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It is ofgreat practical importance to develop simple methodsfor the
automatic detection ofthe controlled state ofthe analytical method
being applied. The key point is tofind quantities that greatly affect
the quality ofthe analytical results and that can be easily estimated
during the measurement process from the measured data. The
signal-to-noise ratio has proved to be such a quantity in gas
chromatographic methods. The statistical properties of the
estimation of the signal-to-noise ratio from gas chromatographic
data have been investigated. The suggested practical method for
estimating the signal-to-noise ratio proved to be biased from a
mathematical statistical point ofview, but the bias is usually not
greater than 10%. It has been shown by practical examples that the
signal-to-noise ratio affects the quality ofthe analytical results and
it is easy to estimate its value from practical data.

Introduction

However, in this instance, a need to control the properties
and especially the relative standard deviation (RSD) of
the random error component arises. We showed previ-
ously [6] by applying Monte Carlo methods that it is
possible to estimate the standard deviation of the
measured data using the statistics of the difference test.
Our long-term practical experience has proved the high
practical value of such control.

The aim of this work was to investigate the methods of
estimation and control of the measurement conditions
affecting the data reduction and to establish the practical
usefulness of the proposed method.

Concept of the signal-to-noise ratio

The signal-to-noise ratio [7] proved to be a very useful
concept in characterizing the measurement conditions
with respect to the measurement error. This part of the
paper is devoted to the definition of the signal-to-noise
ratio.

Highly instrumental and automated analytical measure-
ment methods are becoming increasingly widespread.
Therefore, the problems of the automated and reliable
control of measurement quality are of great importance
and have been thoroughly analysed in the recent litera-
ture (see, for example, Kolthoffand Elving [1] and Sharuf
et al. [2]). It is mostly emphasized that the analytical
method applied must be ’controlled’, i.e., the measure-
ment conditions must guarantee the practical absence of
the systematic measurement error component and the
random error component must be statistically controlled

According to our previous investigations [4,5], a system-
atic error component can appear in the result of an
analytical measurement (in the analytical information)
even when only a random error component is present in
the measured raw data, especially if the statistical
properties of the random error can change. This effect is
caused by the data processing (data reduction) step in the
evaluation of the analytical measurement results and it is
a consequence of the non-linearity of the data reduction
transformations. These transformations and hence the
resulting systematic error component depend on the true
value of the raw measured data, and also on the
characteristics (type and variance) of the random
measurement error component and the algorithm used.

The above difficulties can be overcome by suitable
control of the measurement conditions affecting the
parameters of the random error component which are
constant during the whole measurement procedure.

Let us model the sequence of the raw measurement
signals in the form

K

yi ZlJi+ bi+ ei (i= 1,... ,N) (1)
j=

where

Yi element of the raw measured value sequence;
bi element of the baseline sequence;
Ei element of the random measurement error

sequence;
K number of chemical compounds to be measured;
N number of measured signal values;
fj discrete deterministic function (sequence) which

describes the ideal measurement sequence for the
jth compound (describes a single ideal peak).

The above model describes the sequence of the raw
measurement signals for instrumental analytical methods
with probability density function-type signals. Note that
the outliers have been omitted from the model because
they can easily be filtered out from the raw measurement
signal sequence. Their frequent presence indicates that
the measurement conditions are unsatisfactory.

The signal-to-noise ratio with respect to the jth com-
pound can be defined as

S
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where

E signal-to-noise ratio;
Hj peak height of thejth compound;
s standard deviation (square root of the variance)

of the random measurement error component in
place of the peak height.

Note that the above definition implies that the mean
value ofthe random measurement component is zero. It is
also interesting that the signal-to-noise ratio is the
reciprocal of the relative standard deviation of the peak
height.

It is important to note that the type ofprobability density
of the random measurement error component (whether it
is normally or uniformly distributed) does not influence
the data reduction, in our experience [4, 5]. Hence it is
sufficient to use its standard deviation in equation (2).

The standard deviation of the random measurement
error component may vary with the mean value ofthe raw
measurement signal, i.e., also with the value of peak
height. There is also a real danger that the standard
deviation varies with i, in this instance with the retention
time. The first fact causes difficulties in estimating the
signal-to-noise ratio from the data of a single measure-
ment sequence, and the second may require the control of
the signal-to-noise ratio in several retention time inter-
vals. The solution to these problems lies in the special
nature of the data reduction for our case and in the
requirements for the measurement control, and will be
discussed later.

The true sequence of the raw measured value sequence
can be defined as follows:

K

_)3i yi e. YJ + b (3)
j=l

Estimation of the signal-to-noise ratio

If the need to estimate the signal-to-noise ratio defined by
equation (2) arises from a single sequence of raw
measured signals, serious theoretical difficulties arise. As
the peak height is represented in only a single element of
this sequence, say inyH, there is no ’sample’ in the sense of
mathematical statistics for which elements would rep-
resent the same random variable with a definite probabil-
ity density function. In ergodic (in our case stationary)
stochastic processes, this difficulty can be overcome by
using a subset from the sequence as a sample instead of
measuring a sample from the measurement sequences.
However, with peak height, no subset of the raw
measurement signal sequences will form a sample rep-
resenting the probability distribution in the peak height.
Further, repeated measurements with unknown and
varying peak heights give no further information about
the signal-to-noise ratio, as the actual value of the
signal-to-noise ratio in this instance depends not only on
the variations in the measurement conditons but also on
the variation of the peak height.

For the above reasons, only approximate estimates of the
signal-to-noise ratio can be calculated from a single
measured value sequence. One possible estimate has
been proposed by Leisztner and Barna [6] which fits the
usual evaluation (data reduction) methods very well.
This estimation procedure constructs the peak height and
the variance of the random measurement error com-

ponent separately based on a subset of the whole raw

measured data sequence belonging to thejth peak. This
subset is formed by the so-called peak detection algorithm
in the data reduction (for a detailed description, see

Hangos and Leisztner [5]).

Estimation of the peak height

The peak height is estimated by the usual peak height
determination algorithm in the data reduction, which fits
a second-order polynomial to the data near to the peak
height (let us denote the number of their members by np)
and the estimated value of the peak height is estimated as
the maximum ofthis polynomial. It is easy to see that this
procedure gives a biased estimate of the peak height even
if the distribution of the random measurement error

component is Gaussian, because the peaks do not have
the shape of a second-order polynomial; their shape may
vary and cannot be described by a general mathematical
equation (in most instances they have a nearly Gaussian
shape). However, the estimated peak height can be
regarded approximately as a random variable with a

Gaussian distribution.

Estimation of the standard deviation of the random measurement
error component in the peak height

This estimation is based on the following assumptions:
(1) the distribution (and hence the standard deviation) of
the random measurement error component remains
unchanged throughout the peak and does not vary with
the true value of the raw measured data samples (note
that this assumption is only approximately valid); and (2)
the sampling rate is high enough to have small enough
changes in the true value sequence to approximate these
changes by a linear relationship for each of three
consecutive changes (note that this assumption cannot be
valid near to the peak height and near to the beginning or
end of the peak because the second derivative of the peak
shape is large in these regions).

Hence the required standard deviation can be estimated
from a subset of the samples belonging to the jth peak
satisfying assumption (2). Let us denote their number by
nm. The true value of the raw measured data from this
subset is estimated by its smoothed value:

i =Yi + +Yi +Yi (4)
3

Note that this estimate is biased and the magnitude of the
bias depends on the value_)/’iAt, wherey"i is the value of
the second derivative of the true value function and At is
the sampling interval. If the random measurement error

component is normally distributed, then the above
estimate is also normally distributed with variance s2/3
according to assumption (1).
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Note that in practical situations the Gaussian distribu-
tion ofthe random measurement error component cannot
be assumed, but in the presence of independent noise
sources in the limit distribution should generally be
Gaussian according to the central limit theorem. Unfor-
tunately, there are significant sensors in instrumental
analytical chemistry with highly non-Gaussian (uniform)
noise, so the very useful assumption about a Gaussian .4

distribution of the random measurement component
must be treated with caution. .2

.1
Using the above estimate of the true value sequence, the
variance can be estimated by the equation.

nm
Y (i Yi fi + + Yi + 2
i=1

(5)
2(nm 1)

The squared terms in equation (5) can be expressed as the
estimated values of the random measurement error
components, Ei- Ei + 1, and therefore }2 is identical with the
statistics applied to the variance in a difference test [8].

In the special case of normally distributed random error
components, the estimate s2 has an approximately ?(2
distribution, neglecting the variance of the estimate .i
compared with the variance s.
It is important to note that with an approximately linear
mean value of the measured data sequence (in time, i.e.,
in i) during the interval (i 1, + 2), the above statistics
provide a suitable drift elimination. This is easy to see if
one expands one term in the denominator ofequation (5)
using the definition in equation (4):

E[2(yi Yi 1)-E(yi fli -I- yi + -I- i + 1) +

(Yi- --Yi) Yi + --Yi + 2)] 0 (6)
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Figure 1. Calibration for determination of acetaldehyde with a

sample holder volume of22 ml. H1 acetaldehyde peak height;
H2 propan-l-ol (internal standard) peak height; c
concentration (#mol/l).
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Figure 2. Calibration for determination of acetaldehyde with a

sample holder volume of5 ml. HI acetaldehyde peak height; Hz
propan-l-ol (internal standard) peak height; c concentration

(umol/l).

Possibilities of correct measurement control

In spite of the fact that the estimation of the signal-to-
noise ratio is not an easy task, this quantity proved useful
in characterizing the measurement conditions affecting
the data reduction transformation even for peaks of
unknown components with varying heights. This seems

surprising because the peak height may vary over a wide
range for unknown components, while the standard
deviation remains approximately unchanged. The
answer to this contradiction lies in the fact that the peak
shape can be regarded as unchanged in a restricted range
as its height increases. Hence the relative error in the
peak determination increases with decreasing peak
height.

From the viewpoint of measurement control it is advan-
tageous, however, that there exists a lower limit for the
signal-to-noise ratio above which the systematic error

component caused by random errors is negligible.
Therefore, it is often sufficient to check whether the
signal-to-noise ratio is above this limit.
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In order to implement a correct measurement control
system from the viewpoint of data reduction, the sugges-
ted steps are as follows.

In the calibration phase

Together with the estimation of the parameters of the
calibration graph, the determination ofthe lower limit (or
if the measurement conditions do not permit measure-
ments above this limit, then a precise value) of the
signal-to-noise ratio is required above which (or under
which) the calibration is valid. Figures and 2 show the
variation of the calibration graph with the signal-to-noise
ratio. These calibrations were used by us for the
determination of acetaldehyde by headspace gas chro-
matography using propan-l-ol as internal standard (for
the analytical details, see Nagy et al. [9]). The calibration
shown in figure has an S-shape. Having increased the
signal-to-noise ratio 5-fold (the method used was de-
scribed by Leisztner et al. [10]), we obtained a linea
relationship as demonstrated in figure 2. The signal-to.
noise ratio belonging to figure 2 can be regarded as th
lower limit value.
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Table 1. Results of solution with 70 #mol/l acetaldehyde
concentration with propan-l-ol as internal standard

Signal-
Peak Peak area Peak to-noise

No. area ratio height - ratio

1696"17 0"065 213"033 0"7727 275’696
2 1709"33 0"0672 218"831 0"7949 275"26
3 1749"33 0"0677 224"564 0"7695 291"818
4 1515"83 0"0592 221"093 4"0676 54"3541
5 1717"98 0"0683 219"879 0"7988 275"26

1677"73 0"0655 219"48 1"44074 234"478Mean
Standard
deviation
Relative
standard
deviation

(%)
Corrected
mean

Corrected
standard
deviation

Corrected
relative
standard
deviation

(%)

92.59 3.71 x 10.3 4.2 1.46 100.94

5.51 5.69 1.91 101.92 43.05

1718.2 0.0671 219.08 0.7839 279.51

22.61 1.4 x 10.3 4.74 1.5 x 10-2 8.21

1.32 2.15 2.16 1.91 2.94

In this phase, when repeated measurements with known
samples are available, it is possible to check whether the
signal-to-noise ratio depends on the time index. Ifit does
then it must be investigated how this dependence varies
with variations in the measurement conditions.

In the measurement control phase

It is necessary to estimate the signal-to-noise ratio on-line
during the whole measurement process. The comparison
of the estimated signal-to-noise values with the desired
value resulting in the first step above can be approxi-
mately performed with a one-sided (when a lower limit of
the signal-to-noise ratio exists) or with an ordinary t-test
for two samples 11 ].

It is important to note that the bias or the systematic error
component depends very weakly on the signal-to-noise
ratio, hence we are interested only in a rough estimate of
the signal-to-noise ratio for measurement control pur-

poses. Therefore, the exact distribution of the statistics
estimating the signal-to-noise ratio does not have great
significance from a practical point of view.

Table shows the results of five repeated determinations
of acetaldehyde by headspace gas chromatography using
propan-l-ol as internal standard. The evaluation of the
measurement results was two-fold, from the peak area
ratio (ratio of the peak area of acetaldehyde to that of the
internal standard) and the peak height ratio. The
signal-to-noise ratio in the fourth determination was

approximately six times smaller than that in the others
(for further details, see Nagy et al. [9]). We obtained a
better mean with a smaller standard deviation if we
omitted this outlying result, as is shown by the corrected
values in table 1.

Conclusion

The proposed practical method for estimating the signal-
to-noise ratio from real chromatographic data proved to
be biased from a theoretical point of view. However, it is
very useful for measurement control purposes and the
bias in the estimate of the signal-to-noise ratio is usually
not greater than 10%.
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