New bis-oxalamides from *trans*-1,2-diaminocyclohexane

Erick Francisco Montero-Vázquez,^a Francisco J. Martínez-Martínez,^a Itzia I. Padilla-Martínez,^b M. Antonia Carvajal-García,^a and Julio Hernández-Díaz^a*

 ^aFacultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Coquimatlán, Colima, México 28400
 ^bDepartamento de Química, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto s/n, Barrio La Laguna Ticomán, CP 07340, México D.F. E-mail: julhed@ucol.mx

Dedicated to Professor Rosalinda Contreras on the occasion of her 60th anniversary

Abstract

The synthesis of six new bis-oxalamides **2-7** derived from *trans*-1,2-diaminocyclohexane and aliphatic amines is reported. These compounds were characterized by IR, MS and ¹H and ¹³C NMR spectroscopy.

Keywords: Bis-oxalamate, bis-oxalamide, macrocycle, ¹H and ¹³C NMR spectroscopy

Introduction

Oxalamides are molecules that possess in their structure acidic protons and O-lone pairs which form inter- and intramolecular hydrogen bonds. Experimental and theoretical studies have demonstrated that intramolecular hydrogen bonds in oxalamides determine their geometry and conformation whereas intermolecular hydrogen bonds increase their stability.¹⁻³ Due to these interactions, oxalamides are applied in diverse areas such as artificial receptors for biological recognition,⁴ in engineering and crystal design⁵ and in organogels formation.⁶ Recently, oxalamide derivatives were identified as HIV-1 inhibitors.⁷ Another important application of these compounds is in coordination chemistry as ligands.⁸

In this paper we report the synthesis and structural characterization by IR, MS and ¹H and ¹³C NMR of six new oxalamides **2-7** derived from *trans*-1,2-diaminocyclohexane (Scheme 1).

Scheme 1

Results and Discussion

Synthesis

Synthesis of bis-oxalamides 2-7 started with the preparation of the oxalamate 1 from condensation reaction of *trans*-1,2-diaminocyclohexane and ethyl chlorooxoacetate in the presence of Et₃N as catalyst, according to a procedure reported in the literature.⁹ Oxalamate 1 was first prepared by Albano and co-workers from enantiopure (*R*,*R*)- and (*S*,*S*)-*trans*-1,2-diaminocyclohexane.¹⁰ Spectroscopic data for oxalamate 1 determined in this study are similar to those reported by Albano, however we observed a melting point of 180-182°C which is 15 °C higher than that reported. Condensation reaction of 1 and two equivalents of the corresponding alkylamines gave oxalamides 2-6. Under the same conditions 1 and *trans*-1,4-diaminocyclohexane produced the macrocycle 7. Formation of 7 requires an excess of the diamine, no product formation was observed when the reaction was performed in an equimolar ratio. Macrocycles containing the oxalyl moiety are already known.¹¹⁻¹³ Compounds 2-7 were analyzed in solution by ¹H and ¹³C NMR spectroscopy using [²H]TFA as solvent, because they were isolated as very insoluble solids.

Infrared spectra

The IR spectrum of **1** shows characteristic absorption bands at 3248 (vN-H), 1745 (vO=C ester) and 1665 cm⁻¹ (vO=C amide), in agreement with reported values¹⁰. For compounds **2-7** the IR spectra show one absorption band in the region of 3282-3276 cm⁻¹ for the vN-H and only one strong band with an average value of 1644 cm⁻¹ for vO=C due to a similar connectivity in the oxalyl moiety. IR absorptions of **2-7** show a high frequency shift for vN-H and a low frequency

shift for vC=O with respect to 1, this behavior indicates that the electronic density of nitrogen is more engaged with carbonyl group in 2-7 than in 1. These values agree with reported data for similar compounds.^{9,10,14}

Mass spectra

The analysis by mass spectrometry of compounds 4 and 5 showed the molecular ion, whereas 2, 3 and 6 showed the $[M+1]^+$ peak. Additionally 2 and 3 present the $[M-OH]^+$ characteristic peak for a hydroxyl group. The molecular ion for compound 7 was not observed.

NMR analysis

The ¹H and ¹³C NMR chemical shifts of compounds **1-7** are listed in Tables 1 and 2 respectively. The ¹H and ¹³C NMR data determined for oxalamate **1** in this study are similar to those reported by Albano and co-workers.¹⁰ Intramolecular hydrogen bonding between N-H acidic protons and carbonyl oxygen atoms is known to favor the planar conformation and *trans* configuration of the oxalyl moiety.¹ Because 2-7 were only soluble in [²H]TFA, which is a solvent that favors deuterium interchange, it was not possible to observe N-H chemical shifts and to conclude about hydrogen bonding in solution. The ¹H and ¹³C NMR spectra of compounds **2-6** showed one half of the total expected signals because of the C_2 symmetry axis. H1 was observed as a broad signal between 3.91 - 4.00 ppm and it is in the expected range.⁹ H3 and H4 appeared as broad signals. The rigid conformation of 1,2-diaminocyclohexane ring for 1-6 in solution, allowed to distinguish equatorial H3 and H4 from axial H3 and H4 at room temperature. We were able to observe that the pendant arm of oxalamate 1 displayed a triplet for methyl protons and a highly symmetric 14 lines multiplet for the methylene protons, in contrast to the quartet triplet multiplicity reported by Albano and co-workers¹⁰ and for the analog oxalamate derived from trans-1,4-diaminocyclohexane.⁹ In our case, the multiplicity of methylene protons indicates that they have a different chemical environment, probably as a result of slow or no rotation of the pendant arm. The same behavior was observed for compound 2 and is equally expected for 3-6 because they gave broad signals. On the other hand, ¹³C chemical shifts for 2-6 are in the characteristic range for this kind of compounds.^{9,10,15}

A macrocyclic structure was proposed for compound 7 because its ¹³C NMR spectrum showed only seven signals, instead of the nine expected if only one NH₂ of *trans*-1,4-diaminecyclohexane had reacted to give an open structure like that showed by **2-6**. In the ¹H spectrum, compound 7 displayed only six broad signals, which fully correlated with ¹³C NMR signals in the HETCOR spectrum. ¹H and ¹³C NMR chemical shifts of 7 are similar to those determined for **2-6**.

In future work, we will use the bis-oxalamides reported here as ligands in coordination chemistry.

Compd.	H1,H2	H3,H6	H3,H6	H4,H5	H4,H5	R
		(eq)	(ax)	(eq)	(ax)	
1	3.81, <i>m</i>	2.08, <i>m</i>	1.37, <i>m</i>	1.82, <i>m</i>	1.37, <i>m</i>	7.39, <i>d</i> , ³ <i>J</i> 6.14, NH; 4.33, <i>m</i> , H11;
						1.37, <i>dd</i> , ³ <i>J</i> 7.09, ³ <i>J</i> 7.32, H12
2	3.91, <i>m</i>	2.07, <i>m</i>	1.58, <i>m</i>	1.90, <i>m</i>	1.43, <i>m</i>	3.61, <i>m</i> , H11; 3.97, <i>t</i> , ³ <i>J</i> 4.99, H12
3	3.96, <i>m</i>	2.09, <i>m</i>	1.55, <i>m</i>	1.89, <i>m</i>	1.43, <i>m</i>	3.73, <i>m</i> , H11; 3.58, <i>m</i> , H12; 3.50, <i>m</i> , H14;
						4.17, <i>m</i> , H15
4	3.90 -	2.10, <i>m</i>	1.57, <i>m</i>	1.91, <i>m</i>	1.45, <i>m</i>	3.85, <i>t</i> , ³ <i>J</i> 11.98, H11; 3.40, <i>dd</i> , ³ <i>J</i> 11.68, ³ <i>J</i>
	4.00, <i>m</i>					10.51, H12; 3.62, <i>m</i> , H14 _{ax} ; 4.02, <i>m</i> , H14 _{eq} ;
						4.09, dm, ² J 12.86, H15 _{ax} ; 4.36, dm, ² J 12.86,
						H15 _{eq}
5	3.92, <i>m</i>	2.06, <i>m</i>	1.65, <i>m</i>	1.88, <i>m</i>	1.36, <i>m</i>	3.71, <i>m</i> , H11; 1.88, <i>m</i> , H12 _{eq} , H13 _{eq} ;
						$1.36, m, H12_{ax}, H13_{ax}, H14_{ax}; 1.65, m, H14_{eq}$
6	3.97, m	2.26, <i>m</i>	1.61, <i>m</i>	2.05, <i>m</i>	1.42, <i>m</i>	3.97, <i>m</i> , H11; 3.47, <i>m</i> , H12; 2.10, <i>m</i> , H13 _{eq} ,
						H16 _{eq} ; 1.42, <i>m</i> , H13 _{ax} , H16 _{ax} ; 2.05, <i>m</i> , H14 _{eq} ,
						H15 _{eq} ; 1.42, <i>m</i> , H14 _{ax} , H15 _{ax}
7	3.96, <i>m</i>	2.08, <i>m</i>	1.57, <i>m</i>	1.90, <i>m</i>	1.43, <i>m</i>	3.80, <i>m</i> , H11; 2.08, <i>m</i> , H12 _{eq} ; 1.57, <i>m</i> , H12 _{ax}

 Table 1. ¹H NMR chemical shifts of compounds 1 (CDCl₃) and 2-7 in [²H]TFA

Table 2. ^{13}C NMR chemical shifts and peak multiplicities of compounds 1 (CDCl₃) and 2-7 in $[^{2}H]TFA$

Compd.	C1, C2	C3, C6	C4, C5	C8	С9	R
1	53.9, d	32.1, <i>t</i>	24.6, <i>t</i>	157.2, <i>s</i>	160.4, <i>s</i>	63.5, <i>t</i> , C11; 14.2, <i>q</i> , C12
2	55.5, d	31.9, <i>t</i>	24.8, <i>t</i>	160.8, <i>s</i>	161.5, <i>s</i>	43.0, <i>t</i> , C11; 61.7, <i>t</i> , C12
3	55.8, d	32.2, <i>t</i>	24.9, <i>t</i>	160.9, <i>s</i>	162.7, <i>s</i>	38.2, <i>t</i> , C11; 49.3, <i>t</i> , C12; 51.5, <i>t</i> , C14; 58.8,
						<i>t</i> , C15
4	55.5, d	32.1, <i>t</i>	24.6, <i>t</i>	160.6, <i>s</i>	n.o. ^a	35.6, <i>t</i> , C11; 58.2, <i>t</i> , C12; 54.1, <i>t</i> , C14; 65.1,
						<i>t</i> , C15
5	55.7, d	31.9, <i>t</i>	24.8, <i>t</i>	159.9, <i>s</i>	161.5, <i>s</i>	52.0, <i>d</i> , C11; 32.9, <i>t</i> , C12; 25.3, <i>t</i> , C13;
						25.7, <i>t</i> , C14
6	54.7, <i>d</i>	29.6, <i>t</i>	23.0, <i>t</i>	159.6, <i>s</i>	160.8, <i>s</i>	52.7, d, C11; 56.2, d, C12; 30.9, t, C13;
						23.5, <i>t</i> , C14; 23.5, <i>t</i> , C15; 30.9, <i>t</i> , C16
7	55.2, d	31.6, <i>t</i>	24.3, <i>t</i>	159.9, <i>s</i>	160.9, <i>s</i>	50.0, <i>d</i> , C11; 30.5, <i>t</i> , C12

^a not observed.

Experimental Section

General Procedures. Melting points were determined on a Melt Temp II apparatus in an open capillary tube and were not corrected. IR spectra were recorded in a Varian 3100 FT-IR Excalibur Series spectrometer equipped with an ATR device in the range of 400-4000 cm⁻¹. ¹H and ¹³C NMR spectra were recorded in a Varian Mercury 300 (¹H, 300.08; ¹³C, 75.46 MHz) spectrometer in CDCl₃ and [²H]TFA solution following standard techniques, chemical shifts are given in ppm and referred to SiMe₄ as internal reference. Assignments of ¹H and ¹³C signals were made on the basis of HETCOR experiments and by comparison to the reported values for similar compounds when possible. ¹³C peak multiplicities were determined by APT experiments. The mass spectra were recorded on a Hewlett-Packard HP 5989A, EI MS, 70 eV. Elemental analyses were carried out in a Flash 1112 Thermo Finnigan analyzer.

Materials. Triethylamine (TEA), tetrahydrofuran (THF), *trans*-1,2-diaminocyclohexane, *trans*-1,4-diaminocyclohexane, ethyl chlorooxoacetate, ethanolamine, cyclohexylamine, 2-(2-aminoethylamino)ethanol and 4-(2-aminoethyl)morpholine, were purchased from commercial suppliers and used as received.

Diethyl *N,N'*-cyclohexane-1,2-diyldioxalamate (1). *trans*-1,2-Diaminocyclohexane (1.05 ml, 1 g, 8.75 mmol) and TEA (2.44 ml, 1.77 g, 17.51 mmol) in THF (40 ml) were treated dropwise under vigorous stirring with ethyl chlorooxoacetate (1.94 ml, 2.39 g, 17.51 mmol) at 0 °C. The reaction mixture was additionally stirred for 4 h at 25 °C. The suspension was filtered and the solid was washed with water. THF solution was evaporated to dryness, washed with water, mixed with the previously obtained solid and dried to give 1 (1.845 g, 67 %) as a white solid. m.p. 180-182 °C (literature 157-165 °C¹⁰). IR v_{max} (cm⁻¹) (s, strong; m, medium; w, weak; br, broad): 3248 (N-H, m); 2937, 2867 (C-H, w); 1745, 1665 (C=O, s); 1197 (O=C-O, s); 1525 (δ N-H, s). MS, m/e (%): [M+1]⁺ 315.15 (8), M⁺ 314.15 (3), 241.20 (84), 197.20 (87), 167.05 (100), 124.05 (45), 81.15 (43).

General synthesis of compounds 2-7

Compounds 3-7 were synthesized according to the procedure described for 2.

N-(2-Hydroxy-ethyl)-*N'*-{2-[(2-hydroxy-ethylaminooxalyl)-amino]-cyclohexyl}-oxalamide

(2). 1 (1 g, 3.18 mmol) and TEA (0.88 ml, 0.644 g, 6.36 mmol) in THF (20 ml) were treated dropwise under vigorous stirring with ethanolamine (0.38 ml, 0.38 g, 6.36 mmol) at 25 °C. After refluxing for 5 h, the solid was filtered and washed with hot THF (5 ml) to give 2 (0.8286 g, 75 %) as a white solid. m.p. 286-287 °C. Anal. Calcd. for $C_{14}H_{24}N_4O_6$: C, 48.83; H, 7.02; N, 16.27. Found: C, 48.59; H, 7.22; N, 15.99; IR v_{max} (cm⁻¹): 3280 (N-H, m); 3200-3000 (O-H, br); 2931, 2859 (C-H, w); 1643 (C=O, s); 1513 (δ N-H, s). MS, m/e (%): [M+1]⁺ 345.30 (8), [M-OH]⁺ 327.30 (4), 314.20 (72), 256.20 (86), 238.20 (100), 212.15 (81), 184.20 (72), 167.15 (27), 141.20 (45), 97.20 (44), 81.15 (38).

N-[2-(2-Hydroxy-ethylamino)-ethyl]-*N*'-(2-{[2-(3-hydroxy-propylamino)-ethylaminooxalyl]amino}-cyclohexyl)-oxalamide (3). 1 (1 g, 3.18 mmol), TEA (0.88 ml, 0.644 g, 6.36 mmol) and 2-(2-aminoethylamino)ethanol (0.64 ml, 0.66 g, 6.36 mmol) were refluxed for 3 h. Product **3** (1.36 g, quantitative) was isolated as a white solid. m.p. 209-210 °C. Anal. Calcd. for $C_{18}H_{34}N_6O_6 \cdot 0.5H_2O$: C, 49.19; H, 8.03; N, 19.12. Found: C, 49.38; H, 8.26; N, 19.13; IR v_{max} (cm⁻¹): 3276 (N-H, m); 3200-3000 (O-H, br); 2928, 2832 (C-H, w); 1644 (C=O, s); 1512 (δ N-H, s). MS, m/e (%): [M+1]⁺ 431.35 (3), [M-OH]⁺ 413.30 (2), 399.30 (10), 381.30 (22), 326.25 (54), 199.20 (39), 142.15 (26), 97.15 (29), 74.15 (100).

N-(2-Morpholin-4-yl-ethyl)-*N'*-{2-[(2-morpholin-4-yl-ethylaminooxalyl)-amino]-cyclohexyl} -oxalamide (4). 1 (1 g, 3.18 mmol), TEA (0.88 ml, 0.644 g, 6.36 mmol) and 4-(2aminoethyl)morpholine (0.82 ml, 0.82 g, 6.36 mmol) were refluxed for 7 h. Product 4 (0.99 g, 65%) was isolated as a white solid. m.p. 260-262 °C. Anal. Calcd. for C₂₂H₃₈N₆O₆: C, 54.76; H, 7.94; N, 17.41. Found: C, 54.74; H, 8.15; N, 17.31; IR v_{max} (cm⁻¹): 3282 (N-H, m); 2939, 2859 (C-H, w); 1644 (C=O, s); 1117 (C-O-C, m); 1514 (δ N-H, s). MS, m/e (%): M⁺ 482.45 (6), 452.40 (6), 157.05 (3), 100.05 (100).

N-Cyclohexyl-*N'*-[2-(cyclohexylaminooxalyl-amino)-cyclohexyl]-oxalamide (5). 1 (1 g, 3.18 mmol), TEA (0.88 ml, 0.644 g, 6.36 mmol) and cyclohexylamine (0.72 ml, 0.63 g, 6.36 mmol) were refluxed for 7 h. Product 5 (1.24 g, 93 %) was isolated as a white solid. m.p. 297-301 °C. Anal. Calcd. for $C_{22}H_{36}N_4O_4$ ·0.5H₂O: C, 61.51; H, 8.68; N, 13.04. Found: C, 61.89; H, 8.94; N, 12.97; IR v_{max} (cm⁻¹): 3287 (N-H, m); 2932, 2856 (C-H, m); 1645 (C=O, s); 1513 (δ N-H, s). MS, m/e (%): M⁺ 420.35 (3), 339.25 (14), 294.15 (94), 250.20 (73), 222.20 (36), 167.15 (67), 141.15 (25), 97.15 (100), 81.15 (19).

N-(2-Amino-cyclohexyl)-*N'*-{2-[(2-amino-cyclohexylaminooxalyl)-amino]-cyclohexyl}oxalamide (6). 1 (1 g, 3.18 mmol), TEA (0.88 ml, 0.644 g, 6.36 mmol) and *trans*-1,2diaminocyclohexane (0.76 ml, 0.72 g, 6.36 mmol) were refluxed for 7 h. Product 6 (1.30 g, quantitative) was isolated as a white solid. m.p. above 340 °C. Anal. Calcd. for $C_{22}H_{38}N_6O_4$ ·1.7H₂O: C, 54.91; H, 8.60; N, 17.46. Found: C, 55.19; H, 8.53; N, 17.05; IR v_{max} (cm⁻¹): 3275 (N-H, m); 2925, 2855 (C-H, w); 1643 (C=O, s); 1506 (δ N-H, s). MS, m/e (%): [M+1]⁺ 451.45 (2), 354.30 (89), 186.25 (10), 97.15 (100), 71.15 (25), 42.15 (54).

2,5,10,13,20,23,28,31-Octaazapentacyclo[30.4.0.0^{14,19}.2^{6,9}.2^{24,27}]tetracontane-3,4,11,12,21,22, **29,30-octaone (7). 1** (1 g, 3.18 mmol), TEA (0.88 ml, 0.644 g, 6.36 mmol) and *trans*-1,4diaminocyclohexane (0.72 g, 6.36 mmol) were refluxed for 2 h. Product 7 (1.05 g, quantitative) was isolated as a white solid. m.p. above 340 °C. Anal. Calcd. for $C_{32}H_{48}N_8O_8 \cdot 3.5H_2O$: C, 52.23; H, 7.53; N, 15.23. Found: C, 52.40; H, 7.90; N, 15.15; IR v_{max} (cm⁻¹): 3278 (N-H, m); 2931, 2859 (C-H, w); 1644 (C=O, s); 1502 (δ N-H, s). MS, m/e (%): 168.15 (10), 141.15 (18), 113.05 (14), 97.05 (55), 82.15 (13), 71.15 (20), 58.15 (100), 43.15 (53).

Acknowledgements

This work was supported by PROMEP-México and Fondo Ramón Álvarez-Buylla de Aldana 368/05, Universidad de Colima. E. F. M.-V. thanks Conacyt-México for a scholarship.

References

- Martínez-Martínez, F. J.; Padilla-Martínez, I. I.; Brito, M. A.; Geniz, E. D.; Rojas, R. C.; Saavedra, J. B. R.; Höpfl, H.; Tlahuextl, M.; Contreras, R. J. Chem. Soc., Perkin Trans 2 1998, 401.
- 2. Aleman, C.; Casanovas, J. J. Mol. Struct. 2004, 675, 9.
- 3. Desseyn, H. O.; Perlepes, S. P.; Clou, K.; Blaton, N.; Van der Veken, B. J.; Dommisse, R.; Hansen, P. E. J. Phys. Chem. 2004, 108, 5175.
- 4. Nowick, J. S.; Tsai, J. H.; Bui, Q.-C.; Maitra, S. J. Am. Chem. Soc. 1999, 121, 8409.
- (a) Liu, Y.; Lam, A. H. W.; Fowler, F. W.; Lauher, J. W. *Mol. Cryst. Liq. Cryst.* 2002, *389*, 39. (b) Curtis, S. M.; Le, N.; Fowler, F. W.; Lauher, J. W. *Cryst. Growth Des.* 2005, *5*, 2313. (c) Nguyen T. L.; Scott A.; Dinkelmeyer, B.; Fowler, F.; Lauher J. W. *New J. Chem.* 1998, 129.
- (a) Makarevic, J.; Jokic, M.; Raza, Z.; Caplar, V.; Katalenic, Z. S.; Kojic-Prodic, B.; Zinic, M. *Croat. Chem. Acta.* 2004, 77, 403. (b) Frkanec, L.; Jokic, M.; Makarevic, J.; Wolsperger, K.; Zinic, M. *J. Am. Chem. Soc.* 2002, *124*, 9716.
- 7. McFarland, C.; Vivic, D. A.; Debnath, A. V. Synthesis 2006, 5, 807.
- (a) Costa, L. C. M.; Maia, J. R. S.; De Lima, G. M.; Ardisson, J. D. *Main Group Met. Chem.* 2004, 27, 247. (b) Liu, Z.-L.; Li, L.-C.; Liao, D.-Z.; Jiang, Z.-H.; Yan, S.-P. *Cryst. Growth Des.* 2005, 5, 783.
- 9. Martínez-Martínez, F. J.; Maya-Lugardo, P.; García-Báez, E. V.; Höpfl, H.; Hernández-Díaz, J.; Padilla-Martínez, I. I. *Acta Cryst.* **2005**, *E 61*, o2994.
- 10. Albano, V. G.; Bandini, M.; Monari, M.; Marcucci, E.; Piccinelli, F.; Umani-Ronchi, A. J. Org. Chem. 2006, 71, 6451.
- 11. Gao, E.-Q.; Liao, D.-Z.; Jiang, Z.-H.; Yan, S.-P. Polyhedron 2001, 20, 923.
- 12. Nishat, N.; Haq, M. M.; Siddiqi, K. S. Synth. React. Inorg. Met.-Org. Chem. 2001, 31, 1599.
- 13. Hechavarria-Fonseca, M.; Hjelmgaard, T; König, B. Molecules 2003, 8, 453.
- Padilla-Martínez, I. I.; Martínez-Martínez, F. J.; Guillén-Hernández, C. I.; Chaparro-Huerta, M; Cabrera-Pérez, L. C.; Gómez-Castro, C. Z.; López-Romero, B. A.; García-Báez, E. V. *ARKIVOC* 2005, (vi), 401.
- 15. Low, J. N.; Milne, B. F.; Ross, J. N.; Wardell, J. L. J. Braz. Chem. Soc. 2002, 13, 207.