Simultaneous spectrophotometric determination of copper(II), lead(II) and cadmium(II)

Abstract

Shouxin Ren and Ling Gao Department of Chemistry, Inner Mongolian University, 010021 Huhehot, Inner Mongolia, China

The full spectrum technique in the fourier domain was studied for simultaneous determination of $\mathrm{Cu}(I I), \mathrm{Pb}(I I)$ and $C d(I I)$ with 4-(2-pyridylazo) resorcinol (PAR). A program called SPGRFSQ was designed to perform the calculations. Seven error functions were calculated for deducing the number of factors. Data reduction was performed using principal component analysis (PCA) algorithm. Experimental results showed the method to be successful even where there was severe overlap of spectra.

Introduction

The development of chemometric methods of multicomponent analysis has allowed the resolution of the complex spectra of mixtures of analytes. Various research groups have reported using chemometric methods to resolve overlapping spectra [1, 2]. Multicomponent determinations have recently been improved by using the full spectrum method and different chemometric algorithms [3, 4].
Simultaneous determination of copper(II), lead(II) and cadmium(II) with 4-(2-pyridylazo) resorcinol (PAR) using traditional spectrophotometry is difficult because (1) the absorption spectra overlap; and (2) the superimposed curve is not suitable for quantitative evaluation. In a PAR system, in addition to low selectivity, problems arise because of strong absorbance of the reagent. This paper shows that multicomponent analysis with full spectrum methods is a solution.

Experimental

Instruments and apparatus

The Shimadzu UV-265 and UV-120 spectrophotometers were used for all experiments; a GW286 EX/16 microcomputer with a maths coprocessor was used for the calculations; and a Mettler DL 21 titrator was used for standardization of the standard solutions.

Reagents

All reagents were of analytical reagent grade. The water used was doubly distilled and deionized. Stock standard solutions of $\mathrm{Cu}(\mathrm{II}), \mathrm{Pb}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ were prepared from nitrates and standardized titrimetrically with EDT Λ. Buffer solution (pH 7.0) was prepared from borax solution and hydrochloric acid solution; a $0.02 \% \mathrm{~m} / \mathrm{v}$ PAR solution in alcohol was used

Procedure

A series of mixed standard solutions containing various ratios of the three metal ions at pH 7.0 was prepared in 50 ml standard flasks, $1 \mathrm{ml} 0.02 \% \mathrm{~m} / \mathrm{v}$ PAR solution in alcohol, 15 ml of buffer solution ($\mathrm{pH} 7 \cdot 0$) and dilution with distilled water to mark. Cuvettes with a path length of 1 cm were used and the blank absorbance due to PAR absorption was subtracted. Absorbances were measured between 460 nm and 560 nm at 5 and 2 nm distances, giving values at 33 wavelengths for each standard solution. An absorption matrix, D, was built up from these data.

Computer program and algorithms

The D matrix, obtained as described above, is transformed using fast fourier transform (FFT) to produce the F matrix. The variance-covariance matrix $A\left(\mathrm{FF}^{1}\right)$ can be subjected to singular value decomposition for calculation of the eigenvalues and eigenvectors. The number of species is estimated by several criteria, which are based on the theory of error in factor analysis [5-7]. After determining the number of species (t), the set of $t+2$ significant eigenvectors becomes the basis eigenvectors (\mathbf{U}). The projection of each standard mixture is calculated by $M=\mathbf{U}^{\mathrm{T}} F$. A proportionality matrix, P, is found by least squares regression analysis, $P=C_{\mathrm{k}} M^{\mathrm{T}}\left(M M^{\mathrm{T}}\right)^{-1}$. The absorbance spectra for unknown mixtures is converted to the fourier domain and represented as $F u$. The projection matrix $(M u)$ is obtained by matrix multiplication: $M u=\mathbf{U}^{\mathrm{T}} F u$. The projection matrix $(M u)$ is then multiplied by P to give the unknown concentration as $C u=P M u$. A program called SPGRFSQ, which is based on the algorithm, was designed to perform the calculation.

Results and discussion

Determination of the number of factors

Seven criteria were used to calculate the number of factors-see table 1. Results are shown in table 2. The minimum of the Frac function appeared at $t=4$: the appropriate number of eigenvectors is one less than that giving the minimum frac value. Figure 1 shows the Frac function plotted against the number of factors; the number of factors was 3 . The magnitude of REV decreased rapidly until $t=3$, then it stabilized. The IND function reached a minimum at $2-4$; the magnitude of the first four eigenvalues were larger than those of $5-8$; and a maximum of the eigenvalue ratio (ER) function appeared at 4 . The discrepancy in these results was probably due to the existence of some other weakly absorbing species. The speciation of the system was very complex. The results

Table 1. Factor analysis criteria.

Name	Formulae	Name	Formulae
Rear crror	$\mathrm{RE}=\left[\frac{\sum_{j=n+1}^{k} \lambda_{j}}{L(k-n)}\right]^{1 / 2}$	Indication function	$\mathrm{IND}=\mathrm{RE} /(k-n)^{2}$
Extracted crror	$\mathrm{XE}=\mathrm{RE}\left(\frac{k-n}{k}\right)^{1 / 2}$	Eigenvalue ratio	$\mathrm{ER}_{j}=\lambda_{j} / \lambda_{j+1}$
Imbedded error	$\mathrm{IE}=\mathrm{RE}\left(\frac{n}{k}\right)^{1 / 2}$	Reduced eigenvalue	$\mathrm{REV}_{j}=\frac{1}{(L-j+1)(k-j+1)}$
Fraction function	$\mathrm{FRAC}=\frac{\lambda_{j}}{\sum_{j=1}^{k} \lambda_{j}}$		

Table 2. Results on factor analysis for the $C u(I I) / P b(I I) / C d(I I) / P A R$ systems.

	EV							
t	$\times 1 \cdot 0 \mathrm{E}-3$	RE	IND	XE	IE	ER	REV	
1	2.0305	0.0926	0.0019	0.0866	0.0327	556.5122	3.9658	0.9981
2	0.0036	0.0224	0.0006	0.0194	0.0112	33.7469	3.0083	0.0018
3	0.0001	0.0162	0.0006	0.0128	0.0099	1.8777	0.0003	0.0001
4	0.0001	0.0102	0.0006	0.0072	0.0072	3.6458	0.0002	0.0000
5	0.0000	0.0075	0.0006	0.0046	0.0060	1.7198	0.0001	0.0000
6	0.0000	0.0037	0.0008	0.0018	0.0032	8.5655	0.0001	0.0000
7	0.0000	0.0032	0.0009	0.0011	0.0030	1.6268	0.0000	0.0000
8	0.0000	-	0.0032	-	-	0.0000	0.0000	

Figure 1. Plot of the Frac function against factor number.
indicated that three absorbing components may be present.

The training set model

Figure 2 shows the absorption spectra of $\mathrm{Cu}(\mathrm{II}), \mathrm{Pb}(\mathrm{II})$, $\mathrm{Cd}(\mathrm{II})$ and their mixed solution with PAR as reagent. The absorption maximums of $\mathrm{Cu}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Pb}(\mathrm{II})$ complexes were $507 \mathrm{~nm}, 498 \mathrm{~nm}$ and 512 nm , respectively. The concentrations of the three metal ions in eight standard solutions are shown in table 3. The spectra were measured between 460 nm and 560 nm at 5 and 2 nm distances, giving values at 33 wavelengths for every standard solution. Each of the spectra of the training set were corrected by subtracting the standard spectrum of reagent, then an absorption matrix, D, was built up.

Figure 2. Absorption spectra of $\mathrm{Cu}(I I), \mathrm{Pb}(I I), \mathrm{Cd}(I I)$ and their mixed solution with $P A R$ as reagent. 1: $1 \cdot 2 \times 10^{-5} \mathrm{~mol} / \mathrm{l} \mathrm{Cu}(I I)$. 2: $1.2 \times 10^{-5} \mathrm{~mol} / \mathrm{l} P b(I I) .3: 1.2 \times 10^{-5} \mathrm{~mol} / \mathrm{l} C d(I I) .4$: $1.2 \times 10^{-5} \mathrm{~mol} / \mathrm{l} \mathrm{Cu}(I I)+1.2 \times 10^{-5} \mathrm{~mol} / \mathrm{l} \mathrm{Pb}(\mathrm{II})+1.6 \times$ $10^{-5} \mathrm{~mol} / \mathrm{l} \mathrm{Cd}(\mathrm{II})$.

Figure 3 is a three-dimensional plot of spectra of the training set obtained at 33 different wavelengths. Matrix D was transformed with the use of a standard FFT principal. The fourier transform method also acts as a filter, since the high frequency noise terms can be deleted producing a significant reduction of error. The F matrix preserved the important property of the Lambert-Beer relationship. The P matrix is the calibration matrix and provides all the information that is needed to calculate the concentration of the unknown samples from the $F u$

Shouxin Ren and Ling Gao Simultaneous spectrophotometric determination of copper(II), lead(II) and cadmium(II)

Table 3. Composition of the standard solutions.

	Concentration (mmol/l)		
Solution number	$\mathrm{Cu}(\mathrm{II})$	$\mathrm{Pb}(\mathrm{II})$	$\mathrm{Cd}(\mathrm{II})$
1	0.0165	0.9968	0.5869
2	0.8739	1.0134	0.6319
3	0.6427	0.8944	1.0318
4	1.0143	1.3534	0.9335
5	0.5233	0.7828	0.9203
6	0.4923	0.6448	0.5277
7	1.0975	1.0985	0.7155
8	0.7770	0.9470	0.9489

Figure 3. Three-dimensional plot of the spectra in the training set.

Table 4. P matrix of the training set with five basis eigenvectors.

0.0156	0.1863	0.5264	-0.1575	-0.0272
0.0617	0.1065	-0.3737	-0.1638	0.0490
0.0497	-0.2176	-0.5462	0.2219	0.0217

matrix. The P matrix was calculated using SPGRFSQ as shown in table 4.

Data reduction

Data reduction was based on the PCA algorithm. Using the SPGRFSQ program, the concentrations of 'unknowns' and the P matrix were calculated while varying the number of basis eigenvectors. The results are given in table 5. Based on the results, it is recommended that five eigenvectors are used for analysis; eigenvectors above 6 should be ignored.

Determination of unknowns

The added concentrations of a set of eight synthetic 'unknown' samples are shown in table 6. The spectra of the unknown samples were measured in the same way as the training set model. Using SPGRFSQ the concentrations of the $\mathrm{Cu}(\mathrm{II}), \mathrm{Pb}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ were found and are given in table 7. Average recoveries and their relative deviations are listed in table 8. The experimental results showed that the full spectrum techniques in the fourier domain gave satisfactory results for simultaneous determination of a complex mixture with severely overlapping spectra.

Table 5. Relationship between numbers of eigenvector and relative deviation of 'unknowns' determination.

		Relative deviation (\%)		
Number of 		'Unknowns' number		
		(1)		(2)
3	$\mathrm{Cu}(\mathrm{II})$	-0.0061	-0.0172	-0.0302
	$\mathrm{~Pb}(\mathrm{II})$	-0.0031	-0.0166	-0.0313
	$\mathrm{Cd}(\mathrm{II})$	0.0068	0.0706	0.0273
4	$\mathrm{Cu}(\mathrm{II})$	-0.0021	-0.0022	0.0072
	$\mathrm{~Pb}(\mathrm{II})$	0.0004	0.0016	-0.0065
	$\mathrm{Cd}(\mathrm{II})$	0.0019	0.0069	-0.0038
	$\mathrm{Cu}(\mathrm{II})$	-0.0021	-0.0018	0.0032
5	$\mathrm{~Pb}(\mathrm{II})$	0.0003	0.0006	-0.0020
	$\mathrm{Cd}(\mathrm{II})$	0.0019	0.0057	-0.0020

Table 6. Composition of the unknown samples.

Species	Concentration ($\mathrm{mmol} / \mathrm{l}$)							
	Sample number							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\mathrm{Cu}(\mathrm{II})$	0.7987	$0 \cdot 8662$	$0 \cdot 8711$	0.6160	0.8352	0.7219	0.9599	0.4503
$\mathrm{Pb}(\mathrm{II})$	1-1458	$1 \cdot 0021$	0.9519	0.9419	1.0351	0.8781	$0 \cdot 8224$	0.7062
Cd(II)	1.0008	$0 \cdot 8281$	$0 \cdot 8569$	$0 \cdot 8723$	$0 \cdot 9162$	$0 \cdot 8493$	$0 \cdot 3176$	0.7637

Table 7. The concentrations of the unknowns calculated by SPGRFSQ.

Species	Concentration (mmol/l)							
	Sample number							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\mathrm{Cu}(\mathrm{II})$	$0 \cdot 8009$	0.8653	0.8718	0.6164	$0 \cdot 8440$	0.7204	0.9582	0.4518
$\mathrm{Pb}(\mathrm{II})$	1-1448	1.0033	0.9555	0.9410	1.0367	0.8784	$0 \cdot 8229$	0.7048
Cd(II)	0.9984	$0 \cdot 8289$	0.8553	$0 \cdot 8708$	$0 \cdot 9053$	0.8509	$0 \cdot 3194$	0.7622

[^0]Table 8. The average recoveries and their relative deviations of the 'unknowns'.

Species	Recovery (\%)							
	Sample number							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\mathrm{Cu}(\mathrm{II})$	$100 \cdot 28$	99.90	$100 \cdot 08$	$100 \cdot 07$	$100 \cdot 06$	99.79	99.82	$100 \cdot 32$
$\mathrm{Pb}(\mathrm{II})$	99.92	$100 \cdot 12$	$100 \cdot 38$	99.90	$100 \cdot 15$	$100 \cdot 03$	$100 \cdot 06$	$99 \cdot 80$
Cd(II)	$99 \cdot 76$	$100 \cdot 10$	$99 \cdot 82$	$99 \cdot 83$	$100 \cdot 81$	$100 \cdot 19$	$100 \cdot 57$	$99 \cdot 80$
Relative deviation (\%)								
	Sample number							
Species	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\mathrm{Cd}(\mathrm{II})$	$0 \cdot 0028$	-0.0011	$0 \cdot 0008$	$0 \cdot 0007$	0.0106	-0.0021	-0.0018	$0 \cdot 0032$
$\mathrm{Pb}(\mathrm{II})$	-0.0008	$0 \cdot 0012$	$0 \cdot 0038$	0.0010	-0.0015	0.0003	$0 \cdot 0006$	-0.0020
$\mathrm{Cd}(\mathrm{II})$	-0.0024	$0 \cdot 0010$	-0.0018	-0.0017	-0.0119	$0 \cdot 0019$	$0 \cdot 0057$	-0.0020

The values were means of three replicate.

The condition number of the proportionality matrix P

The condition number of the proportionality matrix P $(\operatorname{cond}(P))$ indicates the numerical accuracy that can be lost when the matrix is inverted [8]. The condition number can be used as a measure for selectivity of the multicomponent system. The cond (P) is usually calculated from the ratio of the largest eigenvalue of P to the smallest eigenvalue; values for eigenvectors $3-7$ were 11.9208, $11 \cdot 4773,11 \cdot 4845,11 \cdot 4921$ and $11 \cdot 4961$, respectively. As the number of eigenvectors increased, the value of cond (P) remained almost constant-the selectivity of the spectrophotometric system did not change if the number of eigenvectors increased. This was due to the high degree of spectral overlap of the PAR complexes, giving the system low selectivity.

Conclusion

Simultaneous determination of $\mathrm{Cu}(\mathrm{II}), \mathrm{Pb}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ with PAR by use of the full spectrum techniques in the fourier domain has been shown to be a successful method. The difficulty imposed by overlap of the absorption
spectra was overcome by the method. Recoveries of $\mathrm{Cu}(\mathrm{II}), \mathrm{Pb}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ were between 98.8% and 101.1%.

Acknowledgement

The authors would like to thank the National Natural Science Foundation of China for financial support.

References

1. Beebe, K. R. and Kowalski, B. R., Analytical Chemistry, 59 (1987), 1007 A .
2. Hafland, D. M. and Thomas, E. V., Analytical Chemistry, 60 (1988), 1193.
3. Marbagh, R. and Heise, H. M., Trends in Analytical Chemistry, 11 (1992), 270.
4. Liang, Y., Kvalheim, O. M. and Manne, R., Chemometrics and Intelligent Laboratory Systems, 18 (1993), 235.
5. Malinowski, E. R., Analytical Chemistry, 49 (1977), 605.
6. Malinowski, E. R., Journal of Chemometrics, $\mathbf{1}$ (1987), 605.
7. Malinowski, E. R., Journal of Chemometrics, 3 (1988), 49.
8. Jochum, C., Jochum, P. and Kowalski, B. R., Analytical Chemistry, 53 (1982), 85.

[^0]: The values were means of three replicate.

