Radical cyclization in heterocycle synthesis. Part $14 .{ }^{1}$ A simple and effective preparation of cyclic oxime ethers by photochemical radical addition-cyclization of acyclic oxime ethers

Okiko Miyata, Rina Yamanaka, Masafumi Ueda, and Takeaki Naito*
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
E-mail: taknaito@kobepharma-u.ac.jp

Dedicated to Professor Keiichiro Fukumoto on his $70^{\text {th }}$ birthday
(received 26 May 03; accepted 23 Sept 03; published on the web 30 Sept 03)

Abstract

The sulfanyl radical addition-cyclization of acyclic oxime ethers containing alkene groups proceeded smoothly under photochemical conditions to give the cyclic oxime ethers.

Keywords: Diphenyl disulfide, radical cyclization, oxime ether, photochemical reaction

Introduction

Free radical cyclization is an efficient method for synthesis of functionalized cyclic compounds, including biologically active natural products and medicinals. ${ }^{2}$ In particular, the radical additioncyclization using N-C multiple bonds as the radical acceptor has been studied extensively by several organic chemists, ${ }^{3}$ including our own group ${ }^{4}$ for the preparation of cyclic amine derivatives. Previously, we investigated the sulfanyl radical addition-cyclization of oxime ethers 1 with thiophenol in the presence of AIBN under thermal conditions, and found that the cyclic amine derivatives $\mathbf{3}$ having a phenylsulfanylmethyl group were obtained in excellent yield. ${ }^{5}$ We have also applied this method to the synthesis of cyclic amino acids, $\mathbf{4}$, (Scheme 1). ${ }^{1,4 \mathrm{f}}$

As an extension of our research on the sulfanyl radical addition-cyclization, we now report that the radical reaction of oxime ethers 1 with diphenyl disulfide under photochemical conditions provides direct routes to cyclic oxime ethers 2 . Although it is known ${ }^{6}$ that the cyclic oxime ethers can be synthesized via radical addition-elimination reactions of bismethanesulfonyl oxime ethers, the reaction requires one to employ as substrate imidate derivatives having a leaving group. In our newly found methods, one can use readily available aldoxime ethers as substrates.

Scheme 1

Results and Discussion

We first investigated the radical cyclization of O-methyl ${ }^{1}$ and O-phenyl-oxime ethers $\mathbf{1 a}, \mathbf{b}$ under photochemical conditions (Scheme 2, Table 1). The substrate 1b was prepared from aminoacetaldehyde dimethyl acetal via tosylation, alkylation, deacetalization, and finally condensation with phenoxyamine, according to the reported procedure. ${ }^{1}$

Scheme 2

Table 1. Sulfanyl radical addition-cyclization of substrates 1a,b under photochemical conditions ${ }^{1}$

				Yield (\%)		
Entry	Substrate	$(\mathrm{PhS})_{2}$ (eq.)	Solvent	$\mathbf{5 (E - 5 A : Z - 5 B)}$	$\mathbf{6}$ (cis:trans)	7
1	1a	0.5	$\mathrm{C}_{6} \mathrm{H}_{6}$	$38(1: 2)$	$23(2: 1)$	-
2	1a	1	$\mathrm{C}_{6} \mathrm{H}_{6}$	$60(1: 4)$	$10(2: 1)$	-
3	$\mathbf{1 a}$	3	$\mathrm{C}_{6} \mathrm{H}_{6}$	$74(1: 4)$	$13(2: 1)$	-
4	1a	3	MeOH^{2}		$23(2: 1)$	-
5	1b	3	$\mathrm{C}_{6} \mathrm{H}_{6}$		$31(2: 1)$	5

[^0]A solution of diphenyl disulfide (0.5 equiv.) and the oxime ether 1a in benzene was irradiated with a high-pressure mercury lamp through a Pyrex filter under N_{2} bubbling at $5-10^{\circ} \mathrm{C}$
for 2 h . The solution was concentrated and the resulting residue was purified by column chromatography to give the cyclic oxime ethers $\mathbf{5 a}(E-5 \mathbf{a A}: Z-5 \mathbf{a B}=1: 2)$ and the cyclic amine $\mathbf{6 a}$ (cis:trans $=2: 1$), both of which have a phenylsulfanylmethyl group (Entry 1). When 1- and 3 equiv. of diphenyl disulfide were used, 5 a was obtained in 60% and 74% yields, respectively (Entries 2 and 3). Interestingly, when methanol was used as solvent, the cyclic amine 6a was obtained exclusively without formation of the cyclic oxime ether $\mathbf{5 a}$ (Entry 4). The O phenyloxime ether $\mathbf{1 b}$ was subjected to the radical reaction under the photochemical conditions to give the cyclic amine $\mathbf{6 b}$ in low yield, in addition to formation of the nitrile 7 which would be formed by elimination of phenol from the substrate $\mathbf{1 b}$ (Entry 5).

We next investigated the radical reaction of various types of known oxime ethers $\mathbf{1 c}-\mathbf{f}{ }^{1}$ as shown in Scheme 3 and Table 2. The radical reaction of N-Boc-oxime ether 1c with $(\mathrm{PhS})_{2}$ gave a mixture of cyclic oxime ether 5c and amine 6c (entry 1 in Table 2, Scheme 3). The oxime ether 1e with a quaternary carbon was subjected to radical reaction with $(\mathrm{PhS})_{2}$ to give the cyclic oxime ether $5 \mathbf{e}$ in improved yield (entry 3) while $\mathbf{1 d}, \mathbf{f}$ gave the cyclic oxime ethers $5 \mathbf{5 d}, \mathbf{f}$ in moderate or low yields (entries 2 and 4).

Scheme 3

Table 2. Sulfanyl radical addition-cyclization of substrates 1c-f

					Yield (\%)	
Entry	Substrate	R	X	$(\mathrm{PhS})_{2}$ (eq.)	$\mathbf{5}(\mathbf{5 A : 5 B})^{1}$	$\mathbf{6}$ (cis-:trans-)
1	$\mathbf{1 c}$	Me	NBoc	3	$36(1: 2)$	$15(3: 1)$
2	$\mathbf{1 d}$	Bn	O	3	$30(1: 4)$	$7(2: 1)$
3	1e	Me	$\mathrm{C}(\mathrm{COOEt})_{2}$	3	$64(1: 4)$	$8(3: 1)$
4	1f	Me	CH_{2}	3	$17(1: 2)$	$3(2: 1)$

${ }^{1}$ The structures of $5 \mathbf{A}$ and 5B are;
5A :

5B :

The stereo-structures of the cyclic oxime ethers $\mathbf{5 a}, \mathbf{c} \mathbf{- f}$ were established as follows (Figure 1, Table 3). The E / Z-geometries of the oxime ether 5 a were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Karabatsos's group ${ }^{7}$ reported that the oxime ethers which exhibit their hydrogen signals at lower field for the group on the same side as the N -OR group have E-geometries, while the oxime ethers showing these at higher field have Z-geometries. In our case, the signals for the hydrogen at the 4-position of the E-isomer, $\mathbf{5 a A}(\delta 3.20)$, appeared at lower field compared with that of the Z-isomer $\mathbf{5 a B}$ ($\delta 2.97$). Similarly, the stereo-structures of $\mathbf{5 c} \mathbf{- f}$ were established from their spectroscopic data. The cyclic amines 6a,c-f were identical with authentic samples ${ }^{1}$ prepared by the radical cyclization of the same substrates $\mathbf{1 a}, \mathbf{c}-\mathbf{f}$ as used under the thermal conditions. The stereo-structure of $\mathbf{6 b}$ was deduced by NOESY of the ${ }^{1} \mathrm{H}$ NMR spectrum.

5A

5B

Figure 1. Oxime ethers 5.
Table 3. ${ }^{1} \mathrm{H}$ NMR Data of cyclic oxime ethers 5

			$\mathbf{5 A} \delta(\mathrm{ppm})$	$\mathbf{5 B} \delta(\mathrm{ppm})$
$\mathbf{5}$	R	X	$4-\mathrm{H}$	$4-\mathrm{H}$
\mathbf{a}	Me	NTs	3.20	2.97
\mathbf{c}	Me	NBoc	$3.35-3.80$	3.06
\mathbf{d}	Bn	O	3.31	3.03
\mathbf{e}	Me	$\mathrm{C}(\mathrm{COOEt})_{2}$	3.30	2.96
\mathbf{f}	Me	CH_{2}	3.14	2.75

In order to clarify the reaction pathway, we next investigated the radical reactions of $\mathbf{1 a}, \mathbf{g}$ and 6a under various reaction conditions (Schemes 4 and 5, Tables 4 and 5). The sulfonamide 1a was treated with 0.5 equiv. of $(\mathrm{PhS})_{2}$ through bubbling O_{2} under the photochemical conditions to give a mixture of the cyclic oxime ether $\mathbf{5 a}$ and the cyclic amine $\mathbf{6 a}$ (entry 1, Table 4). This is similar to the result of the reaction using bubbling N_{2}, as shown in Table 1, Entry 1. Furthermore, the radical reaction of $\mathbf{1 a}$ in the absence of $(\mathrm{PhS})_{2}$ gave neither the cyclic oxime ether $5 \mathbf{a}$ nor the cyclic amine 6a; the oxime ether 1a was recovered (Entry 2). Since 1a in the absence of $(\mathrm{PhS})_{2}$ did not give the azetidine derivative 8a photochemically, which would be expected from its photochemical [2+2]-cycloaddition reaction, the cyclic compounds $\mathbf{5 a}$ and $\mathbf{6 a}$ could not be formed via [2+2]-cycloaddition followed by ring-opening reaction with attack of the phenylsulfanyl radical.

Scheme 4

Table 4. Reaction of sulfonamide 1a

		Yield (\%)			
Entry	$(\mathrm{PhS})_{2}$ (eq.)	conditions	$\mathbf{1 a}$	$\mathbf{5 a}$	$\mathbf{6 a}$
1	0.5	bubbling O_{2}	18	30	5
2	---	bubbling N_{2}	100	0	0

Table 5. Reaction of cyclic amine 6a

		Yield (\%)		
Entry	$(\mathrm{PhS})_{2}$ (eq.)	Conditions	$\mathbf{5 a}$	$\mathbf{6 a}$
1	3	bubbling N_{2}	29	36
2	---	bubbling N_{2}	5	56
3	--	bubbling O_{2}	4	44

Next, the conversion of the cyclic amine $\mathbf{6 a}$ into the cyclic oxime ether $5 \mathbf{a}$ was examined under our reaction conditions (Table 5). The radical reaction of cyclic amine 6a, under nitrogen, both in the presence and absence of $(\mathrm{PhS})_{2}$, gave the cyclic oxime ether $5 \mathbf{a}$, in 29% and 5% yields, respectively. Under similar the reaction conditions, but with the solution of $\mathbf{6 a}$ treated with bubbling $\mathrm{O}_{2}, \mathbf{5 a}$ was formed in 4% yield. These results suggest that $\mathbf{6 a}$ is almost certainly not converted into $\mathbf{5 a}$ by the reaction with O_{2}, but by the phenylsulfanyl radical. Furthermore, when the oxime ether $\mathbf{1 g}$ having no alkenyl group was subjected to the radical reaction with $(\mathrm{PhS})_{2}$, no cyclic compound $\mathbf{5 g}$ was found, and $\mathbf{1 g}$ was recovered (Scheme 5). This result suggests that the radical reaction is initiated by addition of the phenylsulfanyl radical to the olefin in 1a.

Scheme 5

Therefore, we propose the plausible reaction pathway shown in Scheme 6. The phenylsulfanyl radical formed from $(\mathrm{PhS})_{2}$ under the photochemical conditions would attack the olefin in the substrate $\mathbf{1}$. The radical \mathbf{A} then undergoes a 5 -exo-trig cyclization to form the aminyl radical \mathbf{B}. In the formation of oxime ether 5, either the phenylsulfanyl radical or the dissolved O_{2} in solvent would attack the hydrogen at the 3-position of radical \mathbf{B} to afford the cyclic oxime ether 5 , which is also partially formed from the cyclic amine $\mathbf{6}$ under the photochemical conditions, by the action of the phenylsulfanyl radical. On the other hand, $\mathbf{6}$ is obtained by trapping radical B with thiophenol formed in situ. Furthermore, the fact that the cyclic amine $\mathbf{6 a}$ was isolated exclusively, without the formation of cyclic oxime ether $\mathbf{5 a}$, in the radical reaction using methanol as solvent (Entry 4, Table 1) suggests that the aminyl radical B can be trapped with methanol to afford the cyclic amine $\mathbf{6}$ in preference to the cyclic oxime ether 5.

Scheme 6

In conclusion, we have developed a method for the preparation of cyclic oxime ethers by phenylsulfanyl radical-mediated reaction of acyclic oxime ethers under photochemical conditions.

Experimental Section

General Procedures. RT denotes room temperature. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ - NMR spectra were recorded at 200,300 , or 500 MHz , and at 50 MHz , respectively. IR spectra were recorded using FT-IR apparatus. Mass spectra were obtained by EI method. Flash
column chromatography (FCC) was performed using E. Merck Kieselgel 60 (230-400 mesh). Medium-pressure column chromatography (MPCC) was performed using Lobar größe B (E. Merck 310-25, Lichroprep Si60). Short column chromatography (SCC) was performed on a short glass filter using Silica gel 60F-254 (Merck) under reduced pressure. Preparative TLC (PTLC) was performed on pre-coated Silica gel 60F-254 plates (0.5 mm thick, Merck). The photochemical reactions were carried out by irradiation at $5-10^{\circ} \mathrm{C}$ with a high-pressure (300 W) mercury lamp (Eikosha PIH 300) through a Pyrex filter. The oxime ethers 1a,c-f were prepared by reported procedure. ${ }^{1}$
(E / Z)-4-Methyl- N -[2-(phenoxyimino)ethyl]- N -(2-propenyl)benzenesulfonamide (1b). To a solution of 2-aminoacetaldehyde dimethyl acetal ($3.15 \mathrm{~g}, 0.03 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(4.05 \mathrm{~g}, 0.04 \mathrm{~mol})$ and then $\mathrm{TsCl}(7.63 \mathrm{~g}, 0.04 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 2 h , the reaction mixture was diluted with water and extracted with CHCl_{3}. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure to give the crude tosylate. To a suspension of the crude tosylate and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.6 \mathrm{~g}, 0.04 \mathrm{~mol})$ in acetone $(55 \mathrm{~mL})$ was added 3-bromo-1-propene (4.05 g , 0.03 mol) under a nitrogen atmosphere. After being heated at reflux for 5 h , the reaction mixture was diluted with water and extracted with CHCl_{3}. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by MPCC (hexane/AcOEt 5:1) afforded N -(2,2-dimethoxy-ethyl)-4-methyl- N -(2-propenyl)-benzenesulfonamide (4.32 g, 46\%) as a pale yellow oil. To a solution of the acetal $(1.26 \mathrm{~g}, 4.2 \mathrm{mmol})$ in acetone $(50 \mathrm{~mL})$ was added $2 \mathrm{M}-\mathrm{HCl}(25 \mathrm{~mL})$ under a nitrogen atmosphere at room temperature. After being stirred a further 1 h , the reaction mixture was extracted with CHCl_{3}. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure to give the crude aldehyde as yellow oil. To a solution of the crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added $\mathrm{AcONa}(685 \mathrm{mg}, 8.3 \mathrm{mmol})$ and $\mathrm{PhONH}_{2}{ }^{8}$ $(458 \mathrm{mg}, 4.2 \mathrm{mmol})$ at room temperature under a nitrogen atmosphere. After being stirred at room temperature for 2.5 h , the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by FCC (hexane/AcOEt 1:1) to afford the oxime ether $\mathbf{1 b}(577 \mathrm{mg}, 40 \%)$ as a pale yellow oil and a $3: 2$ mixture of E - and Z - isomers; IR $\left(\mathrm{CHCl}_{3}\right) 1645(\mathrm{C}=\mathrm{N}), 1354,1161\left(\mathrm{NSO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.42(9 / 5 \mathrm{H}, \mathrm{s})$, $2.44(6 / 5 \mathrm{H}, \mathrm{s}), 3.84(4 / 5 \mathrm{H}$, br. d, $J=6.5 \mathrm{~Hz}), 3.86(6 / 5 \mathrm{H}$, br. d, $J=6.5 \mathrm{~Hz}), 4.05(6 / 5 \mathrm{H}, \mathrm{d}, J=5.5$ $\mathrm{Hz}), 4.21(4 / 5 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 5.16-5.24(2 \mathrm{H}, \mathrm{m}), 5.59-5.76(1 \mathrm{H}, \mathrm{m}), 6.98(2 / 5 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz})$, $7.00-7.34(7 \mathrm{H}, \mathrm{m}), 7.57(3 / 5 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 7.69-7.74(2 \mathrm{H}, \mathrm{m})$; HRMS (EI, m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 344.1198$, found : 344.1194 .

Radical reaction of oxime ethers 1a and 1b under the photochemical conditions (Table 1, entry 3). A solution of oxime ether 1a ($197 \mathrm{mg}, 0.7 \mathrm{mmol}$) and $(\mathrm{PhS})_{2}(458 \mathrm{mg}, 2.1 \mathrm{mmol})$ in benzene (120 mL) was irradiated for 2 h , then concentrated under reduced pressure and the residue was purified by MCC (hexane/AcOEt 5:1) to afford E - oxime ether $5 \mathrm{AA}(40 \mathrm{mg}, 15 \%)$ as
${ }^{\text {© }}$ ARKAT USA, Inc
a pale yellow oil, Z-5aB ($162 \mathrm{mg}, 59 \%$) as a pale yellow oil, cis- amine $\mathbf{6 a}(24 \mathrm{mg}, 9 \%)$ and trans- $6 \mathbf{a}(12 \mathrm{mg}, 4 \%)$ as a pale yellow oil. The spectral data of cis- and trans-6a were identical with those reported in the literature, ${ }^{1}$ respectively.
(E)-1-(4-Methylphenyl)sulfonyl-4-(phenylsulfanyl)methyl-3-pyrrolidinone O-methyloxime (5aA). IR $\left(\mathrm{CHCl}_{3}\right) 1600(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43(3 \mathrm{H}, \mathrm{s}), 2.65(1 \mathrm{H}, \mathrm{dd}$, $J=14,11 \mathrm{~Hz}), 3.20(2 \mathrm{H}, \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{ddd}, J=14,3,1 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{m}) 3.64(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz})$, $3.97(1 \mathrm{H}, \mathrm{dd}, J=15,1 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 7.18-7.35(7 \mathrm{H}, \mathrm{m}), 7.69(2 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $(50 \mathrm{MHz}) \delta 21.48,32.21,39.25,49.50,51.29,62.06,126.16,127.94,128.91,129.78,131.79$, 134.88, 144.15, 157.60; HRMS (EI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$390.1072, found: 390.1071 .
(Z)-1-(4-Methylphenyl)sulfonyl-4-(phenylsulfanyl)methyl-3-pyrrolidinone \boldsymbol{O}-methyloxime (5aB). IR $\left(\mathrm{CHCl}_{3}\right) 1599(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43(3 \mathrm{H}, \mathrm{s}), 2.73(1 \mathrm{H}, \mathrm{dd}$, $J=13.5,10.5 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{dd}, J=9.5,7 \mathrm{~Hz}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=13.5,3.5 \mathrm{~Hz}), 3.60$ $(1 \mathrm{H}, \mathrm{dd}, J=9.5,7 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=17,1.5 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 7.19-$ $7.36(7 \mathrm{H}, \mathrm{m}), 7.68(2 \mathrm{H}$, br. d, $J=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 21.43,34.86,40.84,47.86,51.64$, $62.09,126.61,127.74,129.00,129.77,129.88,131.68,134.99,144.01,157.84$; HRMS (EI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 390.1072$, found: 390.1070 .
(Table 1, entry 5). According to the procedure given for the radical reaction of 1a, a solution of oxime ether $\mathbf{1 b}(241 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $(\mathrm{PhS})_{2}(458 \mathrm{mg}, 2.1 \mathrm{mmol})$ in benzene $(120 \mathrm{~mL})$ was irradiated for 2 h , then concentrated under reduced pressure and the residue was purified by MCC (hexane/AcOEt, 5:1) to afford cis- amine $\mathbf{6 b}$ ($65 \mathrm{mg}, 21 \%$), trans- $\mathbf{6 b}(32 \mathrm{mg}, 10 \%)$ as a pale yellow oil, and nitrile $7(9 \mathrm{mg}, 5 \%)$ as a pale yellow oil.
cis-1-(4-Methylphenyl)sulfonyl- N-phenoxy-4-(phenylsulfanyl)methyl-3-pyrrolidineamine (6b). IR $\left(\mathrm{CHCl}_{3}\right) 3556(\mathrm{NH}), 1347,1161\left(\mathrm{NSO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.40(3 \mathrm{H}$, s), $2.43-2.49(1 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=13,8.5 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=13,7.5 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{t}$, $J=9.5 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=11,3 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=11,5.5 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{dd}, J=9.5,7.5 \mathrm{~Hz})$, $3.83(1 \mathrm{H}, \mathrm{m}), 5.72(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=8 \mathrm{~Hz}), 7.17-7.28(10 \mathrm{H}, \mathrm{m}), 7.67(2 \mathrm{H}, \mathrm{br}$. d, $J=8 \mathrm{~Hz}$). NOE was observed between $\mathrm{NH}(\delta 5.72)$ and $\mathrm{CH}_{2} \mathrm{SPh}(\delta 2.78,3.05)$ in NOESY spectroscopy. ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 21.54,31.55,41.41,51.18,51.25,60.73,113.40,121.40$, 126.67, 127.50, 129.12, 129.21, 129.72, 129.79, 133.43, 134.98, 143.57, 159.85; HRMS (EI, m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 454.1385$, found: 454.1383.
trans-1-(4-Methylphenyl)sulfonyl- N-phenoxy-4-(phenylsulfanyl)methyl-3-pyrrolidineamine (6b). IR $\left(\mathrm{CHCl}_{3}\right) 3555(\mathrm{NH}), 1349,1161\left(\mathrm{NSO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.29(1 \mathrm{H}$, m), $2.42(3 \mathrm{H}, \mathrm{s}), 2.74(1 \mathrm{H}, \mathrm{dd}, J=13,9 \mathrm{~Hz}), 2.94(1 \mathrm{H}, \mathrm{dd}, J=13,7 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=10,5.5$ $\mathrm{Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=10,4 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{m}), 5.71(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{br}$. d, $J=8 \mathrm{~Hz}$), $7.17-7.28(10 \mathrm{H}, \mathrm{m}), 7.67(2 \mathrm{H}$, br. d, $J=8 \mathrm{~Hz}$); HRMS (EI, m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 454.1385$, found: 454.1383 .
N-Cyanomethyl N-2-propenyl-4-methylbenzenesulfonamide (7). IR (CHCl_{3}) 2270 (CN), 1356, $1165\left(\mathrm{NSO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.45(3 \mathrm{H}, \mathrm{s}), 3.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})$,
$4.22(2 \mathrm{H}, \mathrm{s}), 5.33-5.39(2 \mathrm{H}, \mathrm{m}), 5.66-5.80(1 \mathrm{H}, \mathrm{m}), 7.38(2 \mathrm{H}$, br. d, $J=8 \mathrm{~Hz}), 7.74(2 \mathrm{H}$, br. d, $J=8 \mathrm{~Hz}$); HRMS (EI, m / z) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right) 250.0789$, found: 250.0775.
Radical reaction of oxime ethers $\mathbf{1 c} \mathbf{c} \mathbf{f}$ under the photochemical conditions (Table 2) According to the procedure given for the radical reaction of $\mathbf{1 a}$, a solution of oxime ether $\mathbf{1 c} \mathbf{-} \mathbf{f}$ $(0.7 \mathrm{mmol})$ and $(\mathrm{PhS})_{2}(2.1 \mathrm{mmol})$ in benzene $(120 \mathrm{~mL})$ was irradiated for 2 h , then concentrated under reduced pressure and the residue was purified by MCC (hexane/AcOEt 5:1) to afford 5c-f and $\mathbf{6 c} \mathbf{-} \mathbf{f}$ as shown in Table 2. The spectral data of cis- and trans- $\mathbf{6 c - f}$ were identical with those reported in the literature. ${ }^{1}$
1,1-Dimethylethyl-(E)-3-(methoxyimino)-4-(phenylsulfanyl)methyl-1-pyrrolidinecarboxylate (5cA). Pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1693(\mathrm{NCOO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47(9 \mathrm{H}$, s), $2.79(1 \mathrm{H}$, br. dd, $J=13,10 \mathrm{~Hz}), 3.35-3.80(4 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}$, br. d, $J=16 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{m})$, $3.86(3 \mathrm{H}, \mathrm{s}), 7.16-7.41(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.36,33.48,38.57,47.59,49.27$, $61.95,80.08,124.04,126.13,128.90,129.00,129.34,135.32,154.33,159.38$; HRMS (EI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 336.1508$, found: 336.1506 .
The presence of rotamers precluded a comprehensive assignment of all proton resonances.
1,1-Dimethylethyl-(Z)-3-(methoxyimino)-4-(phenylsulfanyl)methyl-1-pyrrolidinecarboxylate (5cB). Pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1694(\mathrm{NCOO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46(9 \mathrm{H}$, s), $2.87(1 \mathrm{H}$, br. dd, $J=13,10 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{m}), 3.41(2 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 4.07$ (2 H , br. s) 7.18-7.43 ($5 \mathrm{H}, \mathrm{m}$) ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.34,35.80,40.48,46.19,49.36$, $62.03,77.21,79.96,126.52,128.25,129.00,129.95,135.18,154.20,159.67$; HRMS (EI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 336.1508$, found: 336.1506 .
The presence of rotamers precluded a comprehensive assignment of all proton resonances.
(E)-Dihydro-4-(phenylsulfanyl)methyl-3(2H)-furanone \boldsymbol{O}-phenylmethyloxime (5dA). A pale yellow oil; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1602(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.73(1 \mathrm{H}, \mathrm{dd}, J=14,11$ $\mathrm{Hz}), 3.31(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}$, ddd, $J=14,4,1 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{ddd}, J=9,6,1 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{br} . \mathrm{dd}$, $J=9,3 \mathrm{~Hz}), 4.21(1 \mathrm{H}$, br. d, $J=14 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{br} . \mathrm{dd}, J=14,1 \mathrm{~Hz}), 5.09(2 \mathrm{H}, \mathrm{s}), 7.08-7.39$ $(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.41,40.58,68.20,72.39,76.53,125.76,128.16$, 128.36, 128.51, 128.54, 128.90, 135.11, 137.08, 162.12; HRMS (EI, m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ (${ }^{+}$) 313.1136; found 313.1136.
(Z)-Dihydro-4-(phenylsulfanyl)methyl-3-(2H)-furanone O-phenylmethyloxime (5dB). A pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1604(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.89(1 \mathrm{H}, \mathrm{dd}, J=13$, $10.5 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{m}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=13,4 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dd}, J=9,6.5 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{dd}, J=9$, $6.5 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{s}), 5.08(2 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.18-7.39(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.93$, 41.74, 67.17, 72.47, 76.29, 126.55, 127.90, 128.07, 128.36, 129.06, 129.89, 135.21, 137.53, 163.41; HRMS (EI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right) 313.1136$, found 313.1135.

Diethyl (Z)-3-(methoxyimino)-4-(phenylsulfanyl)methyl-1,1-cyclopentanedicarboxylate (5eA). A pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1728(\mathrm{COO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ Hz), $1.26(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.24(1 \mathrm{H}, \mathrm{dd}, J=13.5,8 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=13.5,8.5 \mathrm{~Hz}), 2.84(1 \mathrm{H}$, dd, $J=13,10 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dd}, J=16.5,1.5 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=16.5,1.5 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{m})$, $3.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,3 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.19(4 \mathrm{H}, \mathrm{m}), 7.12-7.40(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz ,
CDCl_{3}) $813.90,13.96,34.65,37.55,38.58,38.84,57.28,61.71,61.79,61.86,125.99,128.84$, 129.13, 135.81, 161.38, 170.66, 170.71; HRMS (EI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right) 379.1453$, found 379.1452.
Diethyl (E)-3-(methoxyimino)-4-(phenylsulfanyl)methyl-1,1-cyclopentanedicarboxylate (5eB). A pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1728(\mathrm{COO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(3 \mathrm{H}$, $\mathrm{t}, J=7 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.06(1 \mathrm{H}, \mathrm{dd}, J=13,11 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{ddd}, J=13,7,1.5 \mathrm{~Hz})$, $2.84(1 \mathrm{H}, \mathrm{dd}, J=13,10 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{m}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=19,1.5 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{dd}, J=19,1.5$ $\mathrm{Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=13,3.6 \mathrm{~Hz}), 3.84(3 \mathrm{H}, \mathrm{s}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 4.19(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 7.15-$ $7.39(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}) \delta 13.30,13.36,34.93,35.56,37.44,40.67,56.33,61.09$, 125.64, 128.36, 129.04, 135.47, 160.85, 169.92, 170.13; HRMS (EI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$ (${ }^{+}$) 379.1453, found 379.1452.
(Z)-2-(Phenylsulfanyl)methylcyclopentanone O-methyloxime (5fA). A pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1650(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.66(1 \mathrm{H})$ and $1.89(3 \mathrm{H})$ and 2.40 (2H) (each m), $2.72(1 \mathrm{H}, \mathrm{dd}, J=13,10.5 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=13,3 \mathrm{~Hz}), 3.83(3 \mathrm{H}$, s), 7.12-7.40 (5H, m); HRMS (EI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}\left(\mathrm{M}^{+}\right)$235.1031, found 235.1030.
(E)-2-(Phenylsulfanyl)methylcyclopentanone \boldsymbol{O}-methyloxime (5fB). A pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1650(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.58(2 \mathrm{H})$ and $1.87(1 \mathrm{H})$ and 2.09 $(1 \mathrm{H})$ and $2.42(2 \mathrm{H})($ each m), $2.75(1 \mathrm{H}, \mathrm{m}), 2.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12,10 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12,3$ Hz), $3.85(3 \mathrm{H}, \mathrm{s}), 7.12-7.38(5 \mathrm{H}, \mathrm{m})$; HRMS (EI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}\left(\mathrm{M}^{+}\right)$235.1031; found 235.1030.

Radical reaction of 1a through $\mathbf{O}_{\mathbf{2}}$ bubbling (Table 4, entry 1). According to the procedure given for radical reaction of $\mathbf{1 a}$, a solution of oxime ether $\mathbf{1 a}(198 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $(\mathrm{PhS})_{2}$ $(76.3 \mathrm{mg}, 0.35 \mathrm{mmol})$ in benzene $(120 \mathrm{~mL})$ was stirred through O_{2} bubbling at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was irradiated under atmosphere for 2 h , then concentrated under reduced pressure and the residue was purified by MCC (hexane/AcOEt 5:1) to afford $\mathbf{5 a}$ and $\mathbf{6 a}$ as shown in Table 4, Entry 1.
Conversion of cyclic amine $\mathbf{6 a}$ into cyclic oxime ether (5a). According to the procedure given for radical reaction of 1a, a solution of the cyclic methoxyamine $\mathbf{6 a}(274 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $(\mathrm{PhS})_{2}(458 \mathrm{mg}, 2.1 \mathrm{mmol})$ in benzene $(120 \mathrm{~mL})$ was irradiated for 2 h , then concentrated under reduced pressure and the residue was purified by MCC (hexane/AcOEt 5:1) to afford $\mathbf{5 a}$ and $\mathbf{6 a}$ as shown in Table 5, Entry 1.
1,1-Dimethylethyl (E/Z)-N-[2-(methoxyimino)ethyl]-N-(2-propenyl)carbamate (1g). To a stirred solution of n-propylamine ($3 \mathrm{~g}, 51 \mathrm{mmol}$) in benzene $(34 \mathrm{~mL})$ was added a solution of chloroacetaldehyde O-methyloxime ($1.8 \mathrm{~g}, 17 \mathrm{mmol}$) in benzene $(8.6 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. After being stirred at $80{ }^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was concentrated under reduced pressure. The residue was purified by SCC (AcOEt) to afford (E/Z)-(1-propylamino)- acetaldehyde O-methyloxime ($1.3 \mathrm{~g}, 59 \%$) as a pale yellow oil. To a solution of the oxime ether $(1.3 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 12 \mathrm{mmol})$ and $\mathrm{TsCl}(2.28 \mathrm{~g}, 12 \mathrm{mmol})$ at room temperature under a nitrogen atmosphere. After being stirred at
room temperature for 24 h , the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was purified by FCC (hexane/AcOEt 5:1) to afford $\mathbf{1 g}(2.55 \mathrm{~g}$, 90%) as a pale yellow oil and a $1: 1$ mixture of E - and Z - isomers; IR $\left(\mathrm{CHCl}_{3}\right) 1340,1159\left(\mathrm{NSO}_{2}\right)$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(3 / 2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.90(3 / 2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.55(2 \mathrm{H}$, m), $2.43(3 \mathrm{H}, \mathrm{s}), 3.09(2 \mathrm{H}$, br. t, $J=7.5 \mathrm{~Hz}), 3.80(3 / 2 \mathrm{H}, \mathrm{s}), 3.86(3 / 2 \mathrm{H}, \mathrm{s}), 3.87(2 / 2 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}), 4.01(2 / 2 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 6.62(1 / 2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 7.18(1 / 2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{m}), 7.69$ (2H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.75,10.82,21.19,21.22,43.27,46.29,49.53,50.88$, 61.44, 61.82, 77.20, 126.74, 126.88, 129.56, 129.62, 130.06, 135.94, 136.36, 143.27, 143.36, 145.53, 148.05; HRMS (EI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$285.1273, found 285.1272.

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research on priority Areas (A) from the Ministry of Education, Science, Sports and Culture, Japan and a research grant from the Science Research Promotion Fund of the Japan Private School Promotion Foundation.

References

1. Part 13: Miyata, O.; Muroya, K.; Kobayashi, T.; Yamanaka, R.; Kajisa, S.; Koide, J.; Naito, T. Tetrahedron 2002, 58, 4459.
2. For recent reviews, see: (a) Fossey, J.; Lefort, D.; Sorba, J. In, Free Radicals in Organic Chemistry translated by Lomas, J.; John Wiley \& Sons:New York, 1995. (b) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. Rev. 1996, 96, 177. (c) Snider, B. B. Chem. Rev. 1996, 96, 339. (d) Giese, B.; Kopping, B.; Gobel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F. Org. React. 1996, 48, 301. (e) Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. 1998, 37, 2562, (f) Bowman, W. R.; Bridge, C. F.; Brookes, P. In Radicals in Organic Synthesis; Wiley-VCH: Weinheim, 2001, Vol. 2.
3. For reviews on the radical cyclization of imines, see: (a) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543. (b) Naito, T. Heterocycles 1999, 50, 505.
4. Naito, T.; Nakagawa, K.; Nakamura, T.; Kasei, A.; Ninomiya, I.; T, Kiguchi, T. J. Org. Chem. 1999, 64, 2003. (b) Naito, T.; Tajiri, K.; Harimoto, T.; Ninomiya, I.; Kiguchi, T. Tetrahedron Lett. 1998, 35, 2205. (c) Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito, T. J. Org. Chem. 1998, 63, 4397. (d) Miyabe, H.; Torieda, M.; Ninomiya, I.; Kiguchi, T.; Naito, T. Synlett 1997, 580. (e) Naito, T.; Torieda, M.; Tajiri, K.; Ninomiya, I.; Kiguchi, T. Chem. Pharm. Bull. 1996, 44, 624. (f) Miyata, O.; Muroya, K.; Koide, J.; Naito, T. Synlett 1998, 271. (g) Miyabe, H.; Fujii, K.; Goto, T.; Naito, T. Org.

Lett. 2000, 2, 4071. (h) Miyabe, H.; Fujii, K.; Tanaka, H.; Naito, T. Chem. Commun. 2001, 831.
5. (a) Naito, T.; Honda, Y.; Miyata, O.; Ninomiya, I. J. Chem. Soc., Perkin Trans. 1 1995, 19. (b) Miyata, O.; Nishiguchi, A.; Ninomiya, I.; Naito, T.; Aoe, K.; Okamura, K. Tetrahedron Lett. 1996, 37, 229. (c) Miyata, O.; Nishiguchi, A.; Ninomiya, I.; Naito, T. Chem. Pharm. Bull. 1996, 44, 1285. (d) Naito, T.; Honda, Y.; Bhavakul, V.; Yamaguchi, S.; Fujiwara, A.; Miyata, O.; Ninomiya, I. Chem. Pharm. Bull. 1997, 45, 1932. (e) Miyata, O.; Nishiguchi, A. Ninomiya, I.; Aoe, K.; Okamura, K.; Naito, T. J. Org. Chem. 2000, 65, 6922. (f) Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 6199. (g) Miyata, O.; Nakajima, E.; Naito, T. Chem. Pharm. Bull. 2000, 49, 213. (h) Miyata, O.; Naito, T. C. R. Acad. Sci. Paris, Chimie 2001, 4, 401.
6. Kim, S.; Kim, N.; Yoon, J.-Y.; Oh, D. H. Synlett 2000, 1148.
7. Karabatsos, G. J.; Hsi, N. Tetrahedron 1967, 23, 1079.
8. Petrassi, H. M.; Sharpless, K. B; Kelly, J. W. Org. Lett. 2001, 3, 139.

[^0]: ${ }^{1}$ The reaction was carried out under bubbling nitrogen.

