Novel syntheses of pyrido[1,2-a]pyrimidin-2-ones, $2 H$-quinolizin-2ones, pyrido[1,2-a]quinolin-3-ones, and thiazolo[3,2-a]pyrimidin-7ones

Alan R. Katritzky,* James W. Rogers, Rachel M. Witek, and Satheesh K. Nair
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
E-mail: Katritzky@chem.ufl.edu
\section*{Dedicated to Professor Narasimhan on his $75^{\text {th }}$ anniversary}
(received 23 Jun 04; accepted 31 Aug 04; published on the web 06 Sept 04)

Abstract

As novel 1,3-bis-electrophilic synthons, 1-benzotriazolyl-2-propynones provide access to the fused ring systems of pyrido[1,2-a]pyrimidin-2-ones and $2 H$-quinolizin-2-ones, known for their diverse biological activities. Reactions of N-(phenylpropioyl)benzotriazole (13a) with substituted 2-aminopyridines 14 afforded pyrido[1,2-a]pyrimidin-2-ones 16a-c in good yields (71-73\%). Likewise, 2 H -quinolizin-2-ones 18a-f were obtained in moderate to good yields (39-81\%) from reactions of benzotriazolyl-2-propynones 13a,b with substituted 2-picolines $\mathbf{1 4}$. Extension of this methodology to other fused ring systems has provided 1-alkyl- and 1-arylpyrido[1,2-a]quinolin-3-ones 20a,b (40\%) and 5-phenylthiazolo[3,2-a]pyrimidin-7-one (22) (54\%) in moderate yields.

Keywords: 1,3-Bis-electrophilic synthons, pyrido[1,2-a]pyrimidin-2-ones, $2 H$-quinolizin-2ones, pyrido[1,2-a]quinolin-3-ones, thiazolo[3,2-a]pyrimidin-7-ones

Introduction

Pyrido[1,2-a]pyrimidines. Pyrido[1,2-a]pyrimidines possess diverse biological activities. ${ }^{1}$ This structural motif is present in the tranquilizer pirenperone, ${ }^{2 a}$ the antiallergic agent ramastine, ${ }^{2 b}$ an antiulcerative agent, ${ }^{2 \mathrm{c}}$ and an antiasthmatic agent ${ }^{2 \mathrm{~d}}$ (Figure 1).

Pirenperone
Tranquilizer

Antiulcerative

Ram astine Antiallergic Agent

TBX Antiasthmatic Agent

Figure 1. Pyrido[1,2-a]pyrimidines possessing diverse biological activities.
The pyrido $[1,2-a]$ pyrimidin-4-ones (for examples see Figure 1) form the best-known class of pyrido $[1,2-a]$ pyrimidines, to which numerous synthetic routes are available. ${ }^{3}$ Literature methods (Scheme 1) to synthesize the less studied pyrido[1,2-a]pyrimidin-2-ones comprise: (i) cyclization of 2 -aminopyridine $\mathbf{1}$ with ethyl cyanoacetate 2 at $80-100^{\circ} \mathrm{C}$ and 14 kbar ; (ii) the cyclization of 2 -aminopyridine with the Vilsmeier-Haack 3 reagent prepared in situ from N-alkyl- N arylethoxycarbonylacetamide and phosphorus oxychloride, which always affords a mixture of the pyrido $[1,2-a]$ pyrimidin-2-ones and pyrido $[1,2-a]$ pyrimidin-4-ones; ${ }^{5}$ (iii) reaction of phenylpropiolic ester 4 with 2 -aminopyridine, which forms a significant amount of undesired side products, ${ }^{6,1}$ (iv) reaction of dimethyl hex-2-en-4-yne-1,6-dioate (5) ${ }^{7}$ or allene-1,3dicarboxylic esters $\mathbf{6}^{8}$ with 2 -aminopyridines; (v) acid catalyzed cyclization of N-acetoacetylated 2 -amino pyridines/picolines/quinolines under microwave assisted synthesis. ${ }^{9}$

Scheme 1. Literature methods for synthesis of pyrido[1,2-a]pyrimidin-2-ones.

Quinolizin-2-ones. Quinolizin-2-ones are a little studied class. The only reported synthesis is 4-methyl-2-oxo-2H-quinolizine-1-carbonitrile (9) by the reaction of 2-pyridylacetonitrile (7) with 4-methyleneoxetan-2-one (8) (Scheme 2). ${ }^{10}$ In particular, no reported examples use picolines in the place of 2 -aminopyridines in the reaction with acetylenic carboxylic acid derivatives.

Scheme 2. 2-Pyridylacetonitrile with 4-methyleneoxetan-2-one.

N -Acylbenzotriazoles are well known mild neutral N -acylating agents for the preparation of primary, secondary, and tertiary amides ${ }^{11 a}$ including formylation ${ }^{11 \mathrm{~b}}$ and trifluoroacylation. ${ }^{11 \mathrm{c}}$ They are also used for the O-acylation of aldehydes ${ }^{11 \mathrm{~d}}$ and for regioselective C -acylation of ketone enolates into α-diketones. ${ }^{11 \mathrm{e}}$ Recently, we developed an efficient method for the synthesis of N -acylbenzotriazoles from acetylenic-carboxylic acids. ${ }^{12} \mathrm{~N}$-Acylbenzotriazoles formed from acetylenic-carboxylic acids are 1,3-bis-electrophiles. We now demonstrate that their reaction with 2-aminopyridines leads to improved syntheses of pyrido[1,2-a]pyrimidin-2-ones (Scheme 1 method (iii)).

Results and Discussion

Preparation of substituted 1-benzotriazolyl-2-propynones. As representative examples of alkyl and aryl substituted 1-benzotriazolyl-2-propynones, 1-benzotriazol-1-yl-3phenylpropynone and 1-benzotriazol-1-yl-oct-2-yn-1-one (13a,b) were prepared in 87% and 95% yields, respectively (Scheme 3). 1-Benzotriazol-1-yl-3-phenylpropynone (13a) was previously reported by our group; ${ }^{12}$ 1-benzotriazol-1-yl-oct-2-yn-1-one (13b) is a novel compound.

Scheme 3. Synthesis of substituted 1-benzotriazolyl-2-propynones.

Synthesis of pyrido[1,2-a]pyrimidin-2-ones. In the first reaction to obtain pyrido[1,2-a]pyrimidine-2-one 16a (conducted at $80-100{ }^{\circ} \mathrm{C}$ in acetonitrile for $2-4 \mathrm{~h}$), it was noted that a significant amount of byproduct 15 was obtained along with the desired product 16a. Thus when 1-benzotriazol-1-yl-3-phenylpropynone (13a) was reacted with 2-aminopyridine in acetonitrile at $80^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, \mathbf{1 6 a}$ was isolated in 27% yield along with the by-product $\mathbf{1 5}$ in 46% yield (Scheme 4). By-product 15 is apparently formed by the counter attack of benzotriazole to 1 -benzotriazol1 -yl-3-phenylpropynone (13a). The isolated yield of 15 was decreased significantly by conducting the reaction in a sealed tube at $120{ }^{\circ} \mathrm{C}$ for 12 h allowing conversion to the pyridopyrimidine $16 \mathbf{a}(\mathrm{R}=\mathrm{Ph})$ in 71% yield. Use of 4 - and 5-methyl substituted 2aminopyridines also resulted in the formation of corresponding pyridopyrimidines $\mathbf{1 6 b}$ and $\mathbf{1 6 c}$ in yields of 73% and 71%.

Scheme 4. Reaction of 1-benzotriazol-1-yl-3-phenylpropynone and 2-aminopyridines.
Synthesis of $\mathbf{2 H}$-quinolizin-2-ones. Reaction of 2-picoline with 1-benzotriazol-1-yl-3phenylpropynone (13a) in a sealed tube at $120{ }^{\circ} \mathrm{C}$ in acetonitrile afforded the expected quinolizin-2-one 18a in 61% yield (Scheme 5). Similarly, reactions of 1-benzotriazol-1-yl-3phenylpropynone (13a) and 1-benzotriazol-1-yl-oct-2-yn-1-one (13b) with 2-picoline and derivatives also afforded the corresponding $2 H$-quinolizin-2-ones 18 in moderate to good yields.

Scheme 5. Reaction of 2-picolines and 1-benzotriazolyl-2-propynones.
We were surprised to find that there were few reports in the literature on reactions of propionates and 2-picoline or its derivatives leading to the formation of fused ring systems. The
reaction of 2-methylpyridine-1-oxide with methyl-3-phenyl-2-propanoate to give methyl(2-(2-methyl-3-pyridyl)-3-oxo-3-phenyl)propanoate is the only known analogue. ${ }^{13}$ 1-Benzotriazolyl-2propynones 13a,b, being very good acylating reagents, react easily as 1,3-bis-electrophilic synthons to give fused ring products.

Synthesis of pyrido[1,2-a]quinolin-3-ones and 5-phenylthiazolo[3,2-a]pyrimidin-7-one. Our N-acylbenzotriazole methodology, developed for the preparation of pyrido[1,2-a]pyrimidin-2ones and 2 H -quinolizin-2-ones, has also been extended to provide access to the fused ring systems of pyrido[1,2-a]quinolin-3-ones and thiazolo[3,2-a]pyrimidin-7-ones. Reactions of 2methylquinoline (19) with 1-benzotriazol-1-yl-3-phenylpropynone (13a) or 1-benzotriazol-1-yl-oct-2-yn-1-one (13b) in a sealed tube at $120{ }^{\circ} \mathrm{C}$ in acetonitrile afforded the expected 1-phenyland 1-pentylpyrido[1,2-a]quinolin-3-ones (20a,b) in 40% yields (Scheme 6).

Scheme 6. Reaction of 2-methylquinoline and 1-benzotriazolyl-2-propynones.
Reaction of 2-aminothiazole (19) with 1-benzotriazol-1-yl-3-phenylpropynone (13a) in a sealed tube at $120^{\circ} \mathrm{C}$ in acetonitrile afforded the expected 5-phenylthiazolo[3,2-a]pyrimidin-7one (22) in 54% yield (Scheme 7).

Scheme 7. Reaction of 2-aminothiazole and N -(phenylpropioyl)benzotriazole.

Synthesis of analogous pyrimido[2,1-b]benzothiazoles from acetylenic acids and 2aminobenzothiazoles has been reported. ${ }^{14}$ In our hands, application of this procedure to the synthesis of pyrido[1,2-a]pyrimidin-2-ones, $2 H$-quinolizin-2-ones, and thiazolo[3,2-a]pyrimidin-7-ones did not provide the desired products in the cases of pyrido[1,2-a]pyrimidin-2-ones and thiazolo[3,2-a]pyrimidin-7-ones. For $2 H$-quinolizin-2-ones, only trace amounts of product were
isolated from a complex reaction mixture after 2 days. In comparison, our N -acylbenzotriazole methodology offers shorter reaction times, cleaner conversion to products, and higher yields.

Experimental Section

General Procedures. Melting points were determined using a Bristoline hot-stage microscope and are uncorrected. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75 \mathrm{MHz}) \mathrm{NMR}$ spectra were recorded on a 300 MHz NMR spectrometer in chloroform- d solution. Elemental and mass spectroscopy analyses were performed by Analytical Laboratories, Dept. of Chem., University of Florida. THF was distilled from sodium-benzophenone ketyl prior to use. All the reactions were performed under a nitrogen atmosphere and in flame dried glasswares. Column chromatography was performed on silica gel (200-425 mesh).

General procedure for the preparation of substituted 1-benzotriazolyl-2-propynones 13a,b

To a solution of benzotriazole ($2.96 \mathrm{~g}, 24.8 \mathrm{mmol}$) and thionyl chloride ($5.55 \mathrm{~mL}, 20.8 \mathrm{mmol}$) in methylene chloride $(20 \mathrm{~mL})$, the appropriate acid (8.3 mmol) was added. The reaction mixture was stirred at room temperature for 18 h . Solvent was removed under vacuum and the resultant solid was re-dissolved in ethyl acetate. The organic layer was washed with water, 1 N NaOH $(200 \mathrm{~mL} \times 2)$, and brine. Recrystallization from ethyl acetate afforded the desired 1-benzotriazolyl-2-propynones in 80-95\% yields.
1-Benzotriazol-1-yl-3-phenylpropynone (13a). White powder (87\%), mp $119-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 7.31-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.73-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.87(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 1 \mathrm{H})$, $8.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 81.5,94.8,114.1,118.2,120.5,127.2,129.5,130.6,131.3$, 132.4, 133.4, 145.9, 149.8. Anal. Calcd For $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 72.86$; H, 3.67; N, 16.99. Found: C, 72.55; H, 3.56; N, 16.98.

1-Benzotriazol-1-yl-oct-2-yn-1-one (13b). Yellow oil (95\%). ${ }^{1}$ H NMR $\delta 0.93-0.98$ (m, 3H), $1.36-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 13.9,19.4,22.1$, 27.1,31.0, 100.4, 114.2, 120.3, 126.3, 126.5, 130.5, 130.9, 146.2, 150.2.

General procedure for the preparation of pyrido[1,2-a]pyrimidin-2-ones 16a-c

1-Benzotriazol-1-yl-3-phenylpropynone ($200 \mathrm{mg}, 0.90 \mathrm{mmol}$) and substituted 2-aminopyridine $(0.90 \mathrm{mmol})$ were added to acetonitrile (3 mL) in a sealed tube and heated to $120^{\circ} \mathrm{C}$ with stirring for 12 hours. Solvent was removed under vacuum and the crude mixture was separated by silica column chromatography (30% ethyl acetate/hexanes to remove benzotriazole, then 5% methanol/chloroform to elute product). Recrystallization from ethyl acetate afforded the desired pyrido[1,2-a]pyrimidin-2-ones in 71-88\% yields.
4-Phenyl-2H-pyrido[1,2-a]pyrimidin-2-one (16a). Yellow flakes (71\%), mp 226-228 ${ }^{\circ} \mathrm{C}$ (Lit. $\left.\mathrm{mp} 227-228^{\circ} \mathrm{C}\right) .{ }^{6}{ }^{1} \mathrm{H}$ NMR $\delta 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.74(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.47$
$(\mathrm{m}, 2 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ 112.6, $117.1,125.3,128.8,129.6,129.7,130.8,135.7,148.6,152.5,168.1$. Anal. Calcd For $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$: C, 75.66; H, 4.54; N, 12.60. Found: C, 74.90; H, 4.39; N, 12.54.
8-Methyl-4-phenylpyrido[1,2-a]pyrimidin-2-one (16b). Orange flakes (73\%), mp 210-211 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.60(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 18.0,117.1,122.7,124.9,126.9,128.9,129.7,130.8,131.1,138.9,148.5,151.6$, 168.3. Anal. Calcd For $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: ~ \mathrm{C}, 76.25$; H, 5.12; N, 11.86. Found: C, 75.20; H, 5.01; N, 12.08 .

7-Methyl-4-phenylpyrido[1,2-a]pyrimidin-2-one (16c). Red flakes (71\%), mp $160-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.56-7.61(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 21.3,115.5,116.8,123.1,128.9,129.0,129.6,130.8,131.0$, 147.9, 148.4, 152.6, 168.4. Anal. Calcd For $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.25$; H, 5.12; N, 11.86. Found: C, 75.77; H, 5.36; N, 11.40.

General procedure for the preparation of quinolizin-2-ones 18a-f

1-Benzotriazol-1-yl-3-phenylpropynone or 1-benzotriazol-1-yl-oct-2-yn-1-one (0.90 mmol) and the appropriate 2-picoline derivative (0.90 mmol) were added to acetonitrile (3 mL) in a sealed tube and heated to $120^{\circ} \mathrm{C}$ with stirring for 12 hours. Solvent was removed under vacuum and the crude mixture was separated by silica column chromatography (30% ethyl acetate/hexanes to remove benzotriazole, then 5% methanol/chloroform to elute product). Recrystallization from ethyl acetate afforded the substituted quinolizin-2-ones in $50-81 \%$ yields.
4-Phenylquinolizin-2-one (18a). Brown crystals (61\%), mp $190{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\delta 6.49-6.54$ (m, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.37-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 111.5,112.4$, $124.4,124.8,128.4,128.7,129.1,129.4,129.6,130.3,132.9,145.0,146.0,175.4$. HRMS (EI) Found $[\mathrm{M}]^{+} 221.0852 ; \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}$ requires 221.0841.
2-Oxo-4-phenyl-2H-quinolizin-1-carbonitrile (18b). Brown crystals (81\%), mp $171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 6.76-6.82(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.65$ $(\mathrm{m}, 3 \mathrm{H}), 7.82-7.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 94.9,113.8,115.5,122.5,125.2,129.0,129.2,129.9$, 130.9, 131.3, 131.7, 133.5, 147.05, 148.4. Anal. Calcd For $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}: ~ \mathrm{~N}, 11.38$. Found: N , 11.97.

1,4-Diphenylquinolizin-2-one (18c). Brown crystals (50\%), mp 223-225 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 6.43$ (ddd, $J=7.2,6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.95$ (ddd, $J=7.5,6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 111.4,123.3,123.8,124.4,127.6,127.9,128.8,129.2,129.5,129.7,130.1$, 131.0, 133.5, 134.8, 142.6, 145.1, 173.7. Anal. Calcd For $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 84.82 ; \mathrm{H}, 5.08 ; \mathrm{N}, 4.71$. Found: C, 84.29; H, 5.01; N, 4.66.
1-Methyl-4-phenylquinolizin-2-one (18d). Black oil (51\%). ${ }^{1} \mathrm{H}$ NMR $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 10.3,111.0,118.1,122.0,122.4$,
127.7, 129.1, 129.4, 129.9, 130.0, 133.5, 141.6, 144.3, 174.4. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{N}$, 5.95. Found: N, 5.48.

4-Pentylquinolizin-2-one (18e). Black oil (39\%). ${ }^{1} \mathrm{H}$ NMR $\delta 0.95(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 4 \mathrm{H})$, $1.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.68(\mathrm{~m}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 13.9,22.3,26.2,31.3,32.4,111.2,112.6,122.7,125.3,127.2,128.0,145.0,145.2,175.8$. HRMS (EI) Found [M] ${ }^{+}$215.1300; $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires 215.1310.
9-Methyl-4-phenylquinolizin-2-one (18f). Red crystals (53\%), mp $150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 2.40$ (s, $3 \mathrm{H}), 6.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.57-$ $7.62(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 19.6,109.0,111.4,124.1,127.9,128.0,129.1,129.5,130.1,131.0$, 133.6, 145.3, 146.5, 175.8. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{N}, 5.95$. Found: $\mathrm{N}, 5.56$.

General procedure for the preparation of pyrido[1,2-a] quinolin- 3-ones 20a,b and 5-phenylthiazolo[3,2-a]pyrimidin-7-one (22)
1-Benzotriazol-1-yl-3-phenylpropynone or 1-benzotriazol-1-yl-oct-2-yn-1-one (0.90 mmol) and the appropriate substituted 2 -methylquinoline or 2 -aminothiazole $(0.90 \mathrm{mmol})$ were added to acetonitrile (3 mL) in a sealed tube and heated to $120^{\circ} \mathrm{C}$ with stirring for 12 hours. Solvent was removed under vacuum and the crude mixture was separated by silica column chromatography (30% ethyl acetate/hexanes to remove benzotriazole, then 5% methanol/chloroform to elute product). Recrystallization from ethyl acetate afforded the pyrido[1,2-a]quinolin-3-ones in 40% yield and 5-phenylthiazolo[3,2-a]pyrimidin-7-one in 54\% yield.
1-Phenylpyrido[1,2-a]quinolin-3-one (20a). Black oil (40\%). ${ }^{1} \mathrm{H}$ NMR $\delta 6.57$ (d, $J=3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.08(\mathrm{~m}, 3 \mathrm{H}) 7.22-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.38-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 114.3,123.1,124.0,125.4,125.6,125.8,127.4$, $127.6,128.2,129.3,129.4,130.0,135.3,137.3,145.7,148.6,177.7$. Anal. Calcd For $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}$: N, 5.16. Found: N, 5.11.
1-Pentylpyrido[1,2-a]quinolin-3-one (20b). Black oil (40\%). ${ }^{1} \mathrm{H}$ NMR $\delta 0.81$ (t, $J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.17-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.59(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\delta 13.8,22.2,29.9,31.1,34.9,113.5,121.4,123.5,124.4,125.9,126.0,127.9,128.3$, $219.2,134.8,145.3,151.2,177.7$. Anal. Calcd For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 81.45 ; \mathrm{H}, 7.23 ; \mathrm{N}, 5.28$. Found: C, 80.47; H, 7.33; N, 5.25.
5-Phenylthiazolo[3,2-a]pyrimidin-7-one (22). Gray powder (54\%), mp $162{ }^{\circ} \mathrm{C}$ (Lit. mp 191$\left.194{ }^{\circ} \mathrm{C}\right) .{ }^{15}{ }^{1} \mathrm{H}$ NMR $\delta 6.15(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.65$ (m, 5H). ${ }^{13} \mathrm{C}$ NMR $\delta 98.2,109.8,110.8,123.3,128.6,129.2,130.7,131.2,147.9,166.5$. Anal. Calcd For $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$: C, 63.14; H, 3.53; N, 12.27. Found: C, 60.14; H, 3.48; N, 12.07.

References

1. Harriman, G. C. B.; Chi, S.; Zhang, M.; Crowe, A.; Bennett, R. A.; Parsons, I. Tetrahedron Lett. 2003, 44, 3659.
2. (a) Smith, R. L.; Barette, R. J.; Sanders-Bush, E. J. Pharmacol. Exp. Ther. 1995, 275, 1050. (b) Awouters, F.; Vermeire, J.; Smeyers, F.; Vermote, P.; Van Beek, R.; Niemegeers, C. J. E. Drug Dev. Res. 1986, 8, 95. (c) Matsutani, S.; Mizushima, Y. Chem. Abstr. 1990, 112, 98557. (d) Yanagihara, Y.; Kasai, H.; Kawashima, T.; Shida, T. Jpn. J. Pharamacol. 1988. 48, 91.
3. (a) Hermecz, I.; Kokosi, J.; Podanyi, B.; Liko, Z. Tetrahedron 1996, 52, 7789. (b) Ferrarini, P.; Mori, C.; Primofiore, G.; Calzolari, L. J. Heterocyclic Chem. 1990, 27, 881. (c) Selic, L.; Strah, S.; Toplak, R.; Stanovnik, B. Heterocycles 1998, 47, 1017. (d) Selic, L.; Stanovnik, B. J. Heterocyclic Chem. 1997, 34, 813. (e) Ye, F.-C.; Chen, B.-C.; Huang, X. Synthesis 1989, 4, 317.
4. Dorokhov, V. A.; Baranin, S. V.; Dib, A.; Bogdanov, V. S.; Yakovlev, I. P.; Stashina, G. A.; Zhulin, V. M. Chem. Abstr. 1991, 114, 101911.
5. Roma, G.; DiBraccio, M. B.; Albi, A.; Mazzei, M.; Ermili, A. J. Heterocyclic Chem. 1987, 24, 329.
6. Al-Jallo, H. N.; Al-Biaty. I. A. J. Heterocyclic Chem. 1978, 15, 801.
7. Acheson, R. M.; Wallis, J. D. J. Chem. Soc., Perkin Trans. l 1982, 1905.
8. Doad, G. J. S.; Okor, D. I.; Scheinmann, F.; Bates, P. A.; Hursthouse, M. B. J. Chem. Soc., Perkin Trans 1 1988, 2993.
9. Suri, O. P.; Suri, K. A.; Gupta, B. D.; Satti, N. K. Synth. Commun. 2002, 32, 741.
10. Kato, T.; Atsumi, T. Chem. Abstr. 1968, 68, 49422g.
11. (a) Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210. (b) Katritzky, A. R.; Chang, H.-X.; Yang, B. Synthesis 1995, 503. (c) Katritzky, A. R.; Yang, B.; Semenzin, D. J. Org. Chem. 1997, 62, 726. (d) Katritzky, A. R.; Pastor, A.; Voronkov, M. V. J. Heterocycl. Chem. 1999, 36, 777. (e) Katritzky, A. R.; Pastor, A. J. Org. Chem. 2000, 65, 3679.
12. Katritzky, A. R.; Zhang, Y.; Singh, S. K. Synthesis 2003, 2795.
13. Murthi, G. S. S.; Gangopadhyay, S. K. Indian J. Chem. 1979, 17, 20.
14. Wahe, H.; Mbafor, J. T.; Nkengfack, A. E.; Fomum, Z. T.; Cherkasov, R. A.; Sterner, O.; Doepp, D. ARKIVOC 2003, (xv), 107.
15. Dunwell, D. W.; Evans, D. J. Chem. Soc. C 1971, 2094.
