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Abstract 
Quantitative Structure-Activity Relationship (QSAR) models are developed for three 
pharmacological permeabilities, i.e. two PAMPA apparent permeabilities (logPapp) at different pH 
values (pH 5.5 and pH 7.4) and Caco-2 cell monolayer apparent permeability (logPapp(Caco-2)). 
The compounds are represented by chemical descriptors calculated from their constitutional, 
geometrical and topological structure, and quantum mechanical wave function. The obtained 
linear (multilinear regression) and nonlinear (artificial neural network) models link the drug 
structures to their reported permeabilities. Each multilinear model was tested by leave-one-out 
and ABC methods whereas the neural networks were assessed using the test sets. All drug 
structures were investigated by conformational analysis in order to find the low energy 
conformers. 
 
Keywords: QSAR, neural network, BMLR, PAMPA, Caco-2 cell monolayer assay, cell 
membrane permeability 

 
 
 
Introduction 
 
Within drug discovery, about 40%-50% of drug candidates fail during late-stage development or 
clinical trials due to their poor ADMET (absorption, distribution, metabolism, excretion and 
toxicity) properties.1,2 During the past decade, however, several experimental techniques for 
aqueous solubility,3 plasma protein binding4-6 blood-brain barrier penetration and intestinal 
absorption7-9 with corresponding in silico prediction methods10-12 have been developed and 
integrated into the early phases of the drug discovery and evaluation to improve the efficiency 
and cost-effectiveness of pharmaceutical industry. Compared to the experimental approaches, the 
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computational methods have some important advantages: (i) there is no need to initially 
synthesize compounds for determining their ADMET properties and (ii) rapid processing of the 
property data using numerous different modeling tools. Consequently, carefully developed and 
rigorously validated in silico ADME prediction models applied for the experimental observations 
in early screening and evaluation of compounds allow accurately prediction of key information 
of new drug candidates and to remarkably enhance the productivity in drug discovery.  

One of the most important ADME-Tox properties, the drug intestinal absorption, is a 
complicated process determined by certain physiological conditions (local pH, absorptive surface 
area), activities of enzymes/transporters/carriers of gastrointestinal tract and chemical properties 
(solubility, molecular size and stability) of a drug.13 Although the computational (in silico) 
approach for the prediction of intestinal and oral absorption is very attractive, even  satisfactory 
accuracy is difficult to achieve.14,15

Two of the most popular in vitro absorption/permeability models used today involve Caco-2 
cell monolayer and Parallel Artificial Membrane Permeability Assays (PAMPA). Caco-2 cells are 
derived from human epithelial colon adenocarcinoma and retain many morphological and 
functional properties of the intestinal enterocytes.16-18 Thus, Caco-2 cell monolayer assay 
provides information about the drug absorption potential at near physiological conditions; 
however, its use is often limited due to the long membrane growth cycle and high costs.19-21 A 
less expensive high throughput alternative, the PAMPA, first introduced by Kansy et al.22 has 
gained recent popularity. This easily automated in vitro drug absorption assay is based on the use 
of a filter-immobilized artificial lipid (phosphatidylcholine) membrane.23 Several experimental 
conditions (different membrane lipid compositions or multiple pH measurements) have been 
proposed for the determination of artificial membrane permeability values.24-27

Numerous attempts have been made to explain and predict the absorption of drug candidates 
via physico-chemical properties, such as the experimental and calculated octanol-water partition 
coefficient, (logP),28-30 the apparent distribution coefficient at pH=7.4 used for ionizable 
compounds, D (expressed as logD),31 hydrogen bonding potential (∆logP)32 and desolvation 
energy.33,34 Such properties have been frequently correlated to intestinal absorption rate or cell 
membrane permeability. Furthermore, Palm et al. obtained excellent correlation between 
dynamic polar van der Waals' surface areas of homologous series of beta-adrenoreceptor 
antagonists and their absorption in both Caco-2 monolayer assay and rat intestinal segments.35 
These results indicate that the dynamic polar surface area could be a better theoretical descriptor 
for intestinal drug absorption than lipophilicity (logP, logD) or hydrogen bonding potential.  
Good correlation, however, is generally impaired when structural diversity is introduced. This 
problem can be diminished by combining several physico-chemical properties into one 
expression, with the aid of multiple linear regression analysis.36, 37 In addition, Lipinski and 
coworkers at Pfizer Research Center, after analyzing the physico-chemical profiles of 2245 
orally active drugs from the World Drug Index, proposed a set of general principles (“Rule of 5”) 
that would help to distinguish the well-absorbed molecules from poorly-absorbed molecules. 
According to these principles, good absorption or permeability is more likely when: 
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1. Molecular weight is ≤ 500 
2. LogP is  ≤ 5 
3. Number of H-bond donors (expressed as the sum of OHs and NHs) is ≤ 5 
4. Number H-bond acceptors (expressed as the sum of Ns and Os) is ≤ 10 

However, some therapeutic classes (antibiotics, antifungals, vitamins and cardiac glycosides) of 
compounds being substrates for naturally occurring transporters fall outside the rule of 5.38

Recently, Verma et al. have carried out comparative QSARs of PAMPA for profiling of drug 
absorption potential with respect to Caco-2 cells and human intestinal absorption.39 They 
developed several models with various numbers of drugs (9-94) whose correlation ranged from 
0.7-0.9 in terms of the coefficient of determination (R2). The models were relying mainly on 
ClogP (lipophilicity) including also highly nonlinear terms. 

Guangli and Yiyu developed QSAR models using the support vector machine (SVM) method 
and multilinear (MLR) approach based on 100 drugs for Caco-2 cell monolayer permeability.40a 
They obtained SVM models with (Spearmen R2) R2 = 0.77 for training set of 77 drugs and R2 = 
0.72 for test set of 23 drugs. Their MLR model consisting of 4 descriptors resulted in R2 = 0.54 
for the training set and 0.61 for the test set. All descriptors in the models relied on the partial 
charge distributions and hydrogen donor ability of the drugs. 

Fujikawa et al. built QSAR models using permeability coefficients of both hydrophilic and 
hydrophobic chemicals determined by PAMPA. Combining the descriptors of lipophilicity (logP 
and logD) as well as hydrogen-accepting and hydrogen-donating ability, they obtained a bilinear 
QSAR model with R2

cv= 0.68 for a set of 97 compounds. In addition, they compared the apparent 
permeability coefficients of PAMPA to Caco-2 cell monolayer assay and derived a QSAR model 
with R2

cv= 0.73 for a set of 35 compounds.40b

The goal of the current study is to develop QSAR models based on three pharmacological 
permeabilities i.e. apparent permeability coefficients determined by PAMPA at two different pH 
levels and Caco-2 cell monolayer permeability coefficients, proceeding from the same, uniform 
initial set of molecular descriptors. The different models are compared in terms of descriptors 
involved and statistical parameters. Two approaches were taken in order to achieve this goal, 
namely, the development of multilinear mathematical equation and creation and training of 
artificial neural networks. Before the QSAR development all drugs were studied in terms of 
conformational search in order to find the optimum low energy structures.  
 
Data sets 
In the attempt to predict pharmacological permeabilities, 3 different datasets were collected from 
the literature. The Caco-2 cell monolayer permeability data was obtained from Castillo-Garit et 
al.41 This dataset was selected to cover a range of structural diversity, molecular weight, net 
charge and diverse absorption mechanisms of different compounds. Permeability is represented 
by the apparent permeability coefficient measured in cm/s on Caco-2 cell monolayer assay 
(Papp(Caco-2)). The dataset consists of 81 compounds. 
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The determination of artificial membrane permeability values requires two pH conditions 
(pH 7.4 and 5.5) to predict oral absorption. The apparent permeability coefficients of 
miscellaneous drugs determined by PAMPA at pH 5.5 (75 compounds) and pH 7.4 (62 
compounds) were obtained from the literature.39 Permeability data is represented by the apparent 
permeability coefficient measured in cm/s on PAMPA assay (Papp).  

All experimental values for the three permeabilities along with the respective CAS numbers 
of the drugs are collected in Table 1. As can be seen from Table 1 the different data for most of 
the compounds are overlapped among the sets facilitating simultaneous comparison of the 
models in this study. 

 
Table 1. Experimental (obsd) and predicted (calcd) permeation of used compounds 

No. 

CAS 

number Compound log Papp (pH 5.5)[x10-6] log Papp (pH 7.4) [x10-6] log Papp (Caco-2) 

   obsd calcd calcd obsd calcd calcd obsd calcd calcd 

        MLR ANN   MLR ANN   MLR ANN 

1 15722-48-2 Olsalazine       -6.960 -6.171 -6.138a

2 73384-59-5 Ceftriaxone       -6.880 -6.759 -6.734 

3 23214-92-8 Doxorubicin -0.520 -0.096 -0.525 -0.300 -0.276 -0.246 -6.800 -6.666 -6.589 

4 58-94-6 Chlorothiazide -0.700 -0.372 -0.758 0.110 -0.094 -0.094 -6.720 -6.59 -6.730 

5 599-79-1 Sulfasalazine -0.520 -0.042 -0.486    -6.710 -6.114 -6.087 

6 54-31-9 Furosemide -0.220 -0.315 -0.178 -0.220 -0.100 -0.239 -6.510 -6.039 -6.018 

7 29122-68-7 Atenolol -1.000 -0.386 -0.082a    -6.500 -5.619 -6.568 

8 23031-25-6 Terbutaline       -6.380 -5.807 -5.849 

9 28797-61-7 Pirenzepine       -6.360 -5.354 -6.276a

10 66357-35-5 Ranitidine       -6.310 -5.493 -6.479 

11 127779-20-8 Saquinavir       -6.260 -5.785 -5.758 

12 466-06-8 Proscillaridin       -6.200 -6.097 -6.068 

13 15676-16-1 Sulpiride -0.700 0.061 -0.848    -6.160 -6.167 -6.186 

14 59277-89-3 Acyclovir       -6.150 -5.722 -5.949 

15 126222-34-2 Remikiren       -6.130 -6.178 -6.203 

16 26787-78-0 Amoxicillin       -6.100 -5.898 -5.912 

17 58-93-5 Hydrochlorothiazide       -6.060 -6.034 -5.978 

18 59865-13-3 Cyclosporine       -6.050 -6.428 -5.969a

19 6673-35-4 Practolol       -6.050 -5.425 -6.403 

20 51-43-4 Epinephrine       -6.020 -5.214 -5.251 

21 59-05-2 Methotrexate -0.700 -1.320 -0.615    -5.920 -6.603 -6.583 

22 51481-61-9 Cimetidine       -5.890 -5.049 -4.962 

 

 

ISSN 1551-7012 Page 221 ©ARKAT USA, Inc. 



General Papers ARKIVOC 2009 (ii) 218-238 

Table 1. Continued 

23 37517-30-9 Acebutolol -0.700 -0.153 -0.738 0.520 0.642 0.512 -5.830 -5.765 -5.821 

24 57-50-1 Sucrose       -5.770 -5.909 -5.838 

25 75847-73-3 Enalapril 0.530 0.386 0.318    -5.640 -5.204 -5.731 

26 114-07-8 Erythromycin       -5.430 -5.849 -5.832 

27 42200-33-9 Nadolol       -5.410 -5.679 -5.581 

28 88495-63-0 Artesunate       -5.400 -5.462 -5.434a

29 66-22-8 Uracil       -5.370 -5.24 -5.367 

30 57-13-6 Urea       -5.340 -5.22 -5.514 

31 30516-87-1 Zidovudine -0.220 -0.005 0.076 0.690 0.328 0.870a -5.160 -4.953 -4.918 

32 50-78-2 Acetylsalicylic acid 0.510 0.904 0.814 0.580 0.777 0.873 -5.060 -4.841 -4.771 

33 36894-69-6 Labetalol    0.650 0.614 0.448 -5.030 -5.854 -5.846 

34 51-61-6 Dopamine       -5.030 -5.06 -5.123 

35 51-34-3 Scopolamine       -4.930 -5.116 -5.202 

36 116644-53-2 Mibefradil       -4.870 -4.736 -4.710 

37 26839-75-8 Timolol 0.230 0.255 0.211a 0.710 1.019 0.707 -4.850 -5.224 -5.307a

38 50-49-7 Imipramine 1.110 1.215 1.134 0.920 1.127 1.344 -4.850 -4.427 -4.362 

39 79660-72-3 Fleroxacin       -4.810 -5.03 -5.064 

40 69-72-7 Salicylic acid 1.330 0.878 1.152 0.520 0.677 0.674 -4.790 -4.85 -4.821 

41 13523-86-9 Pindolol 1.120 0.699 0.858a 0.690 1.050 0.650 -4.780 -5.171 -5.158 

42 39562-70-4 Nitrendipine       -4.770 -5.092 -5.020 

43 50-28-2 Estradiol       -4.770 -4.556 -4.591 

44 50-02-2 Dexamethasone 0.830 0.479 0.601a 0.910 0.808 0.847a -4.750 -5.056 -5.015 

45 54-11-5 Nicotine 1.170 1.473 1.233 1.330 1.237 1.194 -4.710 -4.33 -5.761a

46 71125-38-7 Meloxicam       -4.710 -5.726 -4.251 

47 50-53-3 Chlorpromazine 1.070 1.427 1.535 0.600 0.877 0.654 -4.700 -4.518 -4.401 

48 56-54-2 Quinidine 0.780 0.921 0.888 1.040 1.083 0.996 -4.690 -5.177 -4.724 

49 53-86-1 Indomethacin 0.800 0.809 0.733 0.380 0.809 0.929 -4.690 -4.721 -5.128 

50 56-75-7 Chloramphenicol 0.830 0.121 0.329 0.230 0.432 0.592a -4.690 -4.834 -4.724 

51 6452-71-7 Oxprenolol       -4.680 -5.081 -4.555 

52 50-23-7 Hydrocortisone 0.490 0.550 0.494 0.530 0.477 0.468 -4.660 -4.834 -4.799 

53 50-47-5 Desipramine 0.970 1.235 1.148 1.160 1.126 1.193 -4.640 -4.452 -4.279 

54 72509-76-3 Felodipine       -4.640 -4.37 -4.437 

55 13655-52-2 Alprenolol 0.150 0.527 0.473 1.180 1.048 1.026 -4.620 -4.663 -4.594 

56 77-10-1 Phencyclidine       -4.610 -4.759 -4.723 

57 37350-58-6 Metoprolol 0.080 0.184 0.045 0.540 0.803 0.836a -4.590 -4.596 -4.613a

58 4205-90-7 Clonidine 1.300 1.280 1.169 1.150 0.776 0.895 -4.590 -4.315 -4.239 

59 52-53-9 Verapamil 0.990 0.403 0.312a 0.870 0.822 0.979 -4.580 -4.692 -4.686 

60 525-66-6 Propranolol 1.230 0.900 0.792 1.370 1.304 1.408 -4.580 -5.02 -4.938 

61 57-41-0 Phenytoin 0.880 0.944 1.073 0.710 0.665 0.540 -4.570 -5.107 -5.104 
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62 81-81-2 Warfarin 1.020 0.698 0.986 1.090 0.885 0.908 -4.550 -4.271 -4.391 

63 60-80-0 Antipyrine 1.300 0.984 1.200 1.120 1.370 1.391 -4.550 -4.855 -4.830 

64 129618-40-2 Nevirapine       -4.520 -4.795 -4.874 

65 5051-62-7 Guanabenz 0.200 0.128 0.112 1.240 1.053 1.132 -4.500 -5.028 -4.996 

66 50-22-6 Corticosterone 1.590 0.554 1.477 1.340 0.653 1.186 -4.470 -4.628 -4.562a

67 36322-90-4 Piroxicam 0.920 0.472 0.460 0.910 0.545 0.683 -4.450 -5.222 -4.197 

68 126-07-8 Griseofulvin 0.890 1.048 0.800 0.720 0.198 0.718 -4.440 -4.802 -4.742 

69 58-15-1 Aminopyrine       -4.440 -4.046 -3.932 

70 58-08-2 Caffeine 1.310 0.995 0.925 1.030 0.811 0.813a -4.410 -4.835 -4.871 

71 42399-41-7 Diltiazem 1.030 0.519 0.427 1.270 1.211 0.975 -4.380 -4.606 -4.580 

72 57-83-0 Progesterone -0.100 0.235 0.079a 0.600 0.509 0.365 -4.370 -4.643 -4.672 

73 19216-56-9 Prazosin 0.400 0.343 0.131 1.130 0.877 0.654a -4.360 -5.158 -4.137 

74 58-55-9 Theophyline       -4.350 -4.702 -4.704 

75 58-22-0 Testosterone       -4.340 -4.056 -4.123a

76 439-14-5 Diazepam       -4.320 -4.153 -4.171 

77 15687-27-1 Ibuprofen 1.030 1.169 0.966 0.830 0.902 1.009 -4.280 -4.569 -4.291 

78 137-58-6 Lidocaine       -4.210 -4.36 -4.295 

79 22204-53-1 Naproxen 1.360 1.222 1.067a 1.030 0.969 1.092 -4.130 -4.77 -4.175 

80 91-64-5 Coumarin 1.360 1.002 1.287 1.340 1.124 1.575 -4.110 -3.927 -3.923 

81 67-56-1 Methyl alcohol       -3.880 -3.645 -4.514a

82 637-07-0 Clofibrate -0.400 -0.351 -0.495a -0.520 -0.289 -0.117a    
83 70458-96-7 Norfloxacine -0.300 0.191 -0.146 -0.050 0.301 0.25a    
84 22916-47-8 Miconazole -0.150 0.194 0.272       
85 33419-42-0 Etoposide -0.150 0.143 0.045 -0.400 -0.314 -0.438    
86 60142-96-3 Gabapentin 0.080 0.446 0.098 0.080 0.397 0.092    
87 25614-03-3 Bromocriptine 0.110 0.608 0.431       
88 87-08-1 Penicillin V 0.200 0.634 0.463       
89 63590-64-7 Terazosine 0.230 -0.124 -0.096 0.940 0.852 0.923    
90 50-24-8 Prednisolone 0.340 0.480 0.403 0.760 0.854 0.753a    
91 103-90-2 Acetaminophen 0.360 0.623 0.807 0.540 0.785 0.734    
92 83-43-2 Methylprednisolone 0.410 0.507 0.399 0.770 0.892 0.765    
93 738-70-5 Trimethoprim 0.430 0.571 0.292 0.700 0.881 0.621    
94 3930-20-9 Sotalol 0.460 0.216 0.469a 0.040 -0.238 0.530    
95 43200-80-2 Zopiclone 0.510 0.645 0.398 0.950 0.767 0.526    
96 65277-42-1 Ketoconazole 0.520 0.083 0.036 0.080 0.082 0.314    
97 57-66-9 Probenecid 0.600 0.964 0.764 0.380 0.350 0.501    
98 62571-86-2 Captopril 0.640 0.496 0.323a 1.280 1.186 0.908    
99 28395-03-1 Bumetanide 0.660 0.247 0.243 -0.520 -0.189 -0.182    
100 78755-81-4 Flumazenil 0.680 1.023 0.780 0.780 0.858 0.827    
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101 74103-06-3 Ketorolac 0.710 0.553 0.980 0.150 0.732 0.676    
102 81-07-2 Saccharin 0.850 1.154 1.354       
103 54910-89-3 Fluoxetine 0.870 1.065 0.630 1.150 1.332 1.371    
104 148-82-3 Melphalan 1.010 0.418 1.155 0.760 0.914 0.525    
105 15307-86-5 Diclofenac 1.030 1.035 1.152 1.100 0.918 1.155    
106 298-46-4 Carbamazepine 1.080 1.024 1.004 1.050 1.097 1.051    
107 22071-15-4 Ketoprofen 1.280 1.042 0.971 1.220 0.943 0.97a    
108 5786-21-0 Clozapine 1.350 1.246 1.292 1.450 1.058 1.408    
109 34841-39-9 Bupropion 1.680 1.058 0.961 1.150 1.056 1.189       

a Data points used for test set for ANN 
 
Methodology 
 
1. Structure optimization and descriptor calculation 
In the current study, we present QSAR models for logPapp(pH 5.5), logPapp(pH 7.4) and 
logPapp(Caco-2) involving theoretical descriptors, which were calculated solely from the 
molecular (drug) structure using CODESSA Pro 42 and QSARModel program.43 These 
descriptors can be classified as: (i) constitutional, (ii) geometrical, (iii) topological, (iv) charge-
related, (v) quantum chemical, and (vi) thermodynamic. 44a-44d The total number of descriptors 
for each property ranged between 600 and 900 per compound. 

The conformational search was also performed for all compounds using the MacroModel 
software package. For the calculations, MMFF94s - a static variant of Merck Molecular Force 
Field 94 (MMFF94)46 was used. The energy minimization was carried out using the Polak-
Ribiere Conjugate Gradient (PRCG) method with a gradient 0.05 kcal/Å as a stopping criterion 
was used. Furthermore, for the conformational search, Monte Carlo Multiple Minimum 
(MCMM) method was used where 100 steps per rotatable bond and up to 15000 maximum steps 
per compound were defined.47 Conformers with the minimum potential energy were utilized as 
the MOPAC 6 48 input structures. Within quantum-mechanical semi-empirical calculations the 
AM1 49 parameterization was used with the gradient norm setting of 0.01 kcal/Å. 

For reasons of comparison and completeness, optimization of the structures without prior 
conformational search was also performed. However, the models derived from these drug 
structures did not lead to significant QSAR equations and hence these results are not presented. 

 
2. QSAR modeling 
(a) Linear approach (BMLR) 
The Best Multilinear Regression method50 was used to find the best correlation models from 
selected non-collinear descriptors. The BMLR selects the best two-parameter regression 
equations, the best three-parameter regression equations, etc. on the basis of the highest R2 and F 
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values in the step-wise regression procedure. Further, the selection of the final equation consists 
of comparison of R2 and F augmentation of the statistical parameters of the best 2-, 3- and etc. 
descriptor equations. The selection of the optimum number of descriptors for the equation is 
performed by simple plots of R2 vs number of descriptors i.e. if the difference in R2 between  n-1 
and n- descriptor models drops below 0.2 then the procedure is stopped. The result obtained by 
BMLR is the “best” linear representation of the property in the given descriptors pool. 
(b) Nonlinear approach (ANN) 
Artificial neural networks (ANN)51-53 have become an important modeling technique for QSAR 
and QSPR, and Artificial Neural Network modeling has been applied in numerous application 
areas of chemistry and pharmacy. 54-57 The mathematical adaptability of ANN commends them 
as a powerful tool for pattern classification and building predictive models. A particular 
advantage of ANNs is their inherent ability to incorporate nonlinear dependencies between the 
dependent and independent variables without using an explicit mathematical function.  

A fully connected neural network with backpropagation of the error58 was constructed and 
used in the building of the nonlinear models for all three properties. ANNs are composed of a 
number of single processing elements (PE) or units (nodes, neurons). The activation function 
used for the PEs was standard sigmoid function. PEs are connected with coefficients (weights) 
and are organized in a layered topology as follow: (i) the input layer – PEs (Ii in this work i=3-7) 
consisting of the molecular descriptors, (ii) the output layer (with PEs Om – in this work m=1) Oi 
consisting of the calculated property (logPapp) and (iii) the hidden layers (with PEs Hh – in this 
work h=3-7) between them. The number of layers (3-in this work) and the number of units in 
each layer determines the functional complexity of the ANN as shown in Fig. 1. Each input layer 
PE corresponds to a single independent variable (molecular descriptor). Similarly, each output 
layer node corresponds to a different dependent variable (property under investigation). 

 

.........

........

..........

O1 O2 Om

H1 H2 Hh

I1 I2 Ii

Op

bias

bias

Output layer

Hidden layer

Input layer
 

 
Figure 1. Three layer back propagation neural network. 
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In order to find the most important descriptors as inputs to the net, a sensitivity analysis was 
performed on a preselected descriptor space, based on the lowest root-mean squared error 
(RMS). This space was formed after applying the following criteria for reduction of the total 
descriptor space: i) all descriptors with variance less than 10-4 were excluded, ii) descriptors 
which did not correlate with the property more than R2=0.2 were excluded also iii) by inspection 
of certain chemically irrelevant descriptors. 

An important stage of the modeling is to define the proper architecture of the ANN models. 
Several ANN models with different architectures were built for each property. In the search for 
an optimal ANN architecture the lowest possible number of neurons was searched for, in order to 
follow the common principle of generality of the ANN prediction. In addition, we monitored the 
RMS for each different architecture (regarding the hidden units in the hidden layer) in order to 
select the one with the lowest RMS. The number of layers was chosen to be three-fold based on 
the common practice for the QSAR ANN modeling and by taking into account the number of 
data points so that to reduce the chance for overfitting during the training stage. 

The ANN was trained on a training set selected from the total number of compounds where 
the weights were adjusted for each iteration by the delta rule. During the optimization, the RMS 
was monitored together with the RMS of a test set so that to avoid overfitting problems. An in-
house program was used for the ANN calculations. 
 
3. ABC Validation of the MLR models 
To validate the multilinear models, the data was sorted in the ascending order according to the 
experimental value, and three subsets (A, B, C) were then formed: the 1st, 4th, 7th, etc. data points 
comprise the first subset (A), the 2nd, 5th, 8th, etc. comprise the second subset (B), and the 3rd, 6th, 
9th, etc. comprise the third subset (C). The three training sets were prepared as the combinations 
of any two subsets (A and B), (A and C), and (B and C), respectively. The tested MLR model 
was then rebuilt for each of the training sets with the same descriptors but optimized regression 
coefficients, and used to predict the property values for the respective C, B and A subsets. The 
prediction was assessed based on the R2 between the predicted and experimental property 
values.55

In addition to the ABC validation, the standard leave-one-out (LOO) cross-validation (R2
cv) 

for all developed models was used. 
 
 
Results and Discussion 
 
1. MLR models for logPapp (pH 5.5), logPapp(pH7.4) and logPapp(Caco-2) 
The BMLR algorithm was used to generate several multilinear equations for each property with 
the number of descriptors between 2 and 7. The final equations were selected by taking into 
account two factors in order to obtain significant models: i) the number of the descriptors in the 
models should follow the basic “rule of thumb” i.e. not less than five data points per descriptor 
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and ii) relevance of the descriptors toward the nature of the phenomenon under investigation iii) 
increase in the difference of R2 for the different models with different descriptor numbers (see 
Methodology). The resulted models for the three properties are summarized in Table 2 together 
with their statistical parameters and descriptors. A comparison of models 1 and 2 for the PAMPA 
permeabilities (see Table 2) shows that model 2 possesses better statistical characteristics. 
However, this model has been developed following a lower number of drugs.   
 
Table 2. Statistical Parameters for BMLR Models of logPapp (pH 5.5), logPapp(pH7.4) and 
logP(Caco-2) 

No BMLR equations  n k R2 R2
cv F s2

1 logPapp(5.5) = -16.98 - 0.078*D1 - 0.219*D2 + 
282.2*D3 - 0.859*D4 + 19.90*D5 + 55.35*D6 70 6 0.670 0.589 20.86 0.150 

2 logPapp(7.4)  =  6.21 - 0.009*D7 +0.004*D8 + 
315.2*D9 -24.44*D10 + 0.356*D11 + 66.50*D12 62 6 0.759 0.674 28.90 0.065 

3 
logPapp(Caco-2)  =   -4.099 + 3755*D13 - 1.060*D14 
-0.01418*D15 - 761.3*D16 - 0.0567*D17 +  
0.0235*D18 

81 6 0.724 0.680 32.39 0.196 

NB: (number of data points (n), number of descriptors (k), squared correlation coefficient (R2), 
cross validated squared correlation coefficient (R2

cv, LOO), Fisher ratio (F), squared standard 
deviation (s2). 

 
In general, models 1 and 2 are of average quality although model 2 shows higher statistical 
performance according to R2

cv (0.59 vs 0.67). Better MLR models (in terms of R2 and F) could 
not be obtained for these data. One of the reasons is the structural diversity of the compounds in 
data sets used as well as the accuracy of the experimental data. The structural variability of the 
drugs poses difficulties to express PAMPA permeabilities (at both pH conditions) as simple linear 
function of descriptors. This fact was taken into account in one of the reports by Verma et. al.39 
by including an additional structural variable in their models that characterizes certain moieties 
of the drug. Their model for logPapp (pH 5.5) shows a good correlation with R2 = 0.728 (R2

cv 
=0.69) developed for 60 drugs by using a nonlinear function of the hydrophobicity and two 
additional parameters. Our model (model 1) for this PAMPA permeability shows lower quality in 
terms of R2 (=0.670). However, model 1 was developed on a larger data set compared to the 
Verma’s equation (eq. 4 therein). In addition, a strong outlier appeared in model 1 which is 
significantly far from the prediction bands at the 95% level of confidence, as can be noted from 
Figure 2. Removing this outlier (Methotrexate – No. 21) leads to an improved correlation with 
R2 = 0.701.  
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Figure 2. Experimental and predicted logPapp(pH 5.5) values based on equation 1 in Table 2. 
 

The correlation between the experimental and predicted logPapp(pH 7.4) values based on 
equation 2 in Table 2 are presented in Figure 3. A general comparison of this model to the model 
for the same permeability of Verma’s model (eq.5 therein), indicates that the QSAR model 2 has 
better statistics in terms of R2 (0.759 vs0.743) and s2 (0.065 vs 0.096). Moreover, model 2 is 
based on a larger data set (62 vs 55). 

The model 3 (see Table 2 and Figure 4) for the Caco-2 cell monolayer set can be considered 
the best of the three, at R2 = 0.724, (R2

cv = 0.680), 81 structures, notably for the highest R2
cv 

value. Direct comparison with other published results is difficult, as the datasets are not directly 
comparable. However, statistically the model is at least comparable (if not better) than other 
linear models for sets of comparable size and diversity [ref 16, and therein]; nonlinear models 
have shown better results. 
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Figure 3. Experimental and predicted logPapp(pH 7.4) values based on equation 2 in Table 2. 
 

 

 
 
Figure 4. Experimental and predicted logPapp(Caco-2) values based on equation 3 in Table 2. 

 
The descriptors involved in the QSAR models in Table 2 are collected in Table 3. From the 

Table, it can be noted that the descriptors for both PAMPA permeabilities are quite similar; the 
Caco-2 cell monolayer assay model descriptors form a slightly different subset. The precise 
formulation of all descriptors can be found in ref.44a-44d According to the t-statistics of the 
descriptors for models 1 and 2, the most significant variables are D2 and D7, respectively. D2 is 
an indicator for the molecular geometrical shape and also it encodes the branchiness of the drug 
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whereas D7 is related to the hydrogen acceptor ability of the drug and the respective partial 
charge on the hydrogen surface area. Increasing the values of these variables leads to decreased 
logPapp values for both models 1 and 2. Hydrogen bonding is also of major importance in the 
Caco-2 monolayer assay model, as indicated by most of the descriptors, and the most significant 
(according to t-statistics) descriptor D16, in particular. 

Fujikawa et al. have developed a QSAR model for the PAMPA data in which the hydrogen-
accepting ability (SAHA), and hydrogen-donating ability (SAHD) descriptors were proven to be 
very important.40b Similar descriptors also appear in our models of Table 2 i.e. D1 - HA 
dependent HDCA-2 (AM1) (all), D7 - HACA H-acceptors charged surface area (AM1). 
Moreover, these hydrogen bonding ability descriptors, D1 and D7, follow the same sign (minus) 
in the equations as the SAHA and SAHD descriptors in Fujikawa’s model (eq. 1 therein). 
 
Table 3. Descriptors# involved in BMLR models in Table 2 

Desc ID Descriptor name 
D1 HA dependent HDCA-2 (AM1) (all) 
D2 Kier shape index (order 3) 
D3 Minimum 1-electron reactivity index (AM1) for Cl atoms 
D4 Minimum (>0.1) bond order (AM1) for C atoms 
D5 Average bond order (AM1) for H atoms 
D6 Minimum 1-electron reactivity index (AM1) for O atoms 
D7 HACA H-acceptors charged surface area (AM1) 
D8 WNSA2 Weighted PNSA (PNSA2*TMSA/1000) (Zefirov) 
D9 Maximum 1-electron reactivity index (AM1) for Cl atoms 
D10 Maximum electrophilic reactivity index (AM1) 
D11 Highest total interaction (AM1) 
D12 Average 1-electron reactivity index (AM1) for O atoms 
D13 Average 1-electron reactivity index (AM1) for H atoms 
D14 Difference (Pos - Neg) in Charged Partial Surface Area (AM1) 
D15 HBCA H-bonding charged surface area (AM1) 
D16 Minimum 1-electron reactivity index (AM1) for H atoms 
D17 HACA-1 (Zefirov) 
D18 RNCS Relative negative charged SA (SAMNEG*RNCG) (Zefirov) 

#-Descriptor values included in Supplementary Information (SI1) 
 
The following group of descriptors is molecular orbital derived: D3, D9, D10, D11, D6 and 

D12. In fact, these descriptors indicate the importance of the presence of certain atoms for the 
PAMPA permeability, namely, O and Cl atoms. The reactivity indices are explicitly related to the 
HOMO and LUMO energies and thus to the electrophilicity and nucleophilicity of the drug as 
was also indicated by Fujikawa and Verma. Notably, in the case of PAMPA permeabilities at the 
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different pH conditions, the minimums of electronic descriptors are involved in the model for 
logPapp(pH 5.5) whereas in the case of logPapp(pH 7.4) the maximum values of electronic 
descriptors appear in the best model. 

The last group of descriptors is related to the stability of the chemical bond and surface area 
of the drug molecule: the descriptors D4, D5 and D8. The D8 – WNSA2 is defined as the total 
sum of partial areas of the drug which possess negative partial charges times the total solvational 
area of the drug divided by 1000. This is the second descriptor by significance according to the t-
test in model 2. 

The descriptors for Caco-2 monolayer assay model (D13-D18) reflect the same features of 
the drug molecules as those in PAMPA models. The most significant descriptors in the equation 3 
(see Tables 2 and 3) are D15 and D14 indicating that the hydrogen-bonding charged areas and 
the excess of the total charged surface area are the main factors for this model. The remaining 
descriptors contribute additionally to the charged areas (D18) and particularly areas with 
hydrogen donor/acceptor abilities (D17) and electrophilicity and nucleophilicity (D16, D13).  

All descriptors in Table 3 are related to the charge, hydrogen acceptor and donor potentials as 
well as polar molecular surface area, electrophilicity and nucleophilicity of the drugs. These 
features have been found to play a crucial role in the kinetics and dynamics of intestinal 
permeation.28-34,38 Caco-2 cell monolayer mimicking the morphology of the gastrointestinal tract 
allows study of both passive (transcellular and paracellular transport) and active (carrier-
mediated influx and efflux) absorption mechanisms of drugs, while PAMPA provides the 
investigation of diffusion via passive transcellular (through the cell membrane of enterocytes) 
pathway. Since the absorption of many drugs across the intestinal epithelium may occur mainly 
by passive diffusion, a linear correlation between the apparent permeability coefficients of these 
two analytical methods is likely to exist in a certain degree.40b

 
1. Validation of the MLR models 
One of the main goals of this study was also to develop MLR models as general as possible in 
order to cover a larger chemical space of applicability. Therefore, for the sake of generality, we 
did not use the division of data into training and external test sets.  

Instead of direct external validation, a type of leave-many-out validation, i.e. the ABC 
validation (see Methodology) was employed to mimic external validation. The efficiency of 
QSAR models to predict the logarithmic scales of the PAMPA and Caco-2 cell monolayer 
permeabilities was assessed by the squared correlation coefficients R2

(Pred) between experimental 
and predicted data for test sets (A, B or C). The results from the ABC validation are presented in 
Table 4. The overall assessment of the predictions for both PAMPA models is of average quality 
as can be noted by the differences between the average R2 (Fit) and R2

(Pred). The reason for this 
difference is that the variability in the drugs cannot be easily accounted with linear function from 
the descriptors in the models. As demonstrated later, accounting for the nonlinearities improves 
significantly the predictions. The ABC validation of the linear model of the Caco-2 cell 
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monolayer set (although uneven between subsets) showed higher overall stability as compared to 
the PAMPA sets. 
 
Table 4. Statistical characteristics for ABC validation of the multilinear model in Table 2 

TRAINING
SET 

N R2 (Fit) R2
cv (Fit)

TEST 
SET

N R2
(Pred)

BMLR model for logPapp (5.5)  
A+B 47 0.709 0.591 C 23 0.577 
B+C 47 0.701 0.589 A 23 0.519 
A+C 46 0.653 0.539 B 24 0.556 

Average   0.688 0.573    0.551 

BMLR model for logPapp (7.4) 
A+B 42 0.814 0.694 C 20 0.444 
B+C 42 0.802 0.729 A 20 0.630 
A+C 43 0.752 0.601 B 19 0.578 

Average   0.789 0.675     0.551 

BMLR model for logPapp(Caco-2)  
A+B 54 0.705 0.609 C 27 0.781 
B+C 54 0.733 0.671 A 27 0.722 
A+C 54 0.761 0.694 B 27 0.650 

Average  0.733 0.658    0.718 

N – number of compounds used in the validation models 
R2

(Fit) – squared correlation coefficient of the multilinear equation for the binary sets used as 
training sets (A+B, A+C or B+C) 
R2

cv(Fit) – cross-validated squared correlation coefficient of the multilinear equations for the 
binary sets (leave-one-out approach) 
R2

(Pred) – squared correlation coefficient for the regression between the predicted values (from the 
models of the binary sets) for the test sets and the respective experimental values 
 
 
1. Neural network models 
Before the neural network treatment was started, the experimental logarithmic values and 
descriptor values were both normalized to a range 0-0.9 for internal consistency. Then the 
significant descriptors were selected by reducing the initial descriptor pool as described in the 
Methodology part. For each property, the available experimental data were divided into training 
and test set. To preserve the generality of the network models, all test sets consisted of not more 
than ten data points. Further, sensitivity analyses were performed on the reduced descriptor space 
by constructing 1-1-1 neural networks and then the descriptors that produced the lowest RMS 
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error were selected. Several neural network models with different architecture were investigated 
for each property.  

The best ANN model found for logPapp(5.5) was 5-4-1, i.e. having five neurons (descriptors) 
in the input layer, four neurons in the hidden layer and one neuron in the output layer. The input 
neurons consisted of the following descriptors: HA dependent HDCA-2/SQRT(TMSA) (AM1), 
Minimum 1-electron reactivity index (AM1) for Cl atoms, Kier shape index (order 3), Minimum 
(>0.1) bond order (AM1) for C atoms and Maximum net atomic charge (AM1) for Cl atoms. The 
training of the network finished at approximate 350 iterations with RMS of the training set 0.266 
and for the test set 0.406. The experimental and predicted values for logPapp(5.5) for both sets are 
collected in Table 1 and shown in Figure 5. 
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Figure 5. Experimental and predicted logPapp(pH 5.5) values based on 5-4-1 ANN model 
(Training set 61 and test set 10 data points). 
 

The estimation of these predictions in terms of the coefficient of determination is R2
train 

=0.820 and R2
test = 0.740. 

The next ANN model developed for the logPapp(7.4) had also the architecture 5-4-1 while the 
input neurons consisted of the following descriptors: FPSA3 Fractional PPSA (PPSA-3/TMSA) 
(AM1), WNSA3 Weighted PNSA (PNSA3*TMSA/1000) (Zefirov), Maximum 1-electron reactivity 
index (AM1) for Cl atoms, Maximum electrophilic reactivity index (AM1) for C atoms, Average 
1-electron reactivity index (AM1) for O atoms. This model was trained up to 411 iterations and 
the results from the predictions for both, training and test sets are shown in Figure 6 and Table 1. 
The statistical parameters for this models resulted in  
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Figure 6. Experimental and predicted logPapp(pH 7.4) values based on 5-4-1 ANN model 
(Training set 52 and test set 10 data points) 
 

R2
train =0.801 and R2

test = 0.791 and the achieved RMS error 0.217 and 0.290 for the training 
and test sets, respectively. 

The final model developed was for the Caco-2 cell monolayer permeability logPapp(Caco-2) 
with topology 5-3-1. The following descriptors were used as inputs to the network: HBCA H-
bonding charged surface area (AM1), HACA-1 (Zefirov), Minimum 1-electron reactivity index 
(AM1) for H atoms, Difference (Pos - Neg) in Charged Partial Surface Area (AM1) and Average 
1-electron reactivity index (AM1) for H atoms. The experimental and predicted values for 
logPapp(Caco-2) from this ANN model are collected in Table 1 and graphically presented in 
Figure 7. The RMS error for the training and test sets are 0.333 and 0.496, respectively. The 
squared correlation coefficients for both sets, shown in Figure 7 are 0.823 (training) and 0.746 
(test). 
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Figure 7. Experimental and predicted logPapp(Caco-2) values based on 5-3-1 ANN model 
(Training set 71 and test set 10 data points). 

 
It was not surprising that most of the descriptors in the ANN models are quite similar to the 

descriptors involved in the MLR models. In general, the descriptors in ANN models reflect the 
charged surface areas, hydrogen donor/acceptor and lipophilic abilities of the drugs as in MLR 
models.  
 
 
Conclusions 
 

Our present attempt to correlate three permeabilities namely logPapp (pH 5.5), logPapp (pH 
7.4) and logPapp(Caco-2) with theoretically calculated molecular descriptors has led to  relatively 
successful QSAR models that relate these complex pharmacological and medicinal properties to 
structural characteristics of the drugs. Notably, all descriptors appearing in the multiparameter 
regression equations and the ANN model have been derived from theoretical molecular 
calculations. The current computational power available for chemical research allows such 
calculations for large data sets in realistic time. Thus, in principle, the QSAR models developed 
in our present work can be used for the prediction and screening of the above permeabilities. The 
descriptors appearing in these models can be related to the essential electrostatic, hydrogen 
acceptor/donor and lipophilic interactions between the drug and the cell membrane. 

The results obtained for this work indicate that the regression and ANN models exhibit 
reasonable prediction capabilities. Though the linear model was developed mainly for the 
purpose of structure-activity interpretation, the ANN model was primarily developed for 
predictions and classification. It is worth noting that the drug structures obtained by 
conformational search resulted in better models for both BMLR and ANN. 
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In summary, this work should be able to provide prediction and screening of analogous drugs 
for their permeabilities. 
 
 
Supplementary Information 
 
Descriptor values in Table 3 available in SI1 
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