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Introduction

During the evaluation of the continuous measurement
signal of analytical instruments by a digital computer, the
signal is sampled periodically, and the analytical infor-
mation [1] is computed from this sequence of discrete
values representing the signal by the procedure called
data reduction [2]. For example, retention data, peak
heights and/or peak areas are produced from the raw
discretized signal, in the case of chromatogram evalua-
tion.

Ofcourse the analytical information produced should not
contain a systematic error component, that is, replicate
measurements should give more precise information.
Measurement conditions are chosen so that the raw
signal of the measurement device, as represented by the
sequence ofdiscrete values, does not contain a systematic
error component. As measurement is a complex process,
its component processes can add random errors with
various distributions. These random errors can be
transformed into systematic error components [3]. The
random error of the raw signal can also be transformed
into a systematic error component in the analytical
information by the data processing: Enke and Nieman [4]
investigated this effect in the case ofdata smoothing, and
Eisenhart [5], Ivanova and Tkatchev [6] studied it in the
case of calibration. This paper reports an investigation of
data reduction transformation causing a systematic error
component from random errors. The work used math-
ematical and simulation methods.

evaluation by digital computers. In order to handle
further formulae more simply let us assume that the
discretized signal does not contain outliers and system-
atic error components, also let us investigate the one-
dimensional case. (Extension to the multivariate case
does not cause any difficulty.) The model ofthe measure-
ment signal can thus be written in the form:

x(t) X(t) + s.e(t) 1,2,....,7" (1)

where: x(t) is the stochastic sequence of the discrete
measurement signal

X(t) is the true value sequence
e(t) is the white noise stochastic sequence with

standard normal distribution (with indepen-
dent elements, 0 mean and variance)

s2 variance of the random measurement error
T number of samples.

Our assumption about the absence of outliers and
systematic error components does not limit the generality
of our conclusions. If it can be shown that in this simple
(special) case the data reduction does transform the
random error contained in the measurement signal, into
systematic error in the analytical information, then in the
more complicated case the analytical information will at
least contain this sytematic error component.

During the data reduction step a new stochastic sequence
is obtained from the measurement sequence (1), by a
transformation determined by the type of data reduction
chosen. This sequence (2) contains the analytical infor-
mation:

where K << T. The transformation R {.;.,.,...,.} is called
the data reduction transformation.

Mathematical modelling of data reduction

The aim of data reduction is to compress the raw data
produced by the measurement device and to bring it to a
form suitable for evaluation without significant loss ofthe
analytically important information. A loss of information
is unavoidable during the analytical information produc-
tion step of data reduction. This is because not all of the
information contained in the measured, raw data is
necessary- the information content of the analytical
information is orders of magnitude smaller.

As a measurement data model a so-called discrete time
vector valued stochastic process (stochastic sequence)
was chosen, because the raw continuous time measure-
ment signal is usually sampled as the first step of

The data reduction transformation is in the general case a
nonlinear one. According to the well-known definition of
linear transformation, a data reduction transformation is
linear if multiplication of the sequence by a constant
before or after transformation gives the same result and
the sum of two transformed sequences is equal to the
transform of the sum of the two sequences.

The true value sequence of the analytical information

sequence {y(k)}k __K can be defined as if its element would
be obtained from the true value of the measurement

sequence by the data reduction transformation (2).

As the data reduction transformation is nonlinear in the
general case, the mean value of the analytical information
sequence is not equal to its true value, so:
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Ely(k)] E[R{k;x(1),..,x(T)}] #
# R}k;E[x(1)] ,..,E[x(T)]{ R}k;X(1),..,X(T){ Y(k)

(4)

Thus in the case of nonlinear data reduction trans-
formations the random error component in the measure-
ment sequence causes a systematic error component in
the analytical information sequence. This systematic
error component can be theoretically eliminated by a
suitably chosen correction, but the problem is not solved
for data reduction transformations used in analytical
chemical practice.

At the same time, in the case of linear data reduction
transformations, the random error in the measurement
sequence does not cause systematic error in the analytical
information. In this case the data reduction trans-
formation has the following simple form:

y

_
(t). x (5)

where y and x denote the vectors composed of the
elements of the analytical information and measurement
sequence respectively, R(t) is the matrix of the data
reduction transformatid-fi with only time dependent
elements. Repeating the derivation of Equation (4) for
this case, using the fact that the elements of the random
error sequence are independent, we obtain:

E[y] E{R(t).x] R(t).E{x] R(t).X= Y (6)

In this case there is no systematic error in the analytical
information sequence.

Data reduction transformations for the reduction of
discretized chromatographic raw data

In the discussion of the data reduction of measurement
sequences obtained from chromatographs, the com-

ponents of the measurement sequence have to be taken
into account. For the sake of simplicity let us assume that
the measurement sequence contains only the signal of the
unknown compounds as peaks with the shape ofGaussian
distribution function, an additive random error and a
base-line component:

J
x(t) , (qO’).j(t- u(j))/z(d’)]) + c(t) +

=1 s.e(t); 1,...,T (7)

where: u(]’), z(]’) are parameters characterizing the qual-
ity of the compounds

q0") is the parameter characterizing the
amount of the compounds

c(t) is the base-line sequence (deterministic).

As analytical information for the determination of the
amount of the jth compound, the peak height:

H(]’] X (u(l’) c(u(j) q(3"] c(uO’) ),

or the peak area is used. For the determination of the
influence of the data reduction process, it can be divided
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into well-defined subprocesses
formations), which are:

(elementary trans-

(1) Peak recognition.

(2) Base-line correction.

(3) Calculation of peak height or area.

The data reduction transformation can be regarded as a

composite of the transformations listed above in the given
order. Let us first investigate the elementary trans-
formations of the composite data reduction trans-
formation separately.

The peak recognition algorithm is used for the decision
whether or not a peak is beginning or ending at a given
time t, as parameters u(j), j 1,...,J are unknown.
The peak recognition algorithm separates a set of signal
samples belonging to the peak, and the maximum or the
integral area is computed. For this purpose a moving
group of consecutive points from thejth to the sth sample
are separated as being before and after peak (typically
up to 30 sample values), their mean is calculated (
ts, O). A start or end of peak is assumed if the deviation of
two consecutive samples exceeds a given limit m, from the
mean value:

x(tj. + k) c(O- ts,t)l> m k 1,2 (8)

Furthermore the peak is accepted if it has a maximum
and if its area exceeds a specified minimum value. It must
be noted here that other peak detection algorithms (i.e.
based on the value of the derivatives of the sequence) can
also be used.

The difference of consecutive signal samples depends not
only on the deterministic component (X(0 + 1) and X(0 +
2)), but also on the random error (e(0 + 1), e(tj + 2)) and
the base-line value. This means that the number of
samples assumed to belong to the peak is a random
variable, which will be denoted by n(t). It is easily seen,
that nO" is a nonlinear function ofthe measurement signal
samples, because in the case of twice as large q)j), the
number ofsamples belonging to the peak will not be twice
larger because of the nonlinear (Gaussian) shape of the
peak. Thus this peak recognition step is a source of
systematic error.

The data in table show the variation of the number of
samples assumed by the given algorithm to belong to the
peak in simulated chromatograms as a function of the
various parameters of the peak. (The description of the
simulation experiment is given in the next section.) Data
in the column designated H/W 1000 refer to ’narrow’
peaks. It can be seen that the variation of the number of
samples included does not vary very much, but also that
the variation is not a monotonous function of signal-to-
noise ratio (it first increases then decreases with increas-
ing signal to noise ratio). At the same time the uncer-
tainty of peak recognition decreases with increasing
signal-to-noise ratio in every column as demonstrated by
the value of the standard deviation S. For wide peaks the
number of samples assumed to belong to the peak
increases very rapidly with increasing signal-to-noise
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ratio. This property becomes stronger as the peak width
increases.

For the computation of the peak height, as well as the
peak area, the value of the base-line must be determined.
As a peak covers up the base-line a base-line correction
algorithm is used for estimating the values of the
base-line, based on the samples before and after the peak.
In the most simple (linear) case, the algorithm selects two
groups of samples from the measurement sequence of
predetermined size, before and after the peak, computes
the means of the groups, orders these averages to the
centre of the groups in the t-domain as points of the
base-line, and connects the two with a straight line which
will serve as the estimate of the base-line between the two
points. The above base-line correction algorithm is a
linear transformation of the selected samples in the two

groups into the parameters of the line (the computation
only requires addition, subtraction and multiplication by
constant values). Also the substitution into the linear
base-line requires only linear data manipulation. At the
same time, there are well known nonlinear base-line
correction algorithms (i.e. the algorithm based on poly-
nomial fitting), in which cases both the computation of
the base-line and the substitution into the nonlinear
base-line are nonlinear transformations.

It is important to note, that the systematic error of the
peak recognition affects the base-line correction
algorithm, because the groups before and after the peak
should be as close as possible to the peak. So samples
belonging to the peak can be assumed to be in one of the
surrounding groups.

As the final step, the calculation of the peak area from the
nO" selected samples is a linear transformation if a
constant or linear form of base-line is assumed:

tj + n(j)

A0) (9)

In this case there is no further nonlinear transformation
causing possible systematic error in this step.

the calculation of the peak height from the selected nO’)
samples is a nonlinear data transformation as the
determination of the peak height is usually computed by
fitting a parabolic curve to a set number of the samples
having the largest values, the peak height being taken to
be equal to the height of the parabola. The above
algorithm filters the effect ofthe random error component
in the case of Gaussian distributed random errors
according to the least squares estimation properties (for
other distributions it is only approximately valid), but the
estimation of the parameters of the parabola from the
measurement samples is a nonlinear transformation
because of the nonlinear character of the parabola. For
this reason the estimation of the peak height is also a
nonlinear data transformation, so it can introduce
systematic error components from the random errors.

At the same time the systematic errors of the base-line
correction algorithm appears in the value of the peak
height calculated as above, transferring the systematic

error caused by the peak recognition step. However, the
systematic error in the estimated base-line affects the
peak height calculation much less than it does the peak
area, as in the latter case the number as well as the values
of the measurement signal samples belonging to the peak
distort the result of the peak area calculation.

The above explains the well-known empirical fact that
only the peak height, and not the peak area, can be us :d
for quantitative trace analysis (Hachenberg [7]). In trace

analysis the signal-to-noise ratio is rather small.

The effect of data reduction on the result of chromat-
ographic analysis as a function of the parameters of
the chromatogram

The effect ofdata reduction was investigated by computer
simulation of measurement signal sequences with known
variances. The simulations were performed on a HP
21MX computer.

It was assumed for the computations that the function
describing peak shape is a Gaussian distribution func-
tion. In order to model the qualitative and quantitative
deviations of the compounds, several Gaussian distribu-
tion functions were used, which can be characterized by
their height H and the interval W cut from the base-line
by the tangents at the inflexion points. The distribution of
the random error component was chosen to be Gaussian
and uniform. As the results for the two cases coincide,
only the results of the case with Gaussian functions are
shown here. The other parameters of the simulation
experiment are detailed elsewhere [8 and 9].

The limits for the parameters investigated were the
following:

H/W: 10-1000 mV/s
W 4-32 s
E 10-

The simulation results indicate that the systematic error
caused by the random error component in the measure-
ment signal samples generally increase with the decrease
of the signal-to-noise ratio E, which in our case can be
defined after Smit [10] as follows:

E H/s (11)
At the same time magnitude and sign of the systematic
error varies as a function of peak shape, i.e. as a function
of the height/width ratio (H/W).

Figures 1-3 show the variation of the relative peak height
(AH/H) and relative peak area (AA/A) as a function of
the signal-to-noise ratio for peaks with different shapes.

Figure contains data for narrow peaks (high H/W), for
which there are relatively low numbers of signal samples
belonging to the peak, having a relatively rapid determi-
nistic change. It can be seen that both the relative peak
height and area increases with decreasing signal-to-noise
ratio. It should also be noted from the data in table 1, that
there is only a relatively small variation in the number of
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samples assumed to belong to the peak, especially when
relative values are examined.

It can be seen from figure 2 that in the case of medium
wide peaks (intermediate values ofH/W), the peak height
increases with decreasing signal-to-noise ratio, while the
peak area decreases after a short period of increase.

In the case of broad peaks (low values of H/W) the
number of samples belonging to the peak is large. The
data in table show that in this case the number of
samples assumed to belong to the peak reduces very
rapidly with decreasing signal-to-noise ratio. So for broad
peaks both the peak height and area reduce with
decreasing signal-to-noise ratio.

Discussion

It can be seen from the simulation results that the
signal-to-noise ratio required for a negligible bias to be
introduced by the transformation of the random error of
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Figure 1. The effect of the signal-to-noise ratio (E) on the peak
height and area (H/W 1000 mV/s, with Gaussian distributed
random error, each point representing the mean of 10 simulated
values). Where H peak height; AH variation of the peak
height compared to the theoretical (true) value; A peak area;
AA variation ofthe peak area compared to the theoretical (true)
value; W peak width.
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Figure 2. The effict of the signal-to-noise ratio (E) on the peak
height and area (H/W 600 m V/s). Other details same as in
figure 1.
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Figure 3. The effect of the signal-to-noise ratio (E) on the peak
height and area, (H/W 60 m V/s). Other details same as in
figure 1.

the measurement signal samples varies with the chromat-
ographic peak shape. For example the signal-to-noise
ratio normally achievable in analytical practice (around
500) is sufficient in the case ofnarrow peaks, but it should
be greater than several thousands for wide peaks. In the
case of chromatographic peak height evaluation, these

Table 1. The number ofmeasurement signal samples (N) assumed by the integration algorithm to belong to the peak as a function of the
signal-to-noise ratio (E). Each point represents the mean oflO simulated values. Where S (%) the relative standard deviation; H the
peak height; W the peak width.

H/W
mV/s 1000 600 240 60

E N S% N S% N S% N S%

10 41,8 40,4 27,9 31,4 22,6 20,3 30,2 32,3
20 37,0 32,5 50,6 42,5 37,7 53,4 31,3 46,4
50 55,6 10,5 77,6 10,3 88,4 56,1 57,2 58,4
100 60,9 8,3 93,2 16,2 162,6 19,2 102,8 55,0
200 67,0 20,7 118,5 11,9 200,5 26,5 227,0 26,0
500 73,4 19,4 160, 7 4,0 234,8 7,4 318,6 16,0
1000 89,6 19,2 137,4 5,3 231,0 3,8 316,2 13,6
2000 82,4 11,6 147,4 8,9 236,4 1,8 332,6 4,5
5000 78,8 10,4 129,5 1,6 239,9 0,7 326,9 3,7

69,0 0,0 133,0 0,0 242,0 0,0 350,0 0,0
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values can be slightly lower. For comparison purposes it
should be noted that the best signal-to-noise ratio
achievable in spectrodensitometry of thin layer chromat-
ograms is not greater than 500, because of the significant
noise of optical origin [11]. At the same time, the
signal-to-noise ratio of the main components in gas and
modern liquid chromatography can reach the range of a
couple of ten thousands, with suitable detector sensitivi-
ties and retention times. In the case of chromatographic
trace analysis, the signal-to-noise ratio is usually less than
50. For details of practical applications see Leisztner et al.
.[9].
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