

10 5.600 4.000 8.000

11 5.600 16.00 0.4000

12 5.600 24.00 2.400

13 8.000 2.000 2.400

14 8.000 4.000 8.000

15 8.000 16.00 5.600

16 8.000 24.00 0.4000

I: p-nitroaniline, II: α-naphthylamine, III: benzidine.

4.4. A comparison of WPTPLS and PLS

In order to evaluate WPTPLS method, two methods were
tested in the study with a set of synthetic unknown sam-
ples. The RSEP for the two methods are given in Table 5.
The RSEP for all components calculated by WPTPLS and
PLS methods were 2.23% and 2.71%, respectively. The results
demonstrated that the WPTPLS method had better perfor-
mance than PLS method.

5. CONCLUSIONS

A method named WPTPLS was developed for multicompo-
nent spectrophotometric determination. The method com-
bines the idea of the WPT denoising with PLS regression for
enhancing noise removal ability and quality of the regres-
sion. In WP denoising the time-frequency localization, best-
basis algorithm and thresholding operation were used to im-
prove the quality of denoising. In PLS operation, errors both
in the concentration and spectra were taken into account to
improve predictive properties. Experimental results show the
clear superiority of WPTPLS over PLS method.
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Table 4: Actual concentration, found concentration, and percentage recovery of the synthetic unknowns.

Sample no.

Actual concentration Found concentration (μgml−1) Recovery (%)

(μgml−1) WPTPLS PLS WPTPLS PLS

I II III I II III I II III I II III I II III

1 1.600 3.200 0.8000 1.758 3.474 0.822 1.760 3.379 0.8377 109.9 108.6 102.7 110.0 105.6 104.7

2 1.600 12.00 4.000 1.547 12.27 3.975 1.541 12.48 3.951 96.7 102.2 99.4 96.3 104.0 98.8

3 1.600 20.00 6.400 1.543 19.91 6.433 1.556 19.66 6.460 96.4 99.5 100.5 97.2 98.3 100.9

4 4.000 3.200 4.000 3.863 2.790 4.121 3.866 2.722 4.131 96.6 87.2 103.0 96.6 85.1 103.3

5 4.000 12.00 6.400 3.987 12.57 6.317 3.980 12.75 6.295 99.7 104.8 98.7 99.5 106.3 98.4

6 4.000 20.00 0.8000 4.036 19.75 0.7501 4.033 19.84 0.7404 100.9 98.7 93.8 100.8 99.2 92.5

7 6.400 3.200 6.400 6.458 2.961 6.495 6.460 2.866 6.501 100.9 92.5 101.5 100.9 89.6 101.6

8 6.400 12.00 0.8000 6.323 12.16 0.6775 6.324 12.09 0.6885 98.8 101.3 84.7 98.8 100.7 86.1

9 6.400 20.00 4.000 6.484 19.71 4.009 6.480 19.82 3.995 101.3 98.6 100.2 101.3 99.1 99.9

I: p-nitroaniline, II: α-naphthylamine, III: benzidine.

Table 5: SEP and RSEP values for organic compounds system by two methods.

Methods
SEP (μgml−1) RSEP (%)

I II III Total components I II III Total components

WPTPLS 0.0866 0.313 0.0749 0.192 1.94 2.30 1.71 2.23

PLS 0.0859 0.387 0.0829 0.234 1.93 2.84 1.89 2.71

I: p-nitroaniline, II: α-naphthylamine, III: benzidine.
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