
Journal of Automatic Chemistry, Vol. 10, No. 2 (April-June 1988), pp. 67-78

Exploring multivariate clinical chemical
routine data concerning three major disea se
groups

Jan B. Hemel,
Central Laboratory for Clinical Chemistry, University Hospital Groningen,
P.O. Box 30001, NL-9700 RB Groningen, The Netherlands

Hilko van tier Voet*,
Research Group Chemometrics, Pharmaceutical Laboratories, State University of
Groningen, A. Deusinglaan 2, NL-9713 AW Groningen, The Netherlands

Roll Hendriks, Frans R. Hindriks and
Willem van tier Slik
Central Laboratory for Clinical Chemistry, University Hospital Groningen,
P.O. Box 30001, NL-9700 RB Groningen, The Netherlands

In preparationfor multivariate analysis, an exploratory study has
been undertaken to investigate the relative position, separability,
homogeneity and shape of three major disease groups, using data
from a clinical chemical routine package.
The data set consists of 46 hepatology patients, 50 nephrology
patients and 46 cardiology patients, and the measured blood levels
include 20 common clinical chemical routine assays. Missing value
problems were avoided by deleting some ofthe variables and objects.

A univariate analysis was used as the basis ofa rescaling of the
data.

Bivariate (pairwise) plots ofsome major assays each show limited
separation. The set ofthree such plots ofthe three major principal
components reveals more distinction between the groups than was

offered by univariate analysis. Three-dimensional extensions of
these techniques allow better insight than any of the two-
dimensional plots, but these three-dimensional versions require
more plots for complete interpretation.

Non-linear mapping of the data is the best way of retaining the
distances and a fairly good separation is achieved in the plot. The
plot is less informative about shape and relative position of the
classes.

Representation of the data as pictures offaces does not offer
additional information and visual clustering is worse than in any of
the techniques mentioned.

During the analysis many assumed properties of the data are

confirmed and a good starting pointfor multivariate classification
is attained. Easy visual detection of outliers is offered by all
techniques. Unfortunately, valuable information is lost in this data
set by deleting some incomplete variables.

Introduction

During the past decades the number of constituents that
can be measured in body fluids has increased substan-
tially. Simultaneously, the costs per assay decreased at an

* Present address: Agricultural Mathematics Group, P.O. Box
100, NL-6700 AC Wageningen, The Netherlands.

even more rapid rate due to large-scale laboratory
automation. These facts have stimulated the physician to
order more assays than can be effectively interpreted by a
human without help from sophisticated techniques.
Although each assay may contribute some information,
the sequential univariate way of interpreting the results
leaves part of the information unrevealed. Fortunately,
the impasse that results can be broken.

Firstly, the physician could be advised to order only those
assays that will give him the desired information, in other
words, to order very selectively. This requires a thorough
knowledge ofthe value ofthe assays for each diagnosis. As
clinical chemistry offers ever more new and possibly
valuable assays, it is difficult to keep this knowledge up to
date. The introduction of protocols of diagnosis and
treatment in medicine, supported by recent medical
decision-making techniques, is an attempt to optimize the
use of laboratory results by selection of an optimal subset
of all assays for a specific problem. Advantages of this
approach include reduction of overall costs and growing
experience with a selection of assays, leading to assess-
ment of their value.

Another approach is to change the way ofinterpreting the
results from sequentially univariate (the assay outcomes
are judged successively) to multivariate (all assays are
judged simultaneously). As the maximum number of
features that one can simultaneously grasp does not
exceed three by much, the wealth of data coming from a
modern screening series of, say 20, laboratory assays is far
too large to be interpreted without help. This is where
statistical multivariate techniques may be useful. By
representing a patient’s record as a point in a p-dimen-
sional space spanned by the p assays as axes, the results of
all p assays can be judged at once. Mathematical models
enveloping each disease class may be developed, and this
can be followed by classification ofan unknown test point
into the class whose model fits best. Furthermore,
multivariate processing of data may indicate which
assays contain most discriminatory information between
disease classes and thus supplies suggestions about which
measurements should be done to clear what doubts.

In this way, multivariate data analysis may both reduce
the number of assays needed by maximizing the un-
covered information, and indicate which assays offer most.

Since medical diagnosis is in fact a kind of classification,
multivariate classification is the most interesting branch
ofmultivariate analysis ofmedical data. It is stressed that
classification is not necessarily choosing the one and only
diagnosis, but may very well take the form of a
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probabilistic differential diagnosis. Multivariate classi-
fication is an often-occurring aim ofdata analysis [see, for
instance, 1-8]. Although at first sight the procedure may
seem to consist only of choosing a multivariate classifica-
tion method (MCM) and applying it to the data using an
appropriate computer program, in most cases many
unexpected problems are encountered. Problems of
scaling, transformation, outlier detection, class model-
ling, and many more will trouble the investigator and
may prevent him from reaching his goal. Some of these
problems may (and should) be foreseen and even solved
by exploring the data before starting the actual classifica-
tion procedure. A carefully executed exploration will
answer questions about separability, relative position and
shape of the classes, it may suggest adequate class
models, and it will indicate possible outliers. Tukey has
written a comprehensive work about data exploration
[9].

Equipment and computer programs

All samples were analysed on a Technicon SMAC
continuous flow analyser. Calculations were done on

Groningen University’s Control Data Cyber 170/760
computer. Plots were made on the University’s Versatec
V80 electrostatic plotter.

The following programs were used:

(1) SIMCA-3B [12], for the calculation of modelling
powers.

(2) ARTHUR [13], for variable selection, non-linear
mapping and principal-components plots.

(3) Some ad hoc programs for the three-dimensional
plots.

(4) CLAS [14], for all other calculations.

Before starting with the exploration it is useful to

preprocess the data by eliminating missing values and
scaling the variables [2, 7, 8 and 10].

The actual exploration includes several stages.

In the first stage univariate statistics, like means and
moments, may be calculated for the complete data set as
well as for each class separately. These will detect clear
separability on a single variable. Histograms and other
graphical displays may add univariate distributional
information. The knowledge of the univariate separa-
bility that can be acquired in this way gives an impression
of the multivariate distinction as well. However, bad
univariate separation does not imply multivariate over-
lap, making a multivariate approach useful.

The second step involves calculation of correlations.
These provide us with an impression ofthe dispensability
of each variable in the presence of another one.

In the third stage, several display techniques that aim at

retaining the multivariate aspect of information in the
data complete the exploration.

This paper is dedicated to the exploration of a medical
dataset, consisting of clinical chemical screening data of
patients suffering from a heart, liver or kidney disease.
Usually, in medical diagnosis a sequential univariate
approach is used implicitly in the application ofreference
intervals 11]. Multivariate diagnosis is expected to use a

larger part of the information present in the data. To
investigate the separability, relative positions and shape
of these major disease groups, and to detect the presence
of atypical cases, this study was undertaken.

After the description of the computer equipment and the
programs that were used the data set is introduced. In the
following section a selection of multivariate display
methods is discussed. After a section discussing the
necessary preprocessing of the data the main section will
contain a discussion of exploration results of the data.
The paper is concluded with an overview of the informa-
tion that is derived from the various techniques.

Data

Most multivariate studies aim at distinguishing between
very similar groups, using a highly selected set of very
specific assays. However, classification into major disease
groups using only clinical chemical routine data can serve
as the first step in referring a patient to the right medical
specialist. Although separation of major disease groups
may at first seem trivial, the heterogeneity within these
large groups and cases with multiple diseases make
separation difficult.

The data set that is explored consists of 142 patient
records. The patients suffered from the following disease
groups: 46 liver diseases (15 alcoholic cirrhosis, five
primary biliary cirrhosis, 26 cirrhosis due to chronic
active hepatitis- the LIVER class), 50 kidney diseases
(various, unspecified- the KIDNEY class), 46 heart
diseases (24 myocardial infarction, 22 coronary artery
disease- the HEART class).

The criteria for selection of the patients were: (1)
diagnosis certain within the boundaries of the class; (2)
no concurrent disease from any of the two other classes
present; (3) admitted to hospital in 1982; (4) blood
sample available within 10 days of admittance.

The only information about the patients, apart from their
diagnostic class, consists of their blood concentrations of
sodium, potassium, chloride, urea, creatinine, uric acid,
alkaline phosphatase (AP), lactate dehydrogenase
(LDH), aspartate aminotransferase (ASAT), alanine
aminotransferase (ALAT), total bilirubin, direct bili-
rubin, calcium, inorganic phosphate, total protein,
albumen, cholesterol, triglycerides, iron and y-glutamyl
transferase (GGT), expressed in appropriate units. This
set of assays is the routine clinical chemical package used
at Groningen University Hospital. It has not been
optimized for discrimination between HEART, LIVER
or KIDNEY patients. For each patient the complete
series of assays was performed on a single blood sample,
taken within 10 days ofadmission. Twelve per cent of the
values in the data is missing due to a selective ordering of
assays by the physican. More details about the data are

given in table 1.
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Table 1. Summary ofthe data set before and after reduction because ofmissing values.

With missing values Without missing values

Variable Unit Class Mean s.d. Mean s.d.

Sodium mMol/1

Potassium mMol/l

Chloride mMol/1

Urea mMol/1

Creatinine Mol/1

Uric acid mMol/l

AP U/1

LDH U/1

ASAT U/1

ALAT U/1

Bilirubin, tot. tMol/1

Bilirubin, dir. gMol/1

Calcium mMol/1

Phosphate mMol/l

Protein g/l

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

heart
liver
kidney
all

139 2.6
138 3.8
138 4.7
138 3.9

4-3 0.47
4.0 0.50
4.6 0.62
4.3 0.59

103 2.6
102 6.2
102 6.6
102 5.4

6 1.9
6 5.7
17 12.4
10 9.5

93 14
84 61
384 389
191 270

0.36 0.08
0.29 0.10
0.42 0.12
0.36 0.12

87 27
238 219
101 54
139 143

326 245
280 140
260 86
287 168

48 64
118 150
25 27
62 101

25 12
105 98
27 54
51 74

9 6
64 141
8 7

30 93

1.5 0.7
32.5 80.6
1.9 1.4

14.0 52.8

2.4 0.14
2.3 0.16
2.4 0.21
2"3 0.19

1.0 0.26
1.1 0"30
1.5 0.66
1.2 0.51

66 5.4
65 9.3
62 9.6
64 8"6

4
4
0
3

2
7
2
4

4
2
4
4

0
0
0
0

0
0
2

41
11
6

19

2
9
2
4

9
0
4
4

0
2
0

2
4
0
2
52
7

14
24

46
2
14
20

26
4
2
11

39
4
0

14

11
0
2
4

139 2-6
137 4"2
137 4-7
138 4.0

4"2 0-46
3.9 0.53
4.5 0.64
4.3 0.60

103 2.7
101 6"6
101 6.8
102 5-7

6 2"0
6 6"3
18 12-9
11 10"2

94 15
88 68

407 402
207 289

89
251
104
144

334
292
263
295

54
127
25
66

25
99
28
49

27
232
57
151

256
153
88
178

69
166
29
109

12
87
58
68
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Table 1 continued.

With missing values Without missing values

Variable Unit Class Mean s.d. % miss. Mean s.d.

Albumen g/1 heart
liver
kidney
all

Cholesterol mMol/1 heart
liver
kidney
all

Trig yceride mMo /1 heart
liver
kidney
all

Iron bMol/1 heart
liver
kidney
all

GGT U/1 heart
liver
kidney
all

44 2"9 39
35 5"7 4
36 7"4 2
38 7"0 15

7 1"6 24
5 2"7 4
6 2"8 24
6 2"6 18

2"4 1.1 61
1"5 1.0 15
2"2 1.4 36
1"9 1"2 37

14 8"2 54
19 10"1 11
14 8"0 20
16 9"2 28

39 32 50
372 632 15
51 123 16
169 423 27

Numbers of patients initially:
Nheart=46; Nli,,r=46; Nkidney--50; Ntotal-" 142;

After removing missing values:
Nheart=38; Nliver=36; Nkidney=43; Ntot 117

Italics: variable is deleted after missing value removal.

Multivariate display methods

To get information about the separability of the classes,
visual inspection of the multidimensional space and the
situation of the object patterns in that space can be a
helpful tool. Since human imagination can only cope with
spaces with up to three dimensions, so-called display
methods map the multidimensional data onto a low
(usually two) dimensional space.

What could be the use of display methods? One may get
an impression of the separability of the classes, of the
presence of outliers or atypical cases, and, if mathemat-
ical models are fitted, one may visually judge the models.
It is stressed that separability need not- and perhaps
should not- be the only purpose of exploring data.

To reach these goals there are some requirements to be
fumned. () distances between objects (and classes)
should be conserved as well as possible; (2) the informa-
tion content, in the sense of variance retained in the
picture, should be as large as possible; (3) the picture
should be easily interpretable.

Many different display methods have been proposed in
literature [9, 15-19]. Some of them will be briefly
discussed here.

Pairwise scatter plots ofsome or all variables against each
other. These plots show relations between the variables.
With growing number ofvariables the number ofpossible
plots grows unmanageably large. These pictures are

separately simple to interpret. They contain each on their
own but a fraction of the information content, but
together virtually all. Distances are only partially
retained.

New orthogonal axes may be chosen in the p-dimensional
space, for example by calculating the principal com-
ponents (PCs) of the data. The first principal component
is an axis that is chosen so that the projections of all
present points on that axis show maximum variance. The
second PC is the axis that is orthogonal to the first one
and contains next largest variance, and so on. The
transformation of the data to scores on these new PC-axes
is called the Karhunen-Lo?eve transformation. The pair-
wise scatter plots of the PCs against each other are called
PC-plots. As the first PCs contain, by definition, most of
the variance in the data, only the first few PC-plots may
suffice to depict most of the information (in the sense
defined before), so a dimension reduction results. The
new axes are chosen in a way to guarantee a maximum
information content in the first two PCs. The only other
difference with pairwise plots ofvariables is the interpret-
ability, which is generally much worse, since the axes in
the plots are mixtures of the original assay-axes. Insight
into this mixture can be obtained from a biplot, a PC-plot
with the original axes projected into it. This biplot gives
information about the relation of the original axes to the
PCs.

Scatter plots of variables or PCs are conceivable in three
dimensions as well as in two. Grotch has reported this
and similar techniques [23]. For the actual plotting, a

projection of three-space on two-space is necessary,
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resulting in pseudo-three-dimensional plots. By rotating
the three-dimensional space in different ways before the
projection, a three-dimensional illusion may be obtained.
By using advanced real-time 3D-graphics programs this
illusion can be significantly enhanced, but only at high
costs.

A technique that is not a simple orthogonal projection of
the data onto two-space is extensively described by
Kowalski and Bender [10]. This so-called non-linear
mapping attempts to retain the distances between the
data points. One may think of all points connected to all
other points with tcnsionlcss springs and pressing this
p-dimensional structure onto two-space. This technique
is offered by ARTHUR as the NLM routine. Inter-
individual distances arc best retained by this method; the
interpretation of other aspects than these distances is
hard. A problem with this method is that an NLM-plot is
dependent on the initial projection direction, so it is not

uniquely determined.

Chcrnoff, contemplating the fact that in two dimensions a
human is the best pattern recognizer, and that everyone
has been studying faces right from his birth, proposed a

procedure to translate every variable into a feature of a

cartoon face [19 and 20]. By looking at the picture many
variables arc interpreted simultaneously. A problem with
this technique is that not every facial feature is equally
prominent, and that the ranking for recognition is
sub.jcctivc [21].

Preprocessing the data

As mentioned before, the data presented quite a few gaps.
This is a very usual phenomenon with retrospective
medical data: a physician is not interested in all assays, so

only a selection is executed. The locations ofthe gaps may
reflect the surmises (or certainties) of the physician. If all
incomplete objects arc excluded from the data, it is
probable that patients that arc very typical for their class
arc lost. Patients that arc easily recognized as suffering
from a liver disease may not be examined for kidney
failure, and so kidney function tests may not be ordered.
On the other hand, omitting incomplete variables leaves
only very non-specific tests. We chose deletion of all
variables that missed more than 10% of the values in any
class, removing the remaining gaps by deletion ofobjects.
Nine variables and 117 ob.jccts wcrc retained. The
variables were sodium, potassium, chloride, urea, crcati-
nine, AP, LDH, ASAT and ALAT. Excluded ob.jccts
came about equally from all classes. (The arbitrariness of
this way of missing data removal has stimulated us in a

later study to develop another missing data handling
technique, finally emerging into the method of slepwise
delelion [24].)

Variation between different objects in the data comes
from four causes. The first cause is inter-class variation
(pathology): each disease has its own physiology and
resulting blood concentrations. This is the difference
between the patients in which we arc interested. The
second cause of difference between patient records is
intra-class variation: this includes diflkrences between
patients suffering from the same disease. Another cause is

intra-patient variation: variations of concentrations in
time within a patient, the staging of the disease, as well as
random or circadian fluctuations. The last source of
difference is analytical error, the error made in the
measurement.

The aim of class separation implies that variation from
other sources than inter-class differences should be
eliminated as well as possible, leaving the differences
caused by pathology untouched. The usual approaches of
autoscaling and class-scaling, that equalize the variation
in each feature in the entire data set or per class
respectively, implicitly assume that no distributional
characeristics arc known about the unwanted sources of
variation. However, in many medical data sets, as in the
one under consideration, such information is available for
healthy people. For most assays, reference limits arc
determined on the basis of a healthy population. If the
data are scaled according to the standard deviations
found in this population, healthy persons will aggregate
into a more or less spherical shape, depending on the
distribution being symmetrical or not, and on the
presence or absence of inter-assay correlations. Inter-
individual and analytical variation is in this approach
’downscalcd’, leaving inter-class and disease-stage varia-
tion unaffected. In this reproducibilily scaling it is assumed
that analytical error and intra-individual variation are
the same for both the healthy and the ill. In an earlier
study by our group, reference limits were determined
based on a patient population [11]. The standard
deviations given in table 2 were derived from this study.
The variables are divided by these numbers to get the
scaled ones. Table 2 also includes the abbreviations used
in the following.

Disease-stage variation is more difficult to combat. In the
present study the effect of the stage of the disease is
limited by choosing the moment of admittance to the
hospital as reference, and sampling within 10 days. It

Table 2. Slandard devialions usedfor reproducibilily scaling.

Variable Abbreviation s.d.

Sodium NA 2"3
Potassium K 0"36
Chloride CL 2"7
Urea UR 1"4
Creatinine CR 18
Uric acid UA 0"067
AP AP 26
LI)H LDH 38
ASAT ASAT 4.7
ALAT ALAT 6.4
Bilirubin, tot. DBI 2"2
Bilirubin, dir. TBI 0"60
Calcium CA O" 11
Phosphate P 0"22
Protein TP 4"6
Albumen ALB 3"9
Cholesterol CItO 1.6
Trig ycerides TGL 0"50
Iron FE 13
GGT GGT 6"9

Italics: variable is deleted after missing value removal.
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must be noted that for myocardial infarction this period
might be too long to reduce disease-stage variation
sufficiently.

For the determination of the most important variables
several methods are available. The Umea group has
defined [22] the Modelling Power of a variable j for the
model of class c as being

MPj ?d/S}I
with SF,,d: residual standard deviation of variable j in

class c with respect to the class model.

t.ot. residual standard deviation of variable j in
class c without application of any model.

This MP emphasizes the description of a class with PC
models. The discriminating powers defined by this group
stress the difference between the classes. In ARTHUR a
feature selection method called SELECT is available that
offers a selection according to interclass/intra-class ratio
of variance. SELECT, too, takes separation between the
classes as its primary aim. Because we are concerned with
exploration, modelling powers were calculated using
SIMCA-3B. Since SIMCA-3B can elegantly cope with
missing values, these calculations were done also before
the reduction of the data set. In this way we get some
impression of the importance ofomitted variables as well.
Modelling powers were calculated for models consisting
of one and two PCs for each class. Some major results are

summarized in table 3. It is seen that some deleted
variables are very promising, although the figures must
be interpreted carefully, because of the sometimes large
proportion of missing data.

To investigate the value of the systematically missing
variables a large study is started at our laboratory in
which complete sets ofroutine data are prepared for every
patient that is admitted to the ward for internal diseases
at the Groningen University Hospital. The results are
saved for later use when the patient’s diagnoses are
available.

Table 3. Largest modelling powers.

Results and discussion

First of all the univariate stalistics of the unscaled data are
calculated. The most relevant statistics are summarized
in table 1. From this table it can be seen that the presence
of some variables differs greatly between the diseases, as
is expected because of the mentioned selectivity in
ordering assays. Interesting variables are beginning to
show because of differences in means between the
diseases, but the optimism about their relevance is often
reduced by the accompanying large standard deviations.
It is noticed, that standard deviations and means are not
much influenced by the deletion of missing values. This
suggests that deletion of objects has been sufficiently
random, since shift ofmeans and/or standard deviation is
expected if systematically some subclasses ofobjects were
deleted.

More information may come from a bivariate approach.
Correlations are easily obtainable. In CLAS they are
calculated across the entire data set by default. The
correlations found to be greater than 0.5 are reported in
figure 1. They are all significant at a level of at least
99.95% (one-sided). The variables concerned turn out to
form small clusters. It must be stressed that some
correlations may be strongly dependent on the classes
included in the data set. For instance a variable may be
high for a class and normal for other classes in which
another variable’s level may be elevated. This situation
will result in a high (negative) correlation between these
variables that might be absent in a healthy control group.
It follows that correlations calculated in this data set arc
not applicable to data-sets consisting of different classes.
However, from these correlations variables that are
redundant in the context of these classes can be detected.

It is seen that although many highly significant correla-
tions exist, the correlations do not allow us to leave many
variables out because of complete redundancy. Only the
bilirubins and, to a lesser extent, creatinine and urea, and
AP and direct bilirubin are roughly equivalent in this
data set.

Class Model size* Data set Variables with largest modelling powers

Heart F
R

2 F
2 R

Liver F
R

2 F
2 R

Kidney F
R

2 F
2 R

ASAT
ASAT

ASAT
ASAT

Bilirubin, dir.
ASAT

Bilirubin, dir.
ASAT

Creatinine
Creatinine

Creatinine
ALAT

LDH > ALAT
LDH > ALAT
GGT > LDH
LDH > ALAT

bilirubin, tot. > AP
LDH > ALAT
GGT > Bilirubin, tot.
ALAT > LDH
Urea > Phosphate
Urea >> LDH
GGT > Urea

Creatinine > ASAT

Italics: variable is deleted after missing value removal.
* Number of PCs in the model.

" F: full data set including data gaps.
R: reduced data set, freed from data gaps.
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NA 0.63 CL CHO 0.51 TGL

CA 0. 63 ALB 0. 61 TP

GGT

0.0 0.54

AP 0.80 OBI

8.78 0.99

DBI

UA 0. 59 UR 0. 85 CR

8.67 8.61

Figure 1. Correlations in the data set that are greater than 0"5.
Abbreviations from table 2.

Plots of one variable versus another variable give visual
information that may remain hidden otherwise. The
modelling powers as listed in table 3 supported by clinical
chemical knowledge suggest that ASAT, ALAT, LDH
and creatininc may be interesting. The most intbrmativc
of the set of possible plots appears to be ASAT versus
crcatininc. The plot is shown in figure 2. ASAT is
important tbr the modelling of heart and liver disease
groups, and crcatininc is characteristic tbr kidney
diseases. In this exploration we are concerned with
description of the classes. We should be aware of the tact
that for optimal separation another pair of variables
might be more appropriate.

2{ 22 22

CR
Figure 2. ASA T plolted versus creatinine (CR) (after scaling).
1 liver; 2 kidney; 3 hearl.

It is obvious from the plot that the classes arc not

separated completely. Patients in an early stage of illness
and almost recovered patients fi’om all disease classesjoin
in a common region where the healthy population will be

found as well. There are two apparent causes for this
effect. Restricting patient samples to a period of 10 days
after admittance is not enough to assure the same stage of
disease, and illness is not equally manifest in all patients
(for example because of therapy). Because of the rapid
changes of enzyme blood concentrations after a heart
attack the former phenomenon is expected to be import-
ant in the heart group. In the following we will be mainly
concerned with the diverting ’tails’ of the classes.

The plot shows that the KIDNEY group is well separated
from the other groups, but that little separation is seen
between the LIVER and HEART classes. In variable-
variable plots in which best-modelling variables are

chosen, this is likely to occur, unless the chosen variables
are important in all models, but show different levels for
each class. A KIDNEY group outlier (marked with an

arrow in all figures) is clearly detected amidst HEART
and LIVER patients. It should not be included in the
KIDNEY class model construction. Another atypical
patient, coming from the LIVER class, is noticed because
of an exceptionally high ASAT level (circled in the
figures). Although this patient definitely belongs to the
LIVER class, the rarity of the ASAT blood concentration
may disturb the construction of an adequate LIVER
model. It is advisable to construct a model that does not
include this patient, and therefore fits the more typical
members of the LIVER group.

Another approach to bivariatc plotting of the data is the
use of principal components instead of variables in the
plots. The plot of the first two PCs against each other is
shown in figure 3. The second PC, at the abscissa,
consists largely of crcatininc, so KIDNEY patients
spread along this axis. ASAT and ALAT are the main
contributors to the first PC, therefore some similarity of
this plot with the previous one is seen.

"-I

113
lit

PC-2
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The Non-Linear Map ofthe data presents a different view
on its distribution. The NLM plot offigure 4 is calculated
with the first two eigenvectors as initial projection plane.
Because of the high computational demands only a
random selection of 47 patients (plus the KIDNEY
outlier for illustration) is plotted. In this plot interindivi-
dual distances are best retained. KIDNEY is well
separated from LIVER, but HEART is overlapped by
both other classes. As only part of the data.is plotted the
degree of overlap might be underestimated.

11

Figure 4. Non-linear map, initiated with first two eigen vectors.
1 liver; 2 kidney; 3 heart (based on only 48).

As an extension of the bivariate plottings shown before,
pseudo-three-dimensional plots of three variables as well
as using three PCs are drawn in the figures 5 and 6. These
figures are extracts of larger sets of drawings. Every
complete series of plots consists of(l) an overview: the
data as seen if looking along the (1,1,1) vector in the
direction of the origin; (2) for each class separately a plot
drawn from the same viewpoint, with the fitted PC-plane
in it; (3) a rotated view on this space, one for every class,
to look in a direction parallel to the PC-plane fitted to this
class. Only points from the class at hand are plotted; (4) a
rotated view of this space, one for every class, to look
perpendicular to the PC-plane fitted to this class. Only
points from the class at hand are drawn in this plot.

The selection of the variables can be based on several
criteria. Using the modelling powers from table 3
creatinine-LDH-ALAT and creatinine-LDH-ASAT
were most prominent. Figure 5 represents the former set.
For three classes, as in the data under consideration, a
complete series would result in 10 plots, of which only a
selection (complete data and LIVER class) is shown.
Apart from an overview, as presented by plots (a) and (b),
this series provide information about the sufficiency ofthe
two-dimensional PC-models (c), and the distribution
within the model (d). Ifa line or point shape model would
be sufficient for the data, this will be apparent in plot (d).

From these plots it can be seen that the classes are largely
separable, but that they meet and overlap in a central
part, the place where the healthy population would be
found. In figure 5(b) the LIVER class is drawn sepa-
rately. A two-dimensional PC model is tentatively fitted
to it. This plot gives some insight into the relative position
of the LIVER gro.up. Plot 5(c) offers a view on the LIVER
class parallel to the PC-plane. Deviations from the model
can bejudged. Apart from two patients a two dimensional
model seems to be adequate in this space. In plot 5(d),
which offers a view perpendicular to the class model, the
usefulness of a two-dimensional model as opposed to a
one-dimensional one can be judged. In our opinion both
dimensions are sufficiently ’used’ to retain them. In this
way an impression can be obtained of the validity of the
class model, and of its location in space relative to the
other classes. As only the central part of the plot is drawn
the KIDNEY outlier is not seen. The other atypical
patient (from the LIVER class) is apparently less
extreme in this plot (without ASAT) than was seen
before. However, plot 5(d) shows him to be rather
eccentric.

The series of plots numbered-6 gives the same views on
the data as those from figure 5, but this time the
three-dimensional space spanned by the first three PCs
calculated from the whole data set is used to look at. The
conclusions are about the same. The usefulness of (at
least) two dimensions for the LIVER class model shows
even more pronounced. In figure 6(a) the KIDNEY
outlier detected earlier is caught again. The loss as

compared to the previous plots is the interpretability: the
axes are combinations of the original axes and cannot be
named easily. The gain is that the directions that contain
most variance in the data are presented in the plot. If
class distinction is the major source of variance a better
separation between classes may be seen in these PC-plots
than in the set of variable plots.

To interpret simultaneously as much of the multivariate
information as possible, faces were drawn according to a
variation on the Chernoff faces by Frith [21]. As the
selection of variables (a maximum of nine) to be
translated to face features might be crucial for the
recognition, the first nine PCs of the entire data set were
used instead of the original variables. In this way at least
most of the variance is present in the pictures. Most of
these faces were very difficult to classify. Therefore only
five stereotypical faces from each class are portrayed in
figure 7. These faces were selected as stereotypical using
the other techniques mentioned above: the patients come
from the tails ofthe ’class clouds’. Note that these patients
are not the most typical ones, but, rather, the most
extreme cases. Even so, LIVER and HEART appear to
be similar while only the ’extreme’ KIDNEY patients
differ reasonably from them. The distinction that is
visible is similar to the distinction in the PC plot (figure
3). Thus the PCs numbered three and higher do not seem
to have much influence.

Also shown in figure 7 is the KIDNEY class member that
resembled markedly the LIVER family (X). This patient
is the outlier that was detected also in previous displays.
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(A) (B)

(c)

Figure 5. Pseudo-3D plots, using ASA T, LDH and creatinine (CR) (all scaled) as the axes.

Fq liver; [X kidney; *= heart.
(a) Overview ofcomplete data.
(b) 0 Zas LZV, fom am epoz.
(c) Only class LIVER, in parallel view on PC-plane ofLIVER
class.

(d) Only class LIVER, in perpendicular view on PC-plane of
LIVER class.
To improve readability the axes are cut at 50 (scaled).

The atypical LIVER patient is denoted with Y. This face
is seen to differ considerably from all other faces shown
here. The patients that arc not ’portrayed’ in figure 7
have faces that are somewhere in between the shown
pictures.

It is possible that another selection of variables to be
included in the face features improves the distinction, but
as long as it is not known which features contribute most
to visual recognition, even with an optimal set of
variables, all permutations must be tried in order to

identify the best clustering ordering of the set.

Conclusions

The aim of this study was to get an impression of the
separability of HEART, LIVER and KIDNEY patients
on basis of 20 routine assays, and also of the presence of
atypical cases in the data, and of the applicability and
homogeneity of low dimensional class models. Since
separability is not the only aim, the selection of variables
should not be based on discrimination alone. If discrimi-
nation between classes is the leading guide for an

exploration., the selection of the variables to be plotted
may be biased. These plots are not characteristic for the
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(A) (B)

/,,’
(D)

/’/ /
/

Figure 6. Pseudo-3D plots, using PC-l, PC-2, and PC-3 (after
scaling) as the axes.
7 liver; / kidney; heart.
(a) Overview ofcomplete data.
(b) Only class LIVER, from same viewpoint.

(c) Only class LIVER, in parallel view on PC-plane ofLIVER
class.
(d) Only class Liver, in perpendicular view on PC-plane of
LIVER class.
To improve readability the axes are cut al SO (scaled).
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class models and their distances. Atypical objects cannot
be objectively recognized. In this paper, therefore, views
on the data are chosen that stress class characteristics
rather than class differences. The possibility of classifica-
tion may be estimated conservatively.

As a means for data exploration, pictures of faces do not
turn out to be particularly useful. Outliers may be easily
recognized, but clustering of the classes is hardly visible
in the analysed data set. There is little theory available for
ranking of features according to ’recognizability’.

LIVER

For patient classification it is necessary that all other
sources of variance than inter-class variation (pathology)
are removed. Reproducibility scaling based on standard
deviations in a population of healthy persons reduces
analytical error and .random intra-patient and inter-
patient fluctuations. Differences between patients that
are in a different stage of their illness are not sufficiently
reduced by sampling patients within 10 days of admit-
tance. This is especially relevant with patients from
disease groups with rapidly changing patterns (for
example myocardial infarction). This is a serious prob-
lem which gives classification of relatively stable disease
groups, and clearly staged diseases.; the best chance for
success. Patients under effective therapy are not always
recognized as ill; it is a matter ofopinion ifthey should be.
Both effects cause the data set to be shaped like a spider,
with a large proportion of seemingly ’healthy’ patients,
and offshoots with the more seriously ill ones.

Figure 7. Representation ofpatients from the HEART, LIVER
and KIDNEY classes as faces.
X: outlier from KIDNEY class.
Y: atypical LIVER case.

The selection of variables for the displays is largely based
on modelling powers as calculated by SIMCA-3B. These
calculations accommodate missing values. Some vari-
ables that had to be omitted because of missing .values
nevertheless contain valuable class modelling informa-
tion. So a complete data set in which these variables are
included can be expected to offer more informative
displays. A large complete data set is being built now to
investigate the use of the systematically missing variable
scores.

Techniques that offer simultaneous display of three
dimensions give more insight into the data than two-
dimensional displays. It turns out to be easier for a
human to combine these pseudo-three-dimensional plots
in his mind to a single image than a set of two-
dimensional plots.

if the properties of the classes in relation to the assays
(variables) is the subject of the study, pseudo-3-D plots
with three assays as basis serves interpretability. On the
other hand, a more complete image of the separability is
likely to result from 3-D plots of a three-PC space.

All graphical techniques make atypical values easily
detectable.
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THERMAL ANALYSIS IN RESEARCH AND PRODUCTION- AN INTENSIVE SHORT COURSE

To be heldfrom 16 to 18 May in Basel, Switzerland

Key topics are:

Instrumentation
Measurable parameters
Organic compounds
Polymers

Thermoplastics
High temperature polymers
Elastomers
Thermosets
Fibres
Composites
Copolymers, blends and polymer miscibility
Compounding selection of additives

Pharmaceuticals

Inorganics
Catalysts
Ceramics and glasses
Metals and alloys
Semiconductors
Superconductors

Stability determination
Aging of materials
Hazards evaluation
Optimizing processing conditions
Energy
Quality control
Problem solving

The faculty include:

Patrick K. Gallagher (AT&T Bell Laboratories, USA)
Daniele Giron (Sandoz Ltd, Switzerland)
Edith A. Turi (Polytechnic University, USA)
Robert A. Weiss (University of Connecticut, USA).

On 17 May there will be a commercial exhibition combined with a social hour and consultation.

Each registrant will be provided with a workbook containing the copies of the projected slides and the
recommended bibliography. Each will have the opportunity to discuss informally with the lecturers problems of
their particular interest.

Forfurther information, contact Prof Edith A. Turi, Polytechnic University, 5 Oxford Drive, Livingston, New Jersey 07039,
USA, or the Technomic Publishing A G, Elisabethenstrasse 15, CH-4051 Basel, Switzerland.
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