New reactions of 4,5-disubstituted 1,2,3-thiadiazoles in the presence of NaH

Alan R. Katritzky, ${ }^{\text {a }}$ George N. Nikonov, ${ }^{\text {a,b }}$
Elizabeth L. Moyano, ${ }^{\text {a }}$ Novruz G. Akhmedov, ${ }^{\text {a }}$ and Peter J. Steel ${ }^{\text {c }}$
${ }^{a}$ Department of Chemistry, Center for Heterocyclic Compounds, University of Florida, Gainesville, Florida 32611-7200, USA
${ }^{a, b}$ A.E.Arbuzov Institute of Organic and Physical Chemistry
Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
${ }^{c}$ Department of Chemistry, University of Canterbury, Christchurch, New Zealand E-mail: katritzky@chem.ufl.edu

Dedicated to Professor A. McKervey on his retirement from Queen's University, Belfast, Ireland

(received 27 Feb 03; accepted 25 Apr 03; published on the web 04 May 03)

Abstract

1,4-Dithiafulvenes, 1,2,3-thiadiazolylalkylketones, 5-(2-aryl-1-phenylethenyl)-1,2,3-thiadiazole, 1,4-dialkyl-3,6-bis(phenylmethylidene)-2,5-dithiabicyclo[2.2.1]heptane, bis-2,4-(1,2,3-thiadiazol -5-yl)-alkenes and (6-benzyl-3,4-diphenyl-3,4-dihydro-2H-thiopyran-2-ylidene)(phenyl)-metha nethiol were formed as a result of transformations of 4,5-disubstituted-1,2,3-thiadiazoles containing an active methylene fragment.

Keywords: 1,2,3-Thiadiazoles, 2,5-dithiabicyclo[2.2.1]heptane, 1,4-dithiafulvenes, 1,2,3thiadiazolylalkylketones, hydrogen migration

Introduction

It is well documented ${ }^{1,2 \text { a-b }}$ that 1,2,3-thiadiazoles undergo multiple transformations into a wide variety of products. A detailed review of such rearrangements ${ }^{3}$ reveals that many proceed by evolution of dinitrogen to form various products depending on the thiadiazole ring substituents. Thus, recently documented thermal transformations of 1-(1,2,3-thiadiazol-5-yl)-1H-1,2,3benzotriazoles involving intramolecular heterocyclization lead to 3-R-4H-[1,2,3]thiadiazolo[3,4-a]benzimidazol-2-ium-4-ides. ${ }^{4}$ Heating 4-aryl- and 4-heteroaryl-5-arylthioxy-1,2,3-thiadiazoles in the presence of sodium hydride in DMF forms two isomeric benzo-1,4-dithiines as a result of intramolecular recyclization or as a result of a dimerization process ${ }^{5}$ (Scheme 1).

Scheme 1

We now report that 4,5-disubstituted-1,2,3-thiadiazoles 2a-k containing an active methylene fragment are variously transformed in the presence of NaH into a 1,4-dithiafulvene 4, 1,2,3thiadiazolylalkylketones 5a-c, 5-(2-aryl-1-phenylethenyl)-1,2,3-thiadiazole (11), 1,4-dialkyl-3,6-bis(phenylmethylidene)-2,5-dithiabicyclo[2.2.1]heptane 13a,b, bis-2,4-(1,2,3-thiadiazol-5-yl)alkenes 12a-c and (6-benzyl-3,4-diphenyl-3,4-dihydro-2H-thiopyran-2-ylidene)(phenyl)methanethiol 15 (Schemes 2, 3, 4).

Scheme 2

Results and Discussion

The starting 1,2,3-thiadiazoles 2a-j were prepared by the previously reported thionyl chloride induced cyclization of tosylhydrazones $\mathbf{1 a - j} .{ }^{4-6}$ The yields of $\mathbf{2 a - j}$ were increased compared to the previously reported procedures by using a small excess of thionyl chloride in methylene chloride. 5-Benzylthio-4-phenyl-1,2,3-thiadiazole $2 \mathbf{k}$ was prepared according to an earlier reported procedure. ${ }^{5}$

Compounds 2a and 2d both displayed unusual photochromic behavior. Freshly recrystallized samples of these compounds were colorless, but upon exposure to sunlight or UV irradiation they turned to a persistent pink-purple color. Dissolution of either form of the crystals produced apparently identical colorless solutions. Recrystallization of the colored crystals from organic solvents gave colorless crystals, which again upon exposure to irradiation turned into colored crystals. In an attempt to gain insight into the origin of this phenomenon, IR, UV investigation and X-ray structure determinations were carried out on each of the two forms of the crystals of 2a. However, the two structures were identical within experimental error, and hence the difference in color is not associated with different molecular dimensions. They crystallize in isomorphous space groups ($\mathrm{P}_{1} 2_{1} 2_{1}$) with two independent molecules in the asymmetric unit. The complex molecular packing includes some unusually short intermolecular $\mathrm{S} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}$ interactions, as shown in Figure 1. The UV and IR spectra were also identical for the crystals of both colors.

Figure 1. Perspective view showing the short intermolecular $\mathrm{S}^{\cdots} \mathrm{N}$ and $\mathrm{C}-\mathrm{H}{ }^{\cdots} \mathrm{N}$ interactions (dotted lines) in the X-ray crystal structure of $\mathbf{2 a}$.

In the preparation of $\mathbf{2 i}$, when acetone was used to quench excess of thionyl chloride, byproduct $\mathbf{3}$ was formed probably through intermediate 9 . The structure of compound $\mathbf{3}$ in solution was established with NMR data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ the signal at 6.84 ppm
was easily assigned to H-6. For the unambiguous chemical shift assignment of the two methyl groups the NOE method was used. Irradiation of the H-6 resonance signal at 6.84 ppm (Figure 2, b) reveals one of the methyl groups at $2.39 \mathrm{ppm}\left(4-\mathrm{CH}_{3}\right)$ and the ortho protons of the phenyl ring ca. 7.22 ppm. The mutual NOE enhancement effect was observed when the $4-\mathrm{CH}_{3}$ resonance signal at 2.39 ppm (Figure 2, c) was irradiated.

Figure 2. (a) Control ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}. NOE difference spectra - (b) and (c). Irradiated proton signals are indicated by dotted arrows.

To assign unequivocally the ${ }^{13} \mathrm{C}$ NMR signals of 3 , HETCOR and long-range heterocorrelation HETCOR-LR (Figure 3) were performed. The ${ }^{13} \mathrm{C}$ NMR spectra of 3 showed five quaternary carbon signals at 132.2, 134.4, 162.3, 186.6 and 194.8 ppm . The assignment of these carbon signals is straightforward using long range-heterocorrelation.

Figure 3. Long-range heterocorrelation spectrum (HETCOR-LR) of $\mathbf{3}$ in CDCl_{3}; arrows show the long-range correlations via two and three bonds which were optimized for 8 Hz .

The structure of $\mathbf{3}$ was confirmed by X-ray crystal structure determination. The crystals of $\mathbf{3}$ have a deep red color. Figure 4 shows a perspective view of the molecular structure, which confirms the atom connectivity, the stereochemistry about the exocyclic double bond and establishes the conformations of the side chains in the solid state.

Figure 4. Perspective view of the structure of 3.

The dithiafulvene $\mathbf{4}$ was formed on reaction of 5 -benzylthio-4-phenyl-1,2,3-thiadiazole ($2 \mathbf{k}$) with NaH . Compound $\mathbf{4}$ is well-known: $\mathbf{4}$ is readily formed (i) by base catalyzed decompositions of 1,2,3-thiadiazoles, ${ }^{7}$ (ii) by treatment of 4-phenyl-1,2,3-thiadiazole with base, ${ }^{8, \mathrm{~b}}$ and (iii) from other precursors. ${ }^{8 \mathrm{c}}$ We believe that in our case the formation of dithiafulvene 4 proceeded by a preliminary proton intramolecular migration from methylene group to thiirene fragment (Scheme 2). The reaction was carried out in DMF in the presence of sodium hydride.

Three different types of compounds were obtained when 1,2,3-thiadiazoles 2 reacted with aromatic aldehydes in the presence of NaH : (i) 1,2,3-thiadiazoles 2c,f,i gave 5-(α-acylalkyl)-1,2,3-thiadiazoles 5a-c having a CH_{2} linked substituent at the 5 -position; (ii) in Knoevenagel type reactions, 5-methyl-1,2,3-thiadiazole $\mathbf{2 b}$ gave bis(1,2,3-thiadiazol-5-yl)alkanes 6a-c together with arylcarbinol $\mathbf{7}$ or alkylmercaptoethynes $\mathbf{8}$ as byproducts; (iii) 1,2,3-thiadiazole $\mathbf{2 h}$ gave E- (11d) and Z- (11c) isomers of vinyl-substituted 1,2,3-thiadiazole $\mathbf{1 1}$ (Scheme 2).

A reaction sequence similar to (ii) took place when DMF was used instead of an aldehyde. Thus, brief heating of thiadiazoles 2d,e,f in DMF with 3 equivalents of sodium hydride gave bis(1,2,3-thiadiazol-5-yl)alkanes 12a-d as mixtures of d, l and meso-forms (Scheme 3).

Scheme 3

Stronger heating of 1,2,3-thiadiazoles, for example 2d,e,f in DMF in the presence of NaH gave bicyclic compounds 3,6-di-(phenylmethylidene)-2,5-dithiabicyclo[2.2.1]heptanes 13a and

13b. Thus, after heating 2d, a mixture of four compounds was obtained, which were then separated by column chromatography into two isomers of 12a,b (d,l- and meso-forms) and a mixture of E, Z-isomers of 2,5-dithiabicyclo[2.2.1]heptane 13b (Scheme 3).

The formation of compounds 13a,b probably occurs via 12 as intermediates (Scheme 3). In the next step, double recyclization followed by dinitrogen elimination from the 1,2,3-thiadiazole ring and double migration of a hydrogen atom from a α-methylene fragment affords 3,6-di-(phenylmethylidene)-1,4-diethyl-2,5-dithiabicyclo[2.2.1]heptane 13b. Heating more strongly or keeping for a longer time in the presence of excess of NaH leads to deep seated degradation of 1,2,3-thiadiazoles; for example, thioamides $\mathbf{1 4 a , b}$ were obtained when 2c was stirred at room temperature for two days or $\mathbf{2 f}$ was heated in DMF with NaH .

Figure 5. HETCOR spectrum of 12a in CDCl_{3} (aliphatic region).

The two isomeric (meso-12a, and d,l-12b) 4,5-disubstituted thiadiazoles were characterized by one and two dimensional NMR techniques (DEPT, selective decoupling, COSY, HETCOR). The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ and the protons of $6^{\prime}-\mathrm{CH}_{2}$ and $7-\mathrm{CH}_{2}$ groups are nonequivalent, and exhibit different chemical shifts. A useful assignment strategy to distinguish between protons of two types of methylene groups ($6^{\prime}-\mathrm{CH}_{2}$ and $7-\mathrm{CH}_{2}$) is on the basis of selective decoupling, and HETCOR experiments. The low field (multiplet centered at 3.02 ppm) was assigned to $\mathrm{H}-6$. A representative example of HETCOR spectra is shown for 12a. The
typical one bond correlation peaks are presented on the contour plot of HETCOR spectrum by dotted arrows (Figure 5).

The DEPT data indicate different forms of the carbon atoms in the aliphatic unit (6-CH3, 6^{\prime} CH_{2} and $\left.6-\mathrm{CH}\right)$. The assignment of quaternary carbon atoms at $130.8 \mathrm{ppm}\left({ }^{\mathrm{ipso}} \mathrm{C}\right), 157.3 \mathrm{ppm}(\mathrm{C}-$ 5) and $160.3 \mathrm{ppm}(\mathrm{C}-4)$ were made by long-range heterocorrelation HETCOR-LR experiments; optimized for 8 Hz long-range J_{CH} coupling.

Characterization of $\mathbf{1 3 a}$ as $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~S}_{2}$ was achieved by high-resolution NMR techniques. The two-fold symmetry of 13a simplifies both the proton and carbon spectra and thus, only half of the molecule needs to be discussed. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 a}$ shows three types of singlet signals at 1.96, 2.26 and 6.45 ppm , which belong to $\mathrm{CH}_{3}, 7-\mathrm{CH}_{2}$ and $\mathrm{H}-6 \mathrm{a}$, respectively. The ratio of integral intensity in 13a is 5:1:1:3. The assignment of the ortho protons of the phenyl ring in 13a was carried out via the appropriate NOE experiments (see Figure 6).

Figure 6. (a) Control ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 a}$ in CDCl_{3}. NOE difference spectra - (b), (c) and (d). Irradiated proton peaks are indicated by arrows (solid); • denotes a solvent peak.

Unequivocal assignments of carbon chemical shifts were made on the basis of coupled ${ }^{13} \mathrm{C}$ NMR, HETCOR (the proton bearing carbon) and long-range correlation HETCOR-LR (to determine the chemical shifts of quaternary carbon atoms) experiments (Figure 7).

Figure 7. Long-range heterocorrelation spectrum (HETCOR-LR) of 13a; arrows represent typical C-H long-range (${ }^{\mathrm{n}} \mathrm{J}_{\mathrm{CH}}, \mathrm{n}=2$ or 3) correlations through two or three bonds ($J=8 \mathrm{~Hz}$) observed in the HETCOR-LR experiment; \triangleleft-denotes the one-bond correlation cross-peaks.

The structure of compound 13 was unambiguously confirmed by single crystal X-ray analysis. Figure 8 shows a perspective view of the molecular structure and confirms the stereochemistry of the benzylidene groups.

Figure 8. Perspective view of the structure of 13a.

Another class of 1,2,3-thiadiazole transformations was observed when the methylene fragment of the substituent was in the 4 -position of the $1,2,3$-thiadiazole rings. Thus, heating of 4-benzyl-5-phenyl-1,2,3-thiadiazole $\mathbf{2 g}$ in DMF in the presence of sodium hydride led to $\mathbf{1 5}$ (Scheme 4).

15

Scheme 4

Figure 9. Perspective view of the structure of 15.

The structure of compound $\mathbf{1 5}$ was determined by single crystal X-ray analysis. Figure 9 shows a perspective view of the molecular structure, which establishes the overall structure of
the molecule, along with the stereochemistry of the phenyl substituents and the exocyclic double bond.

The formation of compound 15 can be rationalized by nitrogen elimination followed by a migration of a hydrogen atom from the methylene fragment to the sulfur or carbon atom to form two intermediate fragments. The new C-C bond is formed after the 1,3-cycloaddition of the biradical to the allene.

Conclusions

1,4-Dithiafulvenes, 1,2,3-thiadiazolylalkylketones, 5-(2-aryl-1-phenylethenyl)-1,2,3-thiadiazole, 1,4-dialkyl-3,6-bis(phenylmethylidene)-2,5-dithiabicyclo[2.2.1]heptane, bis(1,2,3-thiadiazol-5-yl)-alkanes and (6-benzyl-3,4-diphenyl-3,4-dihydro-2H-thiopyran-2-ylidene)(phenyl)methanethiol were formed as a result of the transformation of 4,5-disubstituted-1,2,3-thiadiazoles containing an active methylene fragment.

Experimental Section

Compounds 1a (mp 124-126 ${ }^{\circ} \mathrm{C}$, lit. mp 125-126 ${ }^{\circ} \mathrm{C}$), $\mathbf{1 b}$ (mp 119-120 ${ }^{\circ} \mathrm{C}$, lit. mp $120-121^{\circ} \mathrm{C}$), $\mathbf{1 e}\left(\mathrm{mp} 78-80^{\circ} \mathrm{C}\right.$, lit. $\mathrm{mp} 80-81^{\circ} \mathrm{C}$), and $\mathbf{1 h}$ were prepared as described in, ${ }^{9 \mathrm{a}} \mathbf{1 c}\left(\mathrm{mp} 118-120^{\circ} \mathrm{C}\right.$, lit. mp $\left.119-120^{\circ} \mathrm{C}\right)^{9 \mathrm{~b}}, \mathbf{1 g}-\mathrm{in}^{9 \mathrm{c}}, \mathbf{2 a}-$ in $^{10}, \mathbf{2 g}$ (oil) $-\mathrm{in}^{8 \mathrm{~b}}, \mathbf{2 k}-\mathrm{in} .^{11}$

General Procedures. Melting points were determined on a hot stage apparatus without correction. NMR spectra were recorded at 300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$ NMR spectra with $\mathrm{CDCl}_{3}-d$ as a solvent if not stated otherwise. Chemical shift values are reported as δ downfield from TMS as the internal standard for ${ }^{1} \mathrm{H}$ and a solvent as the internal standard for ${ }^{13} \mathrm{C}$.

4-Methyl- $N^{\prime}-[(\boldsymbol{E})$-1-phenylpentylidene]benzenesulfonohydrazide (1d). A mixture of ptosylhydrazine ($22.9 \mathrm{~g}, 123 \mathrm{mmol}$) and butyrophenone ($20 \mathrm{~g}, 112 \mathrm{mmol}$) in $\mathrm{MeOH}(400 \mathrm{~mL})$ and 4 mL of conc. HCl was reflux for 5 h . The precipitate formed was filtered off and recrystallized from methanol, yield 86 \% (35 g), mp $135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.93$ (d, J = $8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61-7.64 (m, 2H), 7.30-7.33 (m, 5H), 2.59 (t, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.40 (s, 3H), 1.30-1.42 (m, 4H), 0.83 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta 156.1,144.0,143.9,136.5,135.4,129.5,129.4,128.3$, 127.9, 126.6, 126.3, 28.0, 27.8, 26.7, 22.7, 22.0, 21.5, 13.7. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 65.43; H, 6.71; N, 8.48. Found: C, 65.53; H, 6.98; N. 8.50.
\boldsymbol{N}^{\prime}-[(E)-1-[(4-Biphenylyl)butylidene]-4-methylbenzenesulfonohydrazide (1f). A mixture of p tosylhydrazine ($12.5 \mathrm{~g}, 67 \mathrm{mmol}$) and 4-biphenylylbutanone ($15 \mathrm{~g}, 39.2 \mathrm{mmol}$) in benzene (200 mL) was refluxed for 4 h . The benzene was evaporated, the residue was recrystallized from

MeOH. Yield 94 \% (24.5 g), mp 118-120 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.94$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.59(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ (spectral data are given for the major isomer); ${ }^{13} \mathrm{C}$ NMR: $\delta 155.8,144.1,142.2,140.3,135.2,135.4,129.6,128.8,128.3$, 128.0, 127.6, 127.0, 128.8, 127.0, 126.8, 21.6, 19.4, 14.1. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 70.38; H, 6.16; N, 7.14. Found: C, 69.74; H, 6.04; N, 7.19.

Crystal data for $\mathbf{2 a}$ (pink form): $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$, FW 190.26, orthorhombic, space group $\mathrm{P}_{1} 2_{1} 2_{1}, a=$ $6.055(1), b=8.190(2), c=38.639(9) \AA, \mathrm{V}=1916.1(8) \AA^{3}, \mathrm{~F}(000)=800, \mathrm{Z}=8, \mathrm{~T}=-105^{\circ} \mathrm{C}, \mu$ $(\operatorname{MoK} \alpha)=0.289 \mathrm{~mm}^{-1}, D_{\text {calcd }}=1.319 \mathrm{~g} . \mathrm{cm}^{-3}$, crystal size $0.60 \times 0.54 \times 0.43 \mathrm{~mm}, 2 \theta_{\max } 53^{\circ}$ (CCD area detector, $\mathrm{MoK} \alpha$ radiation, 98.8% completeness), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0697$ (all 3832 data), $\mathrm{R}=$ 0.0301 (3349 data with I > 2 σ I).

Crystal data for $\mathbf{2 a}$ (colorless form): $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$, FW 190.26, orthorhombic, space group $\mathrm{P}_{1} 2_{1} 2_{1}$, $a=6.052(2), b=8.197(2), c=38.581(11) \AA, \mathrm{V}=1914.0(10) \AA^{3}, \mathrm{~F}(000)=800, \mathrm{Z}=8, \mathrm{~T}=-$ $105^{\circ} \mathrm{C}, \mu(\mathrm{MoK} \alpha)=0.289 \mathrm{~mm}^{-1}, \mathrm{D}_{\text {calcd }}=1.320 \mathrm{~g} . \mathrm{cm}^{-3}$, crystal size $0.68 \times 0.46 \times 0.24 \mathrm{~mm}, 2 \theta_{\text {max }}$ 53° (CCD area detector, $\mathrm{MoK} \alpha$ radiation, 99.3% completeness), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0810$ (all 3869 data), $\mathrm{R}=0.0352$ (3615 data with $\mathrm{I}>2 \sigma \mathrm{I}$).
5-Methyl-4-phenyl-1,2,3-thiadiazole (2b). Thionyl chloride ($16.5 \mathrm{~g}, 139 \mathrm{mmol}$) was added dropwise to 4-methyl- N^{\prime}-[(E)-1-phenylpropylidene]benzenesulfonohydrazide ($14 \mathrm{~g}, 46 \mathrm{mmol}$) in methylene chloride (40 mL). The mixture was stirred at rt overnight, methylene chloride and excess of thionylchloride were removed under reduced pressure and the residue was recrystallized from ether : hexanes $1: 1$. Yield $60 \%(4.9 \mathrm{~g})$, white crystals, mp $38-40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.55(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 159.5,146.7,130.9$, 128.8, 128.7, 128.6, 10.5. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$: C, 61.34; H, 4.58; N, 15.90. Found: C, 61.33; H, 4.41; N, 15.85.

5-Ethyl-4-phenyl-1,2,3-thiadiazole (2c). The procedure is similar to $\mathbf{2 b}$. Yield 58%, white crystals, mp $65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.53(\mathrm{~m}, 3 \mathrm{H}), 3.11(\mathrm{q}, J=7.4 \mathrm{~Hz}$, 2H), $1.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 158.6,154.8,131.3,128.7,19.6,16.5$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 63.13, \mathrm{H}, 5.30$; N, 14.72. Found: C, 62.83; H, 5.34; N, 14.90.
4-Phenyl-5-propyl-1,2,3-thiadiazole (2d). The procedure is similar to $\mathbf{2 b}$. Yield 58%, white crystals, mp $36-37{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.53(\mathrm{~m}, 3 \mathrm{H}), 3.07(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), 1.72-1.80 (m, 2H), 1.04 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 159.0,152.9,131.4,128.8,128.7$, 128.6, 27.7, 25.3, 13.8. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$: C, 64.67; H, 5.92; N, 13.71. Found: C, 64.60; H, 5.94; N, 13.82.

5-Ethyl-4-propyl-1,2,3-thiadiazole (2e). The procedure is similar to $\mathbf{2 b}$. Yield 57%, oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 2.93(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 159.6, 153.6, 28.6, 22.9, 18.6, 16.2, 13.7. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 53.81 ; \mathrm{H}, 7.74 ; \mathrm{N}$, 17.93. Found: C, 53.66; H, 7.75; N, 17.49.

4-Biphenylyl-5-ethyl-1,2,3-thiadiazole (2f). The procedure is similar to $\mathbf{2 b}$. Yield 72 \%, white crystals, mp $82-83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.77$ (dd, $J=8.3,12.8 \mathrm{~Hz}, 4 \mathrm{H}$), $7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-7.50(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{q}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 158.3,154.8$,
141.5, 140.3, 130.3, 129.1, 128.9, 127.6, 127.4, 127.1, 19.7, 16.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$: C, 72.15; H, 5.30; N 10.52. Found: C, 72.06; H, 5.24; N, 10.60.

5-Benzyl-1,2,3-thiadiazole (2h). The procedure is similar to $\mathbf{2 b}$. Yield 69%, oil. ${ }^{1} \mathrm{H}$ NMR: δ 8.47 (s, 1H), 7.21-7.34 (m, 5H), 4.33 (s, 2H). ${ }^{13} \mathrm{C}$ NMR: $\delta 157.2,147.0,137.7,129.2,129.0$, 128.3, 127.4, 127.1, 31.1. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$: C, 61.34; H, 4.58; N, 15.90. Found: C, 61.09; H, 4.36; N, 15.68.

5-Benzyl-4-methyl-1,2,3-thiadiazole (2i). The procedure is similar to $\mathbf{2 b}$. Yield 44%, oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.17-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 156.1,150.7,137.7,128.9$, 128.1, 127.2, 30.7, 12.3. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$: C, 63.13; H, 5.30; N, 14.72. Found: C, 63.29; H, 5.14; N, 14.69.

1-[4-Methyl-5-[(E)-phenylmethylidene]-1,2,3-thiadiazol-2-yl]-1-thioxoacetone (3) was obtained as a by-product from reaction of 4-methyl- N^{\prime}-[(E)-1-methyl-3phenylpropylidene]benzenesulfonohydrazide with thionyl chloride after work up of the reaction mixture with acetone and purification by column chromatography. Yield 15%, red crystals, mp $133-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, 2.56 (s, 3H), $2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 194.8,186.5,162.4,134.4,132.4,129.2,129.1,128.6$, 118.9, 28.1, 13.6. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}_{2}$: C, 56.50; H, 4.38; N, 10.14. Found: C, 56.31; H, 4.30; N, 10.05.
Crystal data for 3: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}_{2}$, FW 276.37, orthorhombic, space group Pca2 ${ }_{1}, a=21.383(4)$, b $=8.819(2), c=7.116(1) \AA, \mathrm{V}=1341.9(5) \AA^{3}, \mathrm{~F}(000)=576, \mathrm{Z}=4, \mathrm{~T}=-10{ }^{\circ} \mathrm{C}, \mu(\mathrm{MoK} \alpha)=$ $0.385 \mathrm{~mm}^{-1}, \mathrm{D}_{\text {calcd }}=1.368 \mathrm{~g} . \mathrm{cm}^{-3}$, crystal size $0.69 \times 0.45 \times 0.21 \mathrm{~mm}, 2 \theta_{\max } 53^{\circ}$ (CCD area detector, $\mathrm{MoK} \alpha$ radiation, 99.6% completeness), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0981$ (all 2425 data), $\mathrm{R}=0.0466$ (2341 data with I > $2 \sigma I$).
4-Phenyl-2-[(E)-phenylmethylidene]-1,3-dithiole (4). Yield 40 \%, white crystals, mp $198{ }^{\circ} \mathrm{C} .{ }^{7,8 \mathrm{a}, \mathrm{b} 1}{ }^{1} \mathrm{H}$ NMR $\delta 7.44-7.17(\mathrm{~m}, 10 \mathrm{H}) ; 6.66(\mathrm{~s}, 1 \mathrm{H}) ; 6.60(\mathrm{~s}, 0.5 \mathrm{H}) ; 6.58$ (s, 0.5 H$) ; 6.54(\mathrm{~s}$, $1 \mathrm{H})$ (mixture of E - and Z-isomers). ${ }^{13} \mathrm{C}$ NMR: $\delta 144.5,130.4,128.6,128.1,126.9,126.7,122.2$, 118.5, 114.8.

1-Phenyl-2-(4-phenyl-1,2,3-thiadiazol-5-yl)-1-propanone (5a). NaH ($0.2 \mathrm{~g}, 8.3 \mathrm{mmol}, 60 \%$ suspension in oil) was added to 4-phenyl-5-ethyl-1,2,3-thiadiazole ($0.4 \mathrm{~g}, 2.1 \mathrm{mmol}$) and benzaldehyde ($0.22 \mathrm{~g}, 2.1 \mathrm{mmol}$) in THF (10 mL). The reaction mixture was refluxed for 6 h , ether (30 mL) was added, the reaction mixture was washed with water. The organic layer was dried over MgSO_{4}, the solvents were evaporated and the residue was purified by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$: Hexanes $1: 1$). Yield 0.3 g , (48\%), oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.87$ (d, J = 7.3 Hz , $2 \mathrm{H}), 7.64-7.43(\mathrm{~m}, 8 \mathrm{H}), 5.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 190.0$, 158.9, 150.3, 134.2,134.1, 131.8, 129.2, 129.1, 129.0, 129.04, 128.7, 40.2, 23.2. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$: C, 69.36; H, 4.79; N, 9.52. Found: C, 69.58; H, 4.82; N, 9.13. GCMS Calcd: 294. Found for ms - 2N: 266.
1-(4-Methylphenyl)-2-(4-methyl-1,2,3-thiadiazol-5-yl)-2-phenyl-1-ethanone (5b). The procedure is similar to 5a. Starting material (yield ~31 \%), 4-methylbenzylalcohol (yield 40 \%) and $\mathbf{5 b}$ (yield 32%), white crystals, mp $198{ }^{\circ} \mathrm{C}$, were obtained. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.03$ (d, $J=8.1 \mathrm{~Hz}$,

1H), 7.36-7.28 (m, 8H), 6.29 (s, 1H), 2.71 (s, 3H), 2.42 (s, 3H). ${ }^{13}$ C NMR: $\delta 194.5,155.6,147.4$, 145.3, 135.8, 131.8, 129.6, 129.5, 129.3, 128.2, 128.1, 127.7, 52.2, 21.6, 13.2. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$: C, 70.10; H, 5.23; N, 9.08. Found: C, 69.51; H, 5.29; N, 9.25.
2-(4-Biphenylyl-1,2,3-thiadiazol-5-yl)-1-(3-methylphenyl)-1-propanone (5c). NaH (0.6 g, $25 \mathrm{mmol}, 60 \%$ suspension in oil) was added to $2 \mathrm{f}(1.8 \mathrm{~g}, 6.8 \mathrm{mmol})$ and 3-methylbenzaldehyde ($0.9 \mathrm{~g}, 7.5 \mathrm{mmol}$) in THF (30 mL). The reaction mixture was refluxed for 4 h , and stirred overnight at rt, ether (40 mL) was added and the reaction mixture was washed with water. The organic layer was dried over MgSO_{4}, the solvents were evaporated and the residue was purified by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$: Hexanes $1: 1$). Yield 1.3 g , (50%), oil. ${ }^{1} \mathrm{H}$ NMR: δ $7.81-7.67(\mathrm{~m}, ~ 8 H), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, 1.65 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 198.3,158.5,150.9,142.0,140.1,139.0,135.0,134.0$, 130.3, 129.5, 129.3, 129.0, 128.9, 127.8, 127.7, 127.1, 125.9, 40.2, 23.2, 21.3. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$: MS Calcd 384.50. MS Found: [M+1] 385.1373.
5-[2-(3-Phenyl)-3-(4-phenyl-1,2,3-thiadiazol-5-yl)propyl]-4-phenyl-1,2,3-thiadiazole (6a). NaH ($0.6 \mathrm{~g}, 25 \mathrm{mmol}, 60$ \% suspension in oil) was added to 4-phenyl-5-methyl-1,2,3-thiadiazole $(2.21 \mathrm{~g}, 12.6 \mathrm{mmol})$ and benzaldehyde ($1.4 \mathrm{~g}, 13.3 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The reaction mixture was refluxed for 5 h . EtOAc (20 mL) was added; the reaction mixture was washed with water, dried over MgSO_{4} and purified by column chromatography. Yield 25% (0.7 g), yellow crystals, mp $126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.48$ (m, 9H), 7.27-7.25 (m, 4H), 6.92-6.90 (m, 2H), 3.51-3.34 (m, 4H), 3.30-2.97 (m, 1H). ${ }^{13} \mathrm{C}$ NMR: $\delta 160.2,148.8,139.4,131.0,129.3,129.2,129.0,128.9$, 128.5, 127.9, 49.1, 32.3. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 68.15; H, 4.58; N, 12.72. Found: C, 67.93; H, 4.58; N, 12.66.

5-[2-(4-Methylphenyl)-3-(4-phenyl-1,2,3-thiadiazol-5-yl)propyl]-4-phenyl-1,2,3-thiadiazole (6b). The procedure is similar to 6a. Yield 23%, yellow crystals, mp $159-160{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: δ 7.48 (m, 9H), 7.05 (d, $J=7,7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.79 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44-3.33 (m, 4H), 2.88-3.00 (m, 1H), 2.33 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 160.0,148.8,138.3,136.1,131.0,129.9,129.0,128.9,127.7$, 48.6, 32.4, 21.1. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 68.69; H, 4.88; N, 12.32. Found: C, 68.89; H, 4.94; N, 11.66.

5-[2-(3-Methylphenyl)-3-(4-phenyl-1,2,3-thiadiazol-5-yl)propyl]-4-phenyl-1,2,3-thiadiazole (6c). The procedure is similar to $\mathbf{6 a}$. Yield 35%, white crystals, mp $126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: δ 7.50-7.47 (m, 10H), 7.13-7.07 (m, 2H), 6.71-6.69 (m, 2H), 3.49-3.29 (m, 4H), 2.96-2.91 (m, $1 \mathrm{H}), 2.24$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 160.0,148.8,139.1,139.0,130.9,129.1,129.0,128.9,128.4$, 124.8, 49.0, 32.2, 21.3. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 68.69; H, 4.88; N, 12.32. Found: C, 68.67; H, 4.87; N, 12.40.

5-[(E)-2-(3-Methylphenyl)-1-phenylethenyl]-1,2,3-thiadiazole (11c) and 5-[(Z)-2-(3-methyl phenyl)-1-phenylethenyl]-1,2,3-thiadiazole (11d). The procedure is similar to $5 \mathbf{5 a}$. The products 11d and 11e were isolated by column chromatography as individual compounds. Yield 11d 56%, oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.38$ (s, 1H), 7.17 (s, 1H), 7.40-7.44 (m, 3H), 7.25-7.29 (m, 2H), 6.91-7.03 (m, 2H), 6.85 (br s, 1H, ortho-H/B-ring), 6.77-6.80 (m, 1H), $2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 160.8,144.5,138.3,137.8,134.8,134.7,130.8,129.5,129.4,129.3,129.0,128.7,128.1,126.7$,
21.2. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$: C, 73.35; H, 5.07; N, 10.06. Found: C, 73.63; H, 5.04, N, 9.57. GCMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$: 278. Found: 278.
Yield 11e ~10 \%, oil. ${ }^{1}$ H NMR: $\delta 8.45$ (s, 1H), 7.33-7.39 (m, 3H), 7.30-7.32 (m, 2H), 7.08-7.19 (m, 3H), 6.94 (br s, 1H), 6.85-6.88 (m, 1H), 2.27 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 154.3,148.6,141.2$, 138.5, 135.6, 135.0, 129.7, 129.5, 129.2, 128.9, 128.7, 128.6, 127.3, 125.9, 27.3.

5-[1-Ethyl-3-(4-phenyl-1,2,3-thiadiazol-5-yl)pentyl]-4-phenyl-1,2,3-thiadiazoles (12a,b).

$\mathrm{NaH}(0.72 \mathrm{~g}, 30 \mathrm{mmol}, 60 \%$ suspension in oil) was added to 4-phenyl-5-propyl-1,2,3thiadiazole ($2 \mathrm{~g}, 9.8 \mathrm{mmol}$) in DMF (15 mL). The reaction mixture was heated for 10 min at $100^{\circ} \mathrm{C}$. EtOAc (30 mL) was added, the mixture was washed with water, organic layer was dried over MgSO_{4}, the solvent was evaporated and crude product was purified by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$: Hexanes $1: 1$). Yield $22 \%(0.45 \mathrm{~g})$, (mixture of d,l- and meso-forms in ratio $\sim 1: 5$). ${ }^{1} \mathrm{H}$ NMR: $\delta 7.45-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 6 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 0.7 \mathrm{H}), 3.11-3.02$ (m, 2H), 2.14-1.97 (m, 1.8H), 1.77-1.34 (m, 0.7H), 0.80 (t, $J=7.4 \mathrm{~Hz}, 2.3 \mathrm{H}), 0.66$ (t, J = 7.2 $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 129.0,128.9,128.8,128.8,128.7,128.6,48.8,45.8,36.6,36.5,31.9,31.3$, 11.7, 11.3 (mixture of d,l- and meso-forms). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}_{2}: \mathrm{C}, 65.68, \mathrm{H}, 5.75, \mathrm{~N}$, 13.32. Found: C, 65.41; H, 5.85; N, 13.18.

Heating the reaction mixture for 20 min at $100-110^{\circ} \mathrm{C}$ gave a mixture of three compounds -12 a , 12b, 13b, which were separated by double column purification.
5-[1-Ethyl-3-(4-biphenylyl-1,2,3-thiadiazol-5-yl)pentyl]-4-(4-biphenylyl-1,2,3-thiadiazole
(12c). $\mathrm{NaH}(0.4 \mathrm{~g}, 16.7 \mathrm{mmol}, 80$ \% suspension in oil) was added to 4-bi-phenyl-5-ethyl-1,2,3thiadiazole ($2 \mathrm{~g}, 7.5 \mathrm{mmol}$) in DMF (10 mL). The reaction mixture was heated for 5 min at $100^{\circ} \mathrm{C}$. EtOAc (30 mL) was added, the mixture was washed with water, the organic layer was dried over MgSO_{4}, evaporated and purified by column chromatography ($\mathrm{Et}_{2} \mathrm{O}:$ Hex 1:1). Yield $25 \%(0.5 \mathrm{~g})$, mp $120{ }^{\circ} \mathrm{C}$ (decomp.) (mixture of $d, l-$ and meso-form in ratio $\sim 1: 1.5$). ${ }^{1} \mathrm{H}$ NMR: δ 7.72-7.62 (m, ArH), 3.48 (q, $J=6,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 2.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.90 (t, $J=7.3 \mathrm{~Hz}, 1.5 \mathrm{H}$), 1.35 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 158.7, 158.4, 158.0, 142.0, 141.9, 140.1, 129.8, 129.7, 129.3, 129.1, 128.9, 127.8, 127.7, 127.5, 127.2, 127.1, 50.9, 50.1, 30.3, 29.9, 24.2, 23.7. Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 72.76; H 5.18; N, 10.28. Found: C, 71.74; H, 5.06; N, 10.27.
5-[1-Methyl-3-(4-propyl-1,2,3-thiadiazol-5-yl)butyl]-4-propyl-1,2,3-thiadiazole (12d). NaH ($0.53 \mathrm{~g}, 17.6 \mathrm{mmol}, 80$ \% suspension in oil) was added to 4-propyl-5-ethyl-1,2,3-thiadiazole $(1.38 \mathrm{~g}, 8.8 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. The reaction mixture was stirred at rt for 12 h and then was heated for a short time at $100{ }^{\circ} \mathrm{C}$. EtOAc (30 mL) was added, the mixture was washed with water, organic layer was dried over MgSO_{4}, evaporated and purified by column chromatography ($\mathrm{Et}_{2} \mathrm{O}$: Hexanes $1: 1$). Yield $21 \%(0.3 \mathrm{~g})$, oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 3.18-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.68(\mathrm{~m}$, 3H), 2.51-2.40 (m, 1H), 2.08-1.68 (m, 6H), $1.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 159.6,159.4,156.8,156.5,49.9,49.8,30.0,29.7,28.9$, 28.7, 24.3, 23.8, 23.2, 22.9, 13.8, 13.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 55.52; H 7.45; N, 17.27. Found: C, 56,21; H, 7.55; N, 16.81.

1,4-Dimethyl-3,6-bis[(E)-phenylmethylidene]-2,5-dithiabicyclo[2.2.1]heptane (13a). NaH ($0.4 \mathrm{~g}, 16.7 \mathrm{mmol}, 80$ \% suspension in oil) was added to 4-phenyl-5-ethyl-1,2,3-thiadiazole $(1.5 \mathrm{~g}, 7.9 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. The reaction mixture was heated for 15 min at $100{ }^{\circ} \mathrm{C}$. The completion of the reaction was monitored by TLC. EtOAc (30 mL) was added, the mixture was washed with water, the organic layer was dried over MgSO_{4}, evaporated and purified by column chromatography (EtOAc : Hexanes $1: 10$). Yield 20%, mp $114{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR: $\delta 7.40-7.25$ (m, 8H), 7.16 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.46(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 147.7, 136.7, 128.3, 128.0, 126.4, 113.7, 64.2, 60.9, 18.8. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~S}: \mathrm{C}, 74.95, \mathrm{H}, 5.99$. Found: C, 73.76, H, 6.29.
Crystal data for 13a: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~S}_{2}$, FW 336.49, monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}, a=10.664$ (3), $b=$ 8.703(2), $c=19.273(5) \AA, \beta=100.589(4)^{\circ}, V=1758.2(8) \AA^{3}, \mathrm{~F}(000)=712, \mathrm{Z}=4, \mathrm{~T}=-105{ }^{\circ} \mathrm{C}$, $\mu(\mathrm{MoK} \alpha)=0.300 \mathrm{~mm}^{-1}, \mathrm{D}_{\text {calcd }}=1.271 \mathrm{~g} . \mathrm{cm}^{-3}$, crystal size $0.52 \times 0.47 \times 0.26 \mathrm{~mm}, 2 \theta_{\max } 53^{\circ}$ (CCD area detector, $\mathrm{MoK} \alpha$ radiation, 98.9% completeness), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0832$ (all 3583 data), R $=0.0303$ (3053 data with $\mathrm{I}>2 \sigma \mathrm{I}$).
1,4-Diethyl-3,6-bis[(E)-phenylmethylidene]-2,5-dithiabicyclo[2.2.1]heptane (13b). The procedure is similar to 13a, oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H})$, 7.13 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.15(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 146.5,136.9,128.3,128.0,126.2,113.9,68.8,53.4,24.8,10.6$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~S}_{2}$: C, 76.48; H, 7.16. Found: C, 76.57; H, 6.73.
\mathbf{N}, \mathbf{N}-Dimethyl-2-phenylethanethioamide (14a). A mixture of 2c ($0.5 \mathrm{~g}, 2.6 \mathrm{mmol}$) and sodium hydride ($0.22 \mathrm{~g}, 9.2 \mathrm{mmol}, 60 \%$ suspension in mineral oil) in dry DMF (7 mL) was stirred at rt for 48 h . EtOAc (20 ml) was added and the reaction mixture was washed with water ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was evaporated and the residue was purified twice by column chromatography (EtOAc: Hexanes $1: 1$). Yield $47 \%\left(0.18\right.$ g), oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.5,129.1$, 129.0, 128.9, 128.8, 128.0, 126.9, 50.9, 44.8, 42.2. GCMS Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NS}: 179$. Found: 179.

2-(4-Biphenylyl)- N, N-dimethylethanethioamide (14b). The procedure is similar to 14a. The reaction mixture was heated for 20 min . Starting material (~ 30 \%) and 14b (32 \%), yellow crystals, mp $114{ }^{\circ} \mathrm{C}$, were isolated. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.58-7.33(\mathrm{~m}, 9 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, 3.24 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 200.5,140.6,139.8,134.7,129.0,128.7,128.5,127.4,127.2,126.9$, 50.5, 44.8, 42.3. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NS}$: C, 75.25, H, 6.71, N, 5.48. Found: C, 74.27, H, 6.62, N, 5.47.
(3,4,6-Triphenyl-3,4-dihydro-2H-thiopyran-2-ylidene)-methanethiol (15). Sodium hydride ($0.18 \mathrm{~g}, 7.6 \mathrm{mmol}, 60 \%$ suspension in mineral oil) was added to 4-benzyl-5-phenyl-1,2,3thiadiazole ($1.5 \mathrm{~g}, 4.1 \mathrm{mmol}$) in DMF (25 mL). The reaction mixture was heated for 2 min at $100^{\circ} \mathrm{C}$ and stirred overnight. EtOAc (20 ml) was added and the reaction mixture was washed with water ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, the solvent was evaporated and the residue was twice purified by column chromatography (EtOAc: Hexanes $1: 10$). Yield $22 \%(0.3 \mathrm{~g})$, white crystals, mp $130-131^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.58(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (dd, $J=$
1.2, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.02-7.38(\mathrm{~m}, 18 \mathrm{H}), 6.38$ (br s, 1H), 6.34 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (dd, $J=4.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 142.9,142.0,140.1,138.7,134.6,129.1,128.5,128.4$, 128.4, 128.3, 128.2, 128.0, 127.7, 127.0, 126.9, 126.7, 125.3, 118.8, 47.5, 46.6. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~S}_{2}$: C, 80.31; H, 5.39. Found: C, 79.69; H, 5.79.
Crystal data for 15: $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~S}_{2}$, FW 448.61, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$, $a=12.143(5)$, $b=$ $7.212(3), c=27.039(11) \AA, \beta=99.440(7)^{\circ}, \mathrm{V}=2336(2) \AA^{3}, \mathrm{~F}(000)=944, \mathrm{Z}=4, \mathrm{~T}=-105^{\circ} \mathrm{C}, \mu$ $(\mathrm{MoK} \alpha)=0.244 \mathrm{~mm}^{-1}, \mathrm{D}_{\text {calcd }}=1.276 \mathrm{~g} . \mathrm{cm}^{-3}$, crystal size $0.43 \times 0.16 \times 0.15 \mathrm{~mm}, 2 \theta_{\max } 50^{\circ}$ (CCD area detector, $\mathrm{MoK} \alpha$ radiation, 99.9% completeness), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0889$ (all 4122 data), $\mathrm{R}=$ 0.0370 (3037 data with $\mathrm{I}>2 \sigma \mathrm{I}$).

Supporting Information available online.

Acknowledgments

We thank Prof. Valeri I. Kovalenko, A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia, who kindly obtained the UV and IR spectra.

References

1. Thomas, E. W. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W., Eds; Elsevier: Oxford, 1996; Vol. 4, p 447.
2. (a) Thomas, E. W. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W., Eds.; Elsevier: Oxford, 1996; Vol. 4, p 289. (b) Bakulev, V. A.; Mokrushin, V. S. Khim. Geterotsiklich. Soedin. 1986, 811 and refs. therein.
3. Tanaka, R.; Shinkai I. Prog. Heterocycl. Chem. 1992, 4, 128.
4. Katritzky, A. R.; Tymoshenko, D. O.; Nikonov, G. N. J. Org. Chem. 2001, 66, 4045.
5. Katritzky, A. R.; Nikonov, G. N.; Tymoshenko, D. O.; Steel, P. J. Heterocycles 2002, 58, 311.
6. Meier, H.; Zimmer, O. J. Heterocycl. Chem. 1980, 17, 1639.
7. Raap, R. Can. J. Chem. 1968, 46, 2251.
8. (a) Shafiee, A.; Lalezari, I. J. Heterocycl. Chem. 1973, 11. (b) Thomas, E. W.; Zimmermann, D. C. Synthesis 1985, 945. (c) Andreu, R.; Garin, J.; Orduna, J.; Royo, J. M. Tetrahedron Lett. 2001, 42, 875.
9. (a) Kolonko, K. J.; Shapiro, R. H. J. Org. Chem. 1978, 43, 1404. (b) Celebi, S.; Leyva, S.; Modarelly, D. A.; Platz, M. S. J. Am. Chem. Soc. 1993, 115, 8613. (c) Cacchi S., La Torre F., Misiti D. Synthesis 1977, 301.
10. Fujita, M.; Kobori, T.; Hiyama, T.; Kondo, K. Heterocycles 1993, 36, 33.
11. Katritzky, A. R.; Nikonov, G. N.; Tymoshenko, D. O.; Moyano, E. L.; Steel, P. J. Heterocycles 2002, 57, 483.
