N-(Fmoc-*α*-aminoacyl)benzotriazoles: versatile synthetic reagents from proteinogenic amino acids

Alan R. Katritzky,* Anamika Singh, Danniebelle N. Haase, and Megumi Yoshioka

Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, Florida 32611-7200, USA E-mail: katritzky@chem.ufl.edu

Dedicated to Prof. Nicolo Vivona on the occasion of his 70th anniversary

Abstract

N-Fmoc- α -amino acids were smoothly converted into stable, crystalline *N*-(Fmoc- α -aminoacyl)benzotriazoles **2a-r** (69-90%). Compounds **2b,g** reacted with the chiral derivatizing reagent, (+/-) α -methylbenzylamine (**5** or **6**), to afford α -(*N*-Fmoc-amino)acid amides **3a,b** and **4a,b** (average yield 72 %) with no detectable racemization.

Keywords: *N*-(Fmoc- α -aminoacyl)benzotriazoles, *N*-Fmoc- α -amino acids, α -aminoacylation, α -(*N*-Fmoc-amino)acid amides

Introduction

N-Protected α -amino acids need activation of the carboxylic acid function to allow peptide bond formation. Activation methods can be *in situ* with no isolable intermediates as exemplified by the use of carbodiimides, EDC, DCC and DIC, in combination with additives such as HOBt and HOAt.¹

N-Acylbenzotriazoles have been utilized in (i) *N*-acylation for the preparation of primary, secondary and tertiary amides^{2a-c} and *N*-acylsulfonamides,^{2d} (ii) S-acylation for the synthesis of thiol esters³ and (iii) C-acylation for the preparation of ketones,^{4a} diketones,^{4b} β -ketosulfones,^{4c} enaminones^{4d} and C-acylated pyrroles, indoles,^{4e} 2-methylfurans and thiophenes^{4f}. We have previously prepared the *N*-(Boc-, Fmoc- and Cbz- α -aminoacyl)benzotriazoles of some amino acids.^{5a-c} We now report stable, crystalline *N*-(Fmoc- α -aminoacyl)benzotriazoles derivatives of 18 proteinogenic amino acids and their utilization in the synthesis of chiral α -(*N*-Fmoc-amino)acid amides.

Results and Discussion

Preparation of *N*-(**Fmoc**-*α*-**aminoacyl**)**benzotriazoles 2a**-**r**

Eighteen of the twenty natural, *N*-Fmoc- α -amino acids **1a-r** (purchased from Peptides International, Louisville, KY, USA and used without further purification) when treated with 1*H*-benzotriazole and thionyl chloride in THF at 20 °C for 2 hours^{5a} (Scheme 1, Table 1), afforded crystalline *N*-(Fmoc- α -aminoacyl)benzotriazoles **2a-r** in 69-90% yields. Novel **2b-l**, **q-r** were characterized by ¹H and ¹³C NMR spectroscopy, elemental analysis and high resolution mass spectrometry; known **2a** and **m-p** were verified by comparison of the melting points and spectroscopic data with that of the literature. The spectra of **2b-l**, **q-r** displayed the expected ¹³C NMR chemical shifts at ca. δ 131, 127, 120, and 114 ppm, and that of the amide and carbamate carbonyl carbons at ca. δ 170 and 155 ppm, respectively.^{5b}

Scheme 1. Preparation of *N*-(Fmoc- α -aminoacyl)benzotriazoles 2a-r from the corresponding *N*-protected α -amino acids 1a-r.

The *N*-(Fmoc- α -aminoacyl)benzotriazoles of arginine and aspargine were not obtained under these conditions; they appeared to be formed but were rapidly hydrolyzed before they could be isolated.

Preparation of α-(*N***-Fmoc-amino)acid amides 3a,b and 4a,b**

 α -Methylbenzylamides of *N*-protected amino acids provide criteria for optical purity and stability towards racemization. *N*-(Fmoc- α -aminoacyl)benzotriazoles **2b**,**g** were separately reacted with L- α -methylbenzylamine **5** and D- α -methylbenzylamine **6** in THF at 20 °C to afford amides **3a**,**b** and **4a**,**b** in 66-74 % yields (average 76 %, Scheme 2, Experimental Section).

The diastereomeric excess (*de*) for the α -(*N*-Fmoc-amino)acid amides **3a,b** and **4a,b** were determined by ¹H NMR and HPLC. A comparison of the ¹H NMR spectra obtained from the derivatization of **2b** with D/L- and L- α -methylbenzylamine respectively demonstrated the chirality of **3a** and thus the conversion of the **1b** to **2b** also occurred with retention of chirality. HPLC analyses of **3a**, **4a** and corresponding diastereomeric mixtures provided further evidence for the smooth conversion of chiral **1b**,**g** to chiral **2b**,**g** (Table 2).

_

Reactant	Product	Yield ^a	mp (°C)	[α] _D
		(%)	(Lit. mp)	
Fmoc-L-Ile-OH (1a)	Fmoc-L-Ile-Bt (2a)	78	165.4 - 167.2 ^{5c}	-32.8
			(168.8-170.0)	
Fmoc-L-Val-OH (1b)	Fmoc-L-Val-Bt (2b)	84	148.3-149.8	-40.4
Fmoc-L-Thr(<i>t</i> Bu)-OH (1c)	Fmoc-L-Thr(t Bu)-Bt (2c)	80	62.2-65.0	-30.0
Fmoc-L-Lys(Boc)-OH (1d)	Fmoc-L-Lys(Boc)-Bt (2d)	75	138.4-140.6	-33.3
Fmoc-L-Glu(OtBu)-OH (1e)	Fmoc-L-Glu(OtBu)-Bt (2e)	81	65.5-67.6	-21.2
Fmoc-L-Ser(tBu)-OH (1f)	Fmoc-L-Ser(t Bu)-Bt (2f)	70	91.7-92.4	-14.8
Fmoc-L-Tyr(tBu)-OH (1g)	Fmoc-L-Tyr(tBu)-Bt (2g)	83	138.4-139.3	+15.0
Fmoc-L-Gln(Trt)-OH (1h)	Fmoc-L-Gln(Trt)-Bt (2h)	69	167.0-168.0	-16.3
Fmoc-L-Asp(OtBu)-OH (1i)	Fmoc-L-Asp(OtBu)-Bt (2i)	73	102.0-104.0	-11.1
Fmoc-L-Cys(Trt)-OH (1j)	Fmoc-L-Cys(Trt)-Bt (2j)	88	96.0-98.0	-11.0
Fmoc-L-His(Trt)-OH (1k)	Fmoc-L-His(Trt)-Bt (2k)	73	137.4-139.5	+13.0
Fmoc-L-Leu-OH (11)	Fmoc-L-Leu-Bt (21)	80	121.3-123.2	+53.1
Fmoc-L-Trp-OH (1m)	Fmoc-L-Trp-Bt (2m)	90	92.5-93.6 ^{5c} ;	+9.0
			$192.4-195.2^{b}$	
			$(88.0-90.0)^{5e}$	
Fmoc-L-Phe-OH (1n)	Fmoc-L-Phe-Bt (2n)	85	159.1-160.2 ^{5c}	+3.4
			$(136.5-137.4)^{5d}$	
Fmoc-L-Met-OH (10)	Fmoc-L-Met-Bt (20)	82	122.7-123.3 ^{5c}	-44.7
			$(98.0-100.0)^{5e}$	
Fmoc-L-Ala-OH (1p)	Fmoc-L-Ala-Bt (2p)	72	160.0-160.3 ^{5c}	-60.8
			$(160.7-161.3)^{5d}$	
Fmoc-L-Pro-OH (1q)	Fmoc-L-Pro-Bt (2q)	89	163.5-165.4 ^{5c}	-60.5
Fmoc-Gly-OH (1r)	Fmoc-Gly-Bt (2r)	88	161.5-161.9 ^{5c}	Non-
				chiral

Table 1. Conversions of the 18 *N*-Fmoc- α -amino acids into *N*-(Fmoc- α -aminoacyl) benzotriazoles

^{*a*} Isolated yield. ^{*b*}mp of polymorph.

For structural designation of R in 2b,g, 3a,b and 4a,b see Table 2

Scheme 2. Preparation of *N*-(acylamino)amides **3a,b** and **4a,b** from *N*-(Fmoc- α -aminoacyl) benzotriazoles **2b,g** and L- or D-PhCH(Me)NH₂ (**5** or **6**).

HOBt-based aminium- and phosphonium derivatives (PyBOP, HBTU, HATU, etc),¹ *N*-hydroxysuccinimide esters,⁶ and *p*-nitrophenyl esters⁷ are widely used in peptide synthesis but the preparative routes require multiple steps. *N*-(Fmoc- α -aminoacyl)benzotriazoles are easily prepared peptide coupling reagents whose generality has been demonstrated in the solution phase syntheses of sterically hindered peptides⁸ or peptoids⁹ and the solid phase preparation of simple oligopeptides^{5c}. Additionally, *N*-(Fmoc- α -aminoacyl)benzotriazoles are fully amenable to microwave assisted syntheses.^{5c, 8}

Table 2. Preparation of *N*-(acylamino)amides **3a,b** and **4a,b** from *N*-(Fmoc- α -aminoacyl) benzotriazoles **2b,g** and L- or D-PhCH(Me)NH₂ (**5** or **6**)

Reactant	Product	Yield ^a (%)	Retention time (min)
Fmoc-L-Val-Bt (2b)	Fmoc-L-Val-L-NHCH(Me)Ph (3a)	73	5.42
Fmoc-L-Val-Bt (2b)	Fmoc-L-Val-D/L-NHCH(Me)Ph (3a+4a)	74	5.41, 8.00
Fmoc-L-Tyr(tBu)-Bt (2g)	Fmoc-L-Tyr(<i>t</i> Bu)-D-NHCH(Me)Ph (3b)	74	1.91
Fmoc-L-Tyr(tBu)-Bt (2g)	Fmoc-L-Tyr(tBu)-D/L-NHCH(Me)Ph (3b+4b)	66	1.73, 1.91

^{*a*} Isolated yield. ^{*b*} For conditions, see the experimental section.

In summary, we describe the convenient, cost effective preparation of *N*-(Fmoc- α -aminoacyl)benzotriazoles **2a-r** (69-90%) storable at 20 °C for months without special handling. ¹H NMR and HPLC analyses of *N*-(Fmoc- α -aminoacyl)amides **3a,b** and **4a,b**, easily prepared in high yields, demonstrated that the chirality is maintained during amide bond formation.

Experimental Section

General Procedures. Reagents were obtained as follows: *N*-Fmoc-L-amino acids from Peptides International, Louisville, KY, USA; 1*H*-benzotriazole, dichloromethane (DCM), tetrahydrofuran (THF), ethyl acetate (EtOAc), hexanes, magnesium sulfate (MgSO₄) and sodium carbonate (Na₂CO₃) from Fischer Scientific, Fair Lawn, NJ, USA. Melting points were determined on a hot-stage apparatus and are uncorrected. ¹H (300 MHz, with TMS as the internal standard) and ¹³C (75 MHz) NMR spectra were recorded in CDCl₃. Optical rotations were recorded on Perkin Elmer 241 polarimeter. HPLC analyses were performed on a Shimadzu instrument using a Zorbax Rx-C18 reverse phase column (4.6 x 150 mm) with UV detection at 210 nm, a flow rate of 1.0 mL/min and MeOH:H₂O as the eluting solvent. High resolution mass spectrometry was performed in the ESI (electrospray ionization) mode on an Agilent 6210 LC-TOF (liquid chromatography-time of flight) instrument. Elemental analysis was carried out in an Eager 200 CHN analyzer.

General procedure for the preparation of 2b-l, q, r

Thionyl chloride (5 mmol) was added dropwise to a solution of 1*H*-benzotriazole (20 mmol) in THF (50 mL). After stirring at room temperature for 30 min, *N*-Fmoc-amino acid (5 mmol) was added in one portion. After stirring for 2 h at room temperature, the solvent was evaporated in vacuo. The crude mixture obtained was dissolved in EtOAc (30 mL) and the organic layer washed with saturated Na₂CO₃ solution (30 mL x 3) and dried over MgSO₄. Concentration under reduced pressure gave the desired product, which was precipitated from dichloromethanehexanes.

S-(*9H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate (Fmoc-L-Val-Bt, 2b). White microcrystals (84%); mp 148.3-149.8 °C; $[\alpha]^{24}_{D} = -40.4^{\circ}$ (*c* = 1.5, CHCl₃); ¹H NMR δ 8.28 (d, *J* = 8.1 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.69 (t, *J* = 7.8 Hz, 1H) 7.61 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 2H), 5.6 (dd, *J* = 9.5, 5.0 Hz, 1H), 5.63 (d, *J* = 9.3 Hz, 1H), 4.44 (d, *J* = 6.3 Hz, 2H), 4.24 (t, *J* = 7.2, 6.3 Hz, 1H), 2.58-2.42 (m, 1H), 1.13 (d, *J* = 6.6 Hz, 3H), 0.99 (d, *J* = 6.6 Hz, 3H); ¹³C NMR δ 172.0, 156.7, 146.4, 144.2, 144.1, 141.7, 131.4, 131.1, 128.1, 127.5, 127.0, 125.4, 120.8, 120.4, 114.8, 67.6, 59.8, 47.6, 32.1, 20.1, 17.5. Anal. Calcd for C₂₆H₂₄N₄O₃: C, 70.89; H, 5.49; N, 12.72; Found: C, 71.25; H, 5.57; N, 12.82.

S-(*9H*-Fluoren-9-yl)methyl(2*S*,3*R*) 1-(1*H*-benzotriazol-1-yl)-3-*tert*-butoxy-1-oxobutan-2-ylcarbamate (Fmoc-L-Thr(tBu)-Bt, 2c). White microcrystals (80%); mp 62.2-65.0 °C; $[\alpha]^{24}_{D} = -30.0^{\circ}$ (*c* = 1.5, CHCl₃); ¹H NMR δ 8.28 (d, *J* = 8.1 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 2H) 7.72-7.64 (m, 3H), 7.54 (t, J = 7.8 Hz, 1H), 7.45-7.31 (m, 4H), 5.94 (d, *J* = 9.6 Hz, 1H), 5.67 (dd, *J* = 9.6, 1.5 Hz, 1H), 4.62-4.51 (m, 1H), 4.43 (t, *J* = 6.6 Hz, 2H), 4.30 (t, *J* = 7.2 Hz, 1H), 1.43 (d, *J* = 6.0 Hz, 3H), 0.92 (s, 9H); ¹³C NMR δ169.9, 156.8, 145.8, 143.9, 143.7, 141.3, 131.1, 130.8, 127.7, 127.1, 126.5, 125.2, 125.2, 120.3, 120.0, 114.2, 74.3, 68.0, 67.4, 60.6, 47.1, 28.0, 27.8,

21.1. Anal. Calcd for $C_{29}H_{30}N_4O_4$: C, 69.86; H, 6.06; N, 11.24; Found: C, 70.04; H, 6.23; N, 11.14.

S-(*9H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-6-(*tert*-butoxycarbonylamino)-1-oxohexan-2-ylcarbamate (Fmoc-L-Lys(Boc)-Bt, 2d). White microcrystals (75%); mp 138.4-140.6 °C; $[\alpha]^{24}_{D} = -30.0^{\circ}$ (*c* = 1.5, CHCl₃); ¹H NMR δ 8.27 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.68 (overlapped t, *J* = 7.5 Hz, 1H), 7.65-7.60 (m, 2H) 7.54 (t, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.1 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 5.87 (d, *J* = 7.8 Hz, 1H), 5.82-5.72 (m, 1H), 4.62 (br s, 1H), 4.49-4.37 (m, 2H), 4.24 (t, *J* = 6.9 Hz, 1H), 3.20-3.00 (m, 2H), 2.20-1.90 (m, 2H), 1.60-1.50 (m, 4H), 1.43 (s, 9H); ¹³C NMR δ 171.7, 156.2, 146.0, 143.8, 143.6, 141.2, 131.1, 130.7, 127.7, 127.1, 126.5, 125.1, 120.3, 120.0,114.4, 79.3, 67.2, 54.5, 47.1, 39.6, 32.2, 29.6, 28.4, 22.5. Anal. Calcd for C₃₂H₃₅N₅O₅: C, 67.47; H, 6.19; N, 12.29; Found: C, 67.38; H, 6.22; N, 11.90.

S-*tert*-**Butyl** 4-(((9*H*-fluoren-9-yl)methoxy)carbonylamino)-5-(1*H*-benzotriazol-1-yl)-5-oxopentanoate (Fmoc-L-Glu(OtBu)-Bt, 2e). White microcrystals (81%); mp 65.5-67.6 °C; $[\alpha]^{20}_{D}$ -21.2° (c = 2.4, CHCl₃); ¹H NMR δ 8.19 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 7.5 Hz, 2H), 7.65-7.39 (m, 4H), 7.33 (t, J = 6.9 Hz, 2H), 7.24 (t, J = 7.2 Hz, 2H), 7.00 (br s, 1H), 5.91 (d, J = 8.1 Hz, 1H), 5.78-5.68 (m, 1H), 4.42-4.27 (m, 2H), 4.16 (t, J = 6.9 Hz, 1H), 2.41-2.28 (m, 2H), 2.25-2.10 (m, 2H), 1.36 (s, 9H); ¹³C NMR δ 172.0, 171.2, 156.1, 146.0, 143.8, 143.6, 141.2, 131.1, 130.8, 127.7, 127.0, 126.6, 125.1, 120.3, 119.9, 114.4, 81.2, 67.2, 54.5, 47.1, 31.6, 28.0, 27.5. HRMS calcd for C₃₀H₃₀N₄O₅ [M+Na]⁺ 549.2108, found 549.2071.

S-(*9H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-3-*tert*-butoxy-1-oxopropan-2-ylcarbamate (Fmoc-L-Ser(tBu)-Bt, 2f). White microcrystals (70%); mp 91.7-92.4°C; $[\alpha]^{20}_{D}$ -14.8° (*c* = 2.4, CHCl₃); ¹H NMR δ 8.30 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 2H), 7.72-7.63 (m, 2H), 7.58-7.52 (m, 2H), 7.44-7.26 (m, 4H), 6.02 (d, *J* = 9.0 Hz, 1H), 5.88-5.86 (m, 1H), 4.47-4.35 (m, 2H), 4.31-4.22 (m, 2H), 3.92 (dd, *J* = 9.0, 3.2 Hz, 1H), 1.03 (s, 9H); ¹³C NMR δ 169.5, 156.2, 143.9, 143.7, 141.3, 131.2, 131.0, 127.8, 127.1, 126.5, 126.1, 125.2, 120.3, 120.0, 114.4, 74.0, 67.5, 62.9, 55.9, 47.1, 27.1. HRMS calcd for C₂₈H₂₈N₄O₄ [M+Na]⁺ 507.2003, found 507.1986.

S-(*9H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-3-(4-*tert*-butoxyphenyl)-1-oxopropan-2-ylcarbamate (Fmoc-L-Tyr(tBu)-Bt, 2g). White microcrystals (83%); mp 138.4-139.3°C; $[\alpha]^{20}_{D}$ +15.0° (*c* = 1.9, CHCl₃); ¹H NMR δ 8.19 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 4.5 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.38-7.23 (m, 4H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 7.8 Hz, 2H), 6.13-6.06 (m, 1H), 5.83 (d, *J* = 8.4 Hz, 1H), 4.38 (t, *J* = 6.6 Hz, 2H), 4.20-4.16 (m, 1H), 3.39 (dd, *J* = 13.5, 5.4 Hz, 1H), 3.21 (dd, *J* = 13.5, 8.0 Hz, 1H), 1.24 (s, 9H); ¹³C NMR δ 170.9, 155.7, 154.4, 145.8, 143.6, 143.5, 141.1, 130.8, 130.6, 129.7, 129.6, 127.6, 126.9, 126.4, 124.9, 124.2, 120.2, 119.8, 114.1, 78.4, 67.1, 55.6, 46.9, 38.2, 28.6. Anal. Calcd for C₃₄H₃₂N₄O₄: C, 72.84; H, 5.75; N, 9.99. Found: C, 72.84; H, 6.00; N, 9.70. *S*-(*9H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-1,5-dioxo-5-(tritylamino)pentan-2-ylcarbamate (Fmoc-L-Gln(Trt)-Bt, 2h). White microcrystals (69%); mp 167.0-168.0 °C; $[α]^{20}_{D}$ -16.3° (*c* = 1.4, CHCl₃); ¹H NMR δ 8.26 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 6.9 Hz, 2H), 7.68 (t, *J* = 7.2 Hz, 1H), 7.59-7.51 (m, 2H), 7.44-7.38 (m, 2H), 7.32-7.26 (m, 12H), 7.23-7.20 (m, 6H), 6.81 (s, 1H), 6.14 (d, *J* = 7.2 Hz, 1H), 5.83-5.22 (m, 1H), 4.52-4.45 (m, 1H), 4.36 (t, *J* = 6.6 Hz, 1H), 4.23 (t, *J* = 6.3 Hz, 1H), 2.57 (t, *J* = 6.6 Hz, 2H), 2.44 (br s 1H), 2.27 (br s 1H); ¹³C NMR δ 171.1, 170.8, 156.5, 146.1, 144.5, 143.9, 143.7, 141.3, 131.1, 130.8, 128.7, 128.1, 127.8, 127.2, 126.6, 125.2, 120.4, 120.0, 114.5, 70.9, 67.3, 54.7, 47.2, 35.6, 27.7. Anal. Calcd for C₄₅H₃₇N₅O₄: C, 75.93; H, 5.24; N, 9.84. Found: C, 75.82; H, 5.46; N, 9.89.

S-tert-Butyl 3-(((9*H*-fluoren-9-yl)methoxy)carbonylamino)-4-(1*H*-benzotriazol-1-yl)-4-oxobutanoate (Fmoc-L-Asp(OfBu)-Bt, 2i). White microcrystals (73%); mp 102.0-104.0 °C; $[\alpha]^{20}_{D}$ -11.1° (c = 2.5, CHCl₃); ¹H NMR δ 8.29 (d, J = 8.1 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.75 (d, J = 7.2 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.60-7.51 (m, 3H), 7.42-7.28 (m, 4H), 6.15 (d, J = 6.9 Hz, 1H), 6.00-5.86 (m 1H), 4.44-4.40 (m, 2H), 4.27-4.25 (m, 1H), 3.26 (dd, J = 15.5, 5.6 Hz, 1H), 3.14 (dd, J = 18.6, 5.4 Hz, 1H), 1.38 (s, 9H); ¹³C NMR δ 169.5, 169.1, 155.7, 145.9, 143.7, 143.5, 141.2, 131.1, 131.8, 127.7, 127.0, 126.6, 125.1, 120.3, 120.0, 114.3, 82.3, 67.3, 51.9, 47.0, 38.5, 27.9. Anal. Calcd for C₂₉H₂₈N₄O₅: C, 67.96; H, 5.51; N, 10.93. Found: C, 67.98; H, 5.81; N, 10.96.

R-(*9H*-Fluoren-9-yl)methyl 1-(*1H*-benzotriazol-1-yl)-1-oxo-3-(tritylthio)-propan-2-ylcarbamate (Fmoc-L-Cys(Trt)-Bt, 2j). White microcrystals (88%); mp 96.0-98.0°C; $[\alpha]^{20}_{D}$ -11.0° (*c* = 2.0, CHCl₃); ¹H NMR δ 8.24 (d, *J* = 8.1 Hz, 1H), 8.16 (d, *J* = 8.1 Hz, 1H), 7.78-7.76 (m, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.64-7.56 (m, 3H), 7.41-7.38 (m, 2H), 7.33-7.30 (m, 7H), 7.19-7.11 (m, 11H), 5.78-5.70 (m, 1H), 5.52 (d, *J* = 7.2 Hz, 1H), 4.41 (d, *J* = 6.9 Hz, 2H), 4.24 (t, *J* = 6.9 Hz, 1H), 3.13. (dd, *J* = 14.1, 5.7 Hz, 1H), 2.92 (dd, *J* = 12.6, 6.2 Hz, 1H); ¹³C NMR δ 169.1, 155.6, 146.0, 144.0, 143.5, 141.3, 131.1, 130.8, 129.4, 128.0, 127.8, 127.1, 127.0, 126.7, 125.2, 120.4, 120.0, 114.5, 67.5, 67.3, 53.9, 47.1, 34.1. Anal. Calcd for C₄₃H₃₄N₄O₃S: C, 75.20; H, 4.99; N, 8.16. Found: C, 75.09; H, 5.28; N, 7.82.

S-(*9H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-1-oxo-3-(1-trityl-1*H*-imidazol-4-yl)propan-2ylcarbamate (Fmoc-L-His(Trt)-Bt, 2k). Yellow microcrystals (73%); mp 137.4-139.5°C; $[\alpha]^{24}_{D} =$ -60.5° (*c* = 1.5, CHCl₃); ¹H NMR (300 Hz, CDCl₃) δ 8.19 (d, *J* = 8.1 Hz, 1H), 8.07 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.66-7.57 (m, 3H), 7.42-7.44 (m, 3H), 7.38-7.31 (m, 4H), 7.26-7.24 (m, 15H), 6.45 (s, 1H), 6.08-5.80 (m, 1H), 4.40-4.20 (m, 3H), 3.50-3.38 (m, 2H); ¹³C NMR (75Hz, CDCl₃) δ 170.5, 156.3, 145.8, 143.8, 142.0, 141.1, 139.0, 135.5, 130.5, 129.6, 129.6, 128.0, 127.6, 127.0, 126.3, 125.2, 120.2, 119.8, 114.3, 103.3, 77.2, 70.0, 60.4, 55.4, 30.3. HRMS calcd for C₄₆H₃₆N₆O₃ [M+H]⁺ 721.2922, found 721.2919.

S-(9*H*-Fluoren-9-yl)methyl 1-(1*H*-benzotriazol-1-yl)-4-methyl-1-oxopentan-2-ylcarbamate (Fmoc-L-Leu-Bt, 2l). White microcrystals (80%); mp 121.3-123.2 °C; $[α]^{24}_D = +53.1^\circ$ (c = 1.5, DMF); ¹H NMR δ 8.27 (d, J = 8.2 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 7.3 Hz, 2H), 7.69 (overlapped t, J = 7.1 Hz, 1H), 7.62-7.40 (m, 2H), 7.54 (overlapped t, J = 7.8 Hz, 1H), 7.41 (t, J = 7.0 Hz, 2H), 7.32 (t, J = 7.1 Hz, 2H), 5.85 (t, J = 7.8 Hz, 1H), 5.54-5.44 (m, 1H), 4.45 (d,

J = 7.0 Hz, 2H), 4.25 (t, J = 6.6 Hz, 1H), 1.88 (m, 2H), 1.82-1.71 (m, 1H), 1.11 (d, J = 4.9 Hz, 3H), 0.99 (d, J = 5.4 Hz, 3H); ¹³C NMR δ 172.4, 156.1, 146.0, 143.8, 143.6, 141.3, 131.1, 130.7, 127.7, 127.0, 126.5, 125.0, 120.3, 120.0, 114.4, 67.1, 53.0, 47.1, 41.9, 25.2, 23.2, 21.3. Anal. Calcd for C₂₇H₂₆N₄O₃: C, 71.35; H, 5.77; N, 12.33; Found: C, 71.19; H, 6.06; N, 12.21.

S-(*9H*-Fluoren-9-yl)methyl 2-(1*H*-benzotriazole-1-carbonyl)pyrrolidine-1-carboxylate (Fmoc-L-Pro-Bt, *ca.* 1:1 mixture of rotamers, 2q). White microcrystals (89%); mp 163.5-165.4 °C; $[\alpha]^{24}_{D}$ = -60.5° (*c* = 1.5, DMF); ¹H NMR δ 8.29 (d, *J* = 8.2 Hz, 0.5H), 8.20 (d, *J* = 8.2 Hz, 0.5H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 2H), 7.74-7.28 (m, 6H), 7.21 (t, *J* = 6.0 Hz, 1.5H), 7.09 (t, *J* = 6.7 Hz, 0.5H), 6.89-6.78 (m, 1H), 5.89 (d, *J* = 4.2 Hz, 0.5H), 5.86 (d, *J* = 4.2 Hz, 0.5H), 5.44 (d, *J* = 3.3 Hz, 0.5H), 5.41 (d, *J* = 3.9 Hz, 0.5H), 4.61-4.53 (m, 1H), 4.52-4.43 (m, 0.5H), 4.40-4.26 (m, 0.5H), 4.02 (t, *J* = 5.0 Hz, 0.5H), 3. 90-3.81 (m, 0.5H), 3.77-3.57 (m, 1.5H), 2.71-2.57 (m, 0.5H), 2.56-2.42 (m, 0.5H), 2.31-2.19 (m, 1.5H), 2.18-2.00 (m, 1H), 1.99-1.88 (m, 1.5H); ¹³C NMR δ 171.0, 170.6, 154.9, 154.1, 146.0, 144.0, 143.8, 143.5, 141.3, 141.0, 140.8, 131.2, 131.2, 130.5, 130.5, 127.7, 127.4, 127.1, 126.9, 126.8, 126.5, 126.4, 126.4, 125.2, 125.1, 124.1, 124.0, 120.2, 120.2, 120.0, 119.7, 119.4, 114.6, 114.5, 67.7, 66.5, 60.0, 59.2, 47.2, 47.0, 46.9, 31.6, 30.7, 24.5, 23.2. Anal. Calcd for C₂₆H₂₂N₄O₃: C, 71.22; H, 5.06; N, 12.78; Found: C, 71.16; H, 5.03; N, 13.12.

(9*H*-Fluoren-9-yl)methyl 2-(1*H*-benzotriazol-1-yl)-2-oxoethylcarbamate (Fmoc-Gly-Bt, 2r). White microcrystals (88%); mp 161.5-161.9 °C; ¹H NMR δ 8.25 (d, *J* = 8.2 Hz, 1H), 8.15 (d, *J* = 8.4Hz, 1H), 7.77 (d, *J* = 7.4Hz, 2H), 7.71-7.68 (overlapped t, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.14 (br s, 1H), 5.59 (t, *J* = 5.4 Hz, 1H), 5.10 (d, *J* = 5.7 Hz, 2H), 4.49 (d, *J* = 6.9 Hz, 2H), 4.28 (t, *J* = 6.9 Hz, 1H); ¹³C NMR δ 168.4, 156.5, 146.0, 143.7, 141.3, 130.9, 130.8, 127.7, 127.1, 126.6, 125.1, 120.4, 120.0, 114.0, 67.4, 47.0, 44.8. Anal. Calcd for C₂₃H₁₈N₄O₃: C, 69.34; H, 4.55; N, 14.03; Found: C, 69.40; H, 4.36; N, 14.08.

General procedure for the preparation of 3a,b, 4a,b, (3a+4a) and (3b+4b)

N-(Fmoc- α -aminoacyl)benzotriazoles **2b,g** (1 mmol) was dissolved in THF and L- α -methylbenzylamine **5**, D- α -methylbenzylamine **6** or α -methylbenzylamine (**5**+**6**) (1 mmol) was added to the solution. The mixture was stirred at room temperature and monitored by TLC. On completion of the reaction the solvent was evaporated in vacuo. The resulting solid was dissolved in EtOAc (30 mL) and washed with saturated Na₂CO₃ (30 mL x 3) and dried with MgSO₄. The solution was reduced to dryness *in vacuo* to yield **3a,b**, **4a,b**, (**3a**+**4a**) and (**3b**+**4b**). (**9H-Fluoren-9-yl)methyl S-3-methyl-1-oxo-1-((R)-1-phenylethylamino)butan-2-ylcarbamate (3a).** White powder (73%); mp 205.7-206.2 °C; $[\alpha]^{25}_{D} = -32.6^{\circ}$ (c = 2.4, CHCl₃); ¹H NMR δ 7.82 (d, J = 7.8 Hz, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.38-7.32 (m, 7H), 6.34 (d, J = 6.3 Hz, 1H), 5.57 (d, J = 8.1 Hz, 1H), 5.17 (quintet, J = 7.2 Hz, 1H), 4.50-4.35 (m, 2H), 4.28-4.20 (m, 1H), 4.01 (t, J = 5.6 Hz, 1H), 2.18-2.06 (m, 1H), 1.75 (s, 1H), 1.52 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.0 Hz, 6H); ¹³C NMR 170.3, 156.5, 143.7, 142.8, 141.3, 128.6, 127.7, 127.4,

127.1, 126.1, 125.0, 120.0, 67.0, 60.5, 48.9, 47.1, 31.3, 21.7, 19.2, 17.9. Anal. Calcd for $C_{28}H_{30}N_2O_3$: C, 75.99; H, 6.83; N, 6.33; Found: C, 75.90; H, 6.99; N, 6.09.

(9*H*-Fluoren-9-yl)methyl *S*-3-(4-*tert*-butoxyphenyl)-1-oxo-1-((*R*)-1-phenylethylamino)propan-2-ylcarbamate (3b). White microcrystals (74%); mp 180.1-181.1; $[\alpha]^{24}{}_{\rm D}$ = +8.6° (*c* = 1.0, CHCl₃); ¹H NMR δ 7.81 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 6.9 Hz, 2H), 7.38-7.26 (m, 5H), 7.21-7.15 (m, 4H), 6.98 (d, *J* = 7.8 Hz, 2H), 5.76 (d, *J* = 5.1 hz, 1H), 5.53 (d, *J* = 5.5 Hz, 1H), 5.04 (quintet, *J* = 6.9 Hz, 1H), 4.45-4.41 (m, 3H), 4.24 (t, *J* = 6.6 Hz, 1H), 3.18 (br s, 1H), 2.99-2.96 (m, 1H), 1.42-1.31 (m, 12H); ¹³C NMR 169.6, 154.5, 143.8, 143.7, 142.8, 141.3, 129.9, 128.7, 127.8, 127.5, 127.1, 126.0, 125.1, 124.4, 120.0, 78.5, 77.3, 67.0, 56.6, 49.0, 47.1, 38.5, 28.8, 21.6. Anal. Calcd for C₃₆H₄₀N₂O₅·H₂O: C, 74.46; H, 6.94; N, 4.82; Found: C, 74.49; H, 7.07; N, 4.58.

(9*H*-Fluoren-9-yl)methyl *S*-3-methyl-1-oxo-1-((*S*)-1-phenylethylamino)butan-2-ylcarbamate (4a). White powder (77%); mp 166.3-168.8 °C; $[\alpha]^{25}_{D}$ = +22.1° (*c* = 2.2, CHCl₃); ¹H NMR & 7.75 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.34-7.27 (m, 7H), 6.24 (d, *J* = 7.8 Hz, 1H), 5.44 (d, *J* = 8.7 Hz, 1H), 5.18-5.06 (m, 1H), 4.43-4.23 (m, 2H), 4.22-4.13 (m, 1H), 4.00-3.90 (m, 1H), 2.21-2.06 (m, 1H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.97 (two overlapped doublets, *J* = 7.7 Hz, 6H); ¹³C NMR 170.1, 169.9, 143.8, 142.6, 141.3, 128.7, 127.7, 127.4, 127.1, 126.1, 125.0, 119.9, 67.0, 60.5, 48.9, 47.1, 31.1, 21.7, 19.2, 18.0. Anal. Calcd for C₂₈H₃₀N₂O₃: C, 75.99; H, 6.83; N, 6.33; Found: C, 76.10; H, 7.01; N, 6.51.

(*9H*-Fluoren-9-yl)methyl *S*-3-(4-*tert*-butoxyphenyl)-1-oxo-1-((*S*)-1-phenylethylamino)propan-2ylcarbamate (4b). White powder (79%); mp 196.3-197.7 °C; $[\alpha]^{24}{}_{D} = -6.2^{\circ}$ (c = 1.0, CHCl₃); ¹H NMR δ 7.76 (d, J = 7.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.33-7.22 (m, 5H) 7.12 (d, J = 7.2 Hz, 2H), 7.00-6.97 (m, 2H), 6.83 (d, J = 8.1 Hz, 2H), 5.88 (br s, 1H), 5.42 (br s, 1H), 5.06-5.01 (m, 1H), 4.45-4.35 (m, 2H), 4.23-4.13 (m, 1H), 3.11-3.00 (m, 1H), 2.98-2.86 (m, 1H), 1.91-1.82 (m, 1H), 1.39 (d, J = 6.9 Hz, 3H), 1.31 (s, 9H); ¹³C NMR 169.9, 154.6, 143.9, 142.6, 141.5, 130.0, 128.8, 127.9, 127.6, 127.3, 126.3, 125.2, 124.5, 120.2, 78.6, 77.4, 67.2, 56.6, 49.2, 47.3, 38.3, 29.0, 21.7. Anal. Calcd for 2(C₇₂H₇₈N₄O₉)•H₂O: C, 75.63; H, 6.88; N, 4.90; Found: C, 75.59; H, 6.82; N, 4.77.

(*9H*-Fluoren-9-yl)methyl *S*-3-methyl-1-oxo-1-(1-phenylethylamino)butan-2-ylcarbamate (3a+4a). Yellow oil (74%); ¹H NMR δ 7.69 (d, *J* = 7.5 Hz, 2H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.34-7.12 (m, 21H), 6.01 (s, 0.46H), 5.15-5.05 (m, 1.58H), 3.94 (t, *J* = 6.5 Hz, 1H), 3.74 (q, *J* = 6.0 Hz, 1H), 3.16 (t, *J* = 3.0 Hz, 2H), 2.96 (dd, *J* = 12.0, 6.2 Hz, 1H), 2.82 (dd, *J* = 12.2, 6.9 Hz, 1H), 2.34-2.16 (m, 2H), 1.42 (d, *J* = 6.9 Hz, 6H), 1.24 (d, *J* = 6.6 Hz, 3H), 0.91 (t, *J* = 7.5 Hz, 6H), 0.78 (d, *J* = 6.9 Hz, 6H), 0.68 (d, *J* = 6.6 Hz, 3H); ¹³C NMR 173.8, 173.7, 146.4, 146.4, 146.0, 144.0, 143.8, 141.6, 141.6, 129.1, 129.0, 129.0, 128.8, 127.6, 127.6, 127.5, 127.4, 127.2, 127.1, 126.6, 126.5, 125.0, 125.0, 121.4, 120.3, 120.2, 120.1, 60.4, 60.4, 58.6, 51.1, 48.5, 48.4. HRMS calcd for C₂₈H₃₀N₂O₃ [M+H-CO₂]⁺ 399.2436, found 399.2393

(9*H*-Fluoren-9-yl)methyl S-3-(4-*tert*-butoxyphenyl)-1-oxo-1-(1-phenylethylamino)propan-2-ylcarbamate (3b+4b). Off-white powder (66%); mp 170.8-176.8 °C; ¹H NMR δ 7.76 (d, *J* = 6.9 Hz, 4H), 7.55 (d, *J* = 6.9 Hz, 4H), 7.40 (t, *J* = 7.0 Hz, 4H), 7.34-7.20 (m, 12H), 7.18-7.06 (m,

6H), 6.92 (d, J = 7.8 Hz, 2H), 6.83 (d, J = 8.1, 2H), 5.94 (br s, 1H), 5.74 (br s, 1H), 5.50 (br s, 2H), 5.30-4.92 (m, 2H), 4.46-4.26 (m, 6H), 4.22-4.12 (m, 2H), 3.22-2.78 (m, 4H), 1.33 (s, 18H), 1.32 (overlapped d, J = 6.3 Hz, 6H); ¹³C NMR 169.8, 169.6, 154.4, 154.4, 143.7, 143.7, 142.4, 142.4, 141.3, 129.9, 129.8, 128.6, 128.6, 127.7, 127.4, 127.4, 127.1, 126.1, 126.0, 125.0, 124.4, 124.3, 120.0, 78.5, 78.4, 77.2, 67.0, 56.6, 48.9, 47.1, 38.5, 38.1, 28.8, 21.5. HRMS calcd for $C_{36}H_{38}N_2O_4 [M+H]^+$ 563.2910, found 563.2904.

Acknowledgements

We thank Dr. C. Dennis Hall for his useful suggestions.

References

- 1. Han, S.-Y.; Kim Y.-A. Tetrahedron 2004, 60, 2447.
- (a) Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210. (b) Katritzky, A. R.; Tala, S. R.; Singh, S. K. Synthesis 2006, 19, 3231. (c) Katritzky, A. R.; Chen, Q.-Y.; Tala, S. R. Org. Biomol. Chem. 2008, In press (DOI: 10.1039/b802846j). (d) Katritzky, A. R.; Hoffmann, S.; Suzuki, K. ARKIVOC 2004, (xii), 14.
- 3. Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. Synthesis 2004, 11, 1806.
- (a) Katritzky, A. R.; Le, K. N. B.; Khelashvili, L.; Mohapatra, P. P. J. Org. Chem. 2006, 71, 9861. (b) Katritzky, A. R.; Pastor, A. J. Org. Chem. 2000, 65, 3679. (c) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 1443. (d) Katritzky, A. R.; Fang, Y.; Donkor, A.; Xu, J. Synthesis 2000, 14, 2029. (e) Katritzky, A. R.; Suzuki, K.; Singh, S. K.; He, H.-Y. J. Org. Chem. 2003, 68, 5720. (f) Katritzky, A. R.; Suzuki, K.; Singh, S. K. Croat. Chem. Acta 2004, 77, 175.
- (a) Katritzky, A. R.; Angrish, P.; Hür, D.; Suzuki, K. Synthesis 2005, 3, 397. (b) Katritzky, A. R.; Wang, M.; Yang, H.; Zhang, S.; Akhmedov, N. G. ARKIVOC 2002, (viii), 134. (c) Katritzky, A. R.; Khashab, N. M.; Yoshioka, M.; Haase, D. N.; Wilson, K. R.; Johnson, J. V.; Chung, A.; Haskell-Luevano, C. Chem. Biol. and Drug Des. 2007, 70, 465. (d) Katritzky, A. R.; Angrish, P. Synthesis 2006, 24, 4135. (e) Katritzky, A. R.; Angrish, P.; Suzuki, K. Synthesis 2006, 3, 411.
- 6. Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. J. Am. Chem. Soc. 1964, 86, 1839.
- 7. Gagnon, P.; Huang, X.; Therrien, E.; Keillor, J. W. Tetrahedron Lett. 2002, 43, 7717.
- 8. Katritzky, A. R.; Todadze, E.; Angrish, P.; Draghici, B. J. Org. Chem. 2007, 72, 5794.
- 9. Katritzky, A. R.; Narindoshvili, T.; Draghici, B.; Angrish, P. J. Org. Chem. 2008, 73, 511.