Manganese(III) Acetate Mediated Free Radical Cyclization of 1,3 -Dicarbonyl Compounds with Sterically Hindered Olefins

Mehmet YILMAZ*, Emre BİÇER and A. Tarık PEKEL
Ankara University, Science Faculty, Department of Chemistry, 06100 Tandoğan, Ankara-TURKEY
e-mail: meyilmaz@science.ankara.edu.tr

Received 08.04.2005

Abstract

The manganese(III) acetate mediated radical cyclization of dimedone $\mathbf{1 a}, 2,4$-pentanedione $\mathbf{1 b}$, ethyl acetoacetate $\mathbf{1 c}, 1,3$-cyclohexanedione $\mathbf{1 d}$ and 5 -phenyl-1,3-cyclohexanedione $\mathbf{1 e}$ with 1,1 -diphenyl-1-butene $\mathbf{2 a}$ afforded 4,5 -dihydrofurans ($\mathbf{3 c}, \mathbf{3 e}$) and tetrahydrobenzofurans ($\mathbf{3 a}, \mathbf{3 g}, \mathbf{3 h}$) in good yields ($55 \%-77 \%$). Additionally, the reactions of trifluoromethyl-group containing 1,3-dicarbonyls, 4,4,4-trifluoro-1-phenylbutane-1,3-dione $\mathbf{1 f}$ and $4,4,4$-trifluoro-1-thien-2ylbutane-1,3-dione $\mathbf{1 g}$ with $\mathbf{2 a}$ 3 -trifluoroacetyl-4,5-dihydrofurans gave in 74% and 78% yields, respectively. Treatment of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ with 1,2 -diphenyl-1-pentene $\mathbf{2 a}$ resulted in the formation of tetrahydrobenzofuran $\mathbf{3 b}$ and 4,5dihydrofurans $\mathbf{3 d}$ and $\mathbf{3 f}$ in lower yields.

Key Words: Manganese(III) acetate, free radical cyclization, 1,3-dicarbonyl, 4,5-dihydrofuran, tetrahydrobenzofuran, trifluoroacetyl, oxidative addition.

Introduction

In the past 2 decades, attention has been paid to the synthetic opportunities offered by high-valent transition metal salts $\left(\mathrm{Mn}^{3+}, \mathrm{Ce}^{4+}, \mathrm{Co}^{3+}, \mathrm{Ag}^{+}\right.$etc. $)$oxidation of 1,3 -dicarbonyl compounds in the presence of unsaturated systems ${ }^{1-3}$. Among these metal salts, manganese(III) acetate is a prominent. Enolizable 1,3dicarbonyl compounds (β-diketone, β-ketoester, β-ketoamide) can be oxidized by manganese(III) acetate to generate α-carbon radicals which can attack alkenes to form new C-C bonds. Thus, it provides a versatile protocol for the formation of highly functionalized products, such as furans ${ }^{4-6}$, dihydrofurans ${ }^{7-10}, \gamma-$ lactones ${ }^{11}$, biologically active compounds and natural products ${ }^{11-15}$. Nitromethylation ${ }^{16}$ and malonylation ${ }^{17}$ of aromatic compounds, the α-acetoxylation ${ }^{18-22}$ of enones and aryl couplings ${ }^{23-25}$ are among the other known reactions of $\mathrm{Mn}(\mathrm{OAc})_{3}$.

We have reported the formation of dihydrofuran and furan derivatives as a result of $\mathrm{Mn}(\mathrm{OAc})_{3}$ mediated oxidative cyclizations of 1,3 -dicarbonyl compounds with alkenes and alkynes ${ }^{6}$. Additionally, we have

[^0]reported the synthesis of carbomoyl-4,5-dihydrofurans and tetralones due to the reaction of 1,3-dicarbonyls with α, β-unsaturated amides ${ }^{26}$. Previously, we have described the synthesis of 3-trifluoroacetyl-4,5dihydrofurans and 3 -(dihydrofuran-2(3H)-ylidene)-1,1,1-trifluoroacetones by the treatment of trifluoromethyl1,3 -dicarbonyl compounds with conjugated alkenes ${ }^{27}$.

The mechanism of the $\operatorname{Mn}(\mathrm{OAc})_{3}$ mediated radical cyclization of 1,3-dicarbonyls with alkenes has been studied by Snider and Kurosawa thoroughly ${ }^{9,11,28}$. In this study we performed the $\operatorname{Mn}(\mathrm{OAc})_{3}$ mediated radical cyclization reactions of 1,3-dicarbonyl compounds 1a-g with sterically hindered olefins.

Experimental

Melting points were determined on a Gallencamp capillary melting point apparatus. IR spectra (KBr disc) were obtained with a Matson 1000 FT-IR in the $400-4000 \mathrm{~cm}^{-1}$ range with $4 \mathrm{~cm}^{-1}$ resolution. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz), ${ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ spectra were recorded on Bruker DPX 400 and Varian Mercury-400 high performance digital FT-NMR spectrophotometers. The electron impact mass spectra (MS, APCI, 100-150 eV) were measured on Micromass UK LC/MS and Shimadzu GC-17A/GC-MSQP5000 spectrophotometers. Elemental analyses were performed on Leco 932 CHNS-O instrument.

Thin layer chromatography (TLC) was performed on Merck aluminum-packed silica gel plates. Purification of products was performed by column chromatography on silica gel (Merck silica gel 60, 230-400 mesh) or preparative TLC on silica gel from Merck $\left(\mathrm{PF}_{254-366 \mathrm{~nm}}\right)$. All 1,3-dicarbonyl compounds and reagents were purchased from Merck.

1,1-Diphenyl-1-butene (2a)

Colorless oil, bp: 296-298 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 1.04\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 6.0$ ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-2$), 7.01-7.31 (m, 10H, arom.).

Synthesis of 1,2-diphenyl-1-pentene (2b)

Benzyltriphenylphosphonium bromide ($40 \mathrm{~g}, 92 \mathrm{mmol}$, obtained from benzyl bromide and triphenylphosphine in toluene) was added to a stirred suspension of $\mathrm{NaH}(3.68 \mathrm{~g}, 92 \mathrm{mmol}, 60 \%$ in mineral oil) in THF and the mixture was stirred at $15{ }^{\circ} \mathrm{C}$ for 30 min . 1-Phenylbutanone ($12.6 \mathrm{~mL}, 85 \mathrm{mmol}$) was added and the mixture was heated under reflux for 3 h . The solvent was removed under reduced pressure and the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. This solvent was evaporated and the crude product was distilled under reduced pressure to give $11.5 \mathrm{~g}(61 \%)$ of 1,2-diphenyl-1-pentene (2b). As a colorless oil, bp: $249-250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$, $\delta(\mathrm{ppm}): 0.96\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.49\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.74\left(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=6.4,2.0 \mathrm{~Hz},-\mathrm{CH}_{2}\right), 6.96(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}-1$), 7.12-7.43 (m, 8H, arom.), 7.6 (dd, $2 \mathrm{H}, \mathrm{J}=8.4,1.2 \mathrm{~Hz}$, arom.).

General procedure

A solution of manganese(III) acetate dihydrate ($6 \mathrm{mmol}, 1.64 \mathrm{~g}$) in glacial acetic acid (30 mL) was heated under nitrogen atmosphere at $80^{\circ} \mathrm{C}$ until it dissolved. After $\mathrm{Mn}(\mathrm{OAc})_{3}$ dissolved completely, the solution was cooled to $60{ }^{\circ} \mathrm{C}$. A solution of $\mathbf{1 a - g}(4 \mathrm{mmol})$ and olefin (2 mmol) in 5 mL acetic acid was added to the mixture and the temperature was raised to $80^{\circ} \mathrm{C}$. The reaction was completed when the dark brown
color of the solution disappeared. Acetic acid was evaporated under reduced pressure. Water was added to the residue and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were neutralized with satd. NaHCO_{3} solution, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Crude products were purified by column chromatography on silica gel or preparative TLC ($20 \times 20 \mathrm{~cm}$ plates, 2 mm thickness) using n-hexane/EtOAc (4:1) as eluent.

3-Ethyl-6,6-dimethyl-2,2-diphenyl-3,5,6,7-tetrahydro-1-benzofuran-4(2H)-one (3a): colorless solid, mp: 111-113 ${ }^{\circ} \mathrm{C}$; IR, $v_{\max }$: 3053, 2961, $2930(\mathrm{C}-\mathrm{H}), 1637(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1178$ (C-O-C); ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.55\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.08\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.29(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{CH}_{2}$), $2.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{Ha}-5), 2.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz}, \mathrm{Hb}-5), 2.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.8,1.6 \mathrm{~Hz}$, Ha-7), $2.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.6 \mathrm{~Hz}, \mathrm{Hb}-7), 3.77(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-3), 7.21-7.28$ ($\mathrm{m}, 8 \mathrm{H}$, arom.) , 7.43 ($\mathrm{m}, 2 \mathrm{H}$, arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta(\mathrm{ppm}): 11.4\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 47.9$, $51.3,98.7$ (C-2), 117.1 (C-3a), 126.5, 126.8, 127.3, 127.8, 128.0, 128.2, 140.7, 144.6, 169.8, 174.2 (C-7a), 194.5 $(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{APCI}, 150 \mathrm{eV}), m / z(\%): 347\left(\mathrm{MH}^{+}, 58.2\right), 287\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{5}, 1.5\right), 269\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}, 9.4\right)$, $243\left(\mathrm{MH}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, 18.6\right), 219\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}, 5.4\right), 208\left(\mathrm{C}_{16} \mathrm{H}_{16}^{+}, 1.1\right), 167\left(\mathrm{C}_{13} \mathrm{H}_{11}^{+}, 100.0\right), 105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right.$, 16.7), $91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 15.9\right)$; Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}$: C 83.2; H 7.5; found: C 83.3; H 7.35.

2-Propyl-6,6-dimethyl-2,3-diphenyl-3,5,6,7-tetrahydro-1-benzofuran-4(2H)-one (3b): colorless solid, mp: 169-172 ${ }^{\circ} \mathrm{C}$; IR, $v_{\max }$: 3026, 2955, $2872(\mathrm{C}-\mathrm{H}), 1641(\mathrm{C}=\mathrm{O}), 1632(\mathrm{C}=\mathrm{C}), 1032(\mathrm{C}-\mathrm{O}-\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.64\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.82(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 1.16\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.22(\mathrm{~m}, 1 \mathrm{H}$, $-\mathrm{CH}), 1.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.43\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.3 \mathrm{~Hz}, \mathrm{Ha}-5), 2.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.25 \mathrm{~Hz}$, Hb-5), 2.58 (dd, 1H, J = 17.7, $1.9 \mathrm{~Hz}, \mathrm{Ha}-7$), 2.65 (d, 1H, J = $17.65 \mathrm{~Hz}, \mathrm{Hb}-7$), 4.40 (s, 1H, H-3), 7.29-7.43 (m, 10H, arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta(\mathrm{ppm}): 14.2\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 38.3$ $\left(\mathrm{CH}_{2}\right), 40.4,47.2,51.5,58.0,98.5$ (C-2), 118.5 (C-3a), 125.1, 128.0, 128.1, 129.2, 129.3, 139.0, 146.6, 176.6 (C-7a), $196.8(\mathrm{C}=\mathrm{O})$; MS (APCI, 150 eV$), m / z(\%): 361\left(\mathrm{MH}^{+}, 100.0\right), 283\left(\mathrm{MH}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}, 5.0\right), 243\left(\mathrm{MH}^{+}\right.$ $\left.-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{3} \mathrm{H}_{8}, 27.1\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 5.4\right)$; Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{2}$: C 83.3; H 7.8; found: C 83.2; H 7.5.

1-(4-ethyl-2-methyl-5,5-diphenyl-4,5-dihydrofuran-3-yl)ethanone (3c): pale yellow oil; IR, $v_{\max }: 3038,2965,2930(\mathrm{C}-\mathrm{H}), 1625(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}), 1215(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.45(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $\left.=7.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.77(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-4)$, 7.13-7.37 (m, 8H, arom.), 7.44 (d, $2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}$, arom.); MS (APCI, 150 eV), $m / z(\%): 307\left(\mathrm{MH}^{+}, 20.8\right)$, $289\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 13.9\right), 247\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{CH}_{3} \mathrm{CO}, 43.2\right), 219\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{CH}_{3} \mathrm{CO}, 12.4\right), 167\left(\mathrm{C}_{13} \mathrm{H}_{11}^{+}\right.$, 75.2), $105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right.$, 79.3), $91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 91.4\right)$; Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2}$: C 82.4; H 7.2 ; found: C 82.6; H 6.8.

1-(2-methyl-4,5-diphenyl-4-propyl-4,5-dihydrofuran-3-yl)ethanone (3d): pale yellow oil; IR, $v_{\max }: 3059,2957,2926(\mathrm{C}-\mathrm{H}), 1670(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}), 1124(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.53(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $\left.=7.3 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.67(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 1.09(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 1.26\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 4.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.22-7.34(\mathrm{~m}, 10 \mathrm{H}$, arom.); MS (APCI, 150 eV$), \mathrm{m} / z(\%): 321\left(\mathrm{MH}^{+}, 29.2\right), 261$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{CH}_{3} \mathrm{CO}, 28.6\right), 243\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}, 12.6\right), 219\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}-\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{CH}_{3}, 34.4\right), 167\left(\mathrm{M}^{+}-2 \mathrm{C}_{6} \mathrm{H}_{5}\right.$, 14.8), $91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}\right.$, 100.0); Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}$: C 82.5; H 7.5; found: C 82.3; H 7.8.

Ethyl 4-ethyl-2-methyl-5,5-diphenyl-4,5-dihydrofuran-3-carboxylate (3e): yellow oil; IR, $v_{\max }: 3059,2970,2936(\mathrm{C}-\mathrm{H}), 1695(\mathrm{C}=\mathrm{O}), 1648(\mathrm{C}=\mathrm{C}), 1215(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.62(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$
$\left.=7.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.43\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.83(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $5.1 \mathrm{~Hz}, \mathrm{H}-4), 4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 7.29-7.40(\mathrm{~m}, 8 \mathrm{H}$, arom.), 7.60 (dt, $2 \mathrm{H}, \mathrm{J}=7.1,1.5$, arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta(\mathrm{ppm}): 10.7,14.4,14.7,24.6,50.0,59.5,95.0$ (C-5), 108.7 (C-3), 126.2, 126.7, 127.0, 127.6, 127.7, 128.1, 141.1, $145.5(\mathrm{C}-2), 165.9(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{APCI}, 100 \mathrm{eV}), m / z(\%): 337\left(\mathrm{MH}^{+}, 12.8\right), 291\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, 100.0\right), 275\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{CH}_{3}, 21.1\right), 263\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, 5.4\right), 167\left(\mathrm{C}_{13} \mathrm{H}_{11}^{+}, 4.7\right), 105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right.$, 5.4), $91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 5.1\right)$; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3}$: C 78.6; H 7.1; found: C 78.9; H 6.8.

Ethyl 2-methyl-4,5-diphenyl-4-propyl-4,5-dihydrofuran-3-carboxylate (3f): colorless oil; IR, $v_{\max }: 3045,2959,2922(\mathrm{C}-\mathrm{H}), 1700(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1124(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.62$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.96\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz},-\mathrm{CH}), 1.28(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH})$, $1.37\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.51\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.95\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 4.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.35-7.41(\mathrm{~m}$, 10 H , arom.); MS (APCI, 100 eV$), m / z(\%): 351\left(\mathrm{MH}^{+}, 100.0\right), 305\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, 58.7\right), 273\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}\right.$, 15.8), $263\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}-\mathrm{CH}_{3}, 17.4\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 1.9\right)$; Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3}$: C 78.9; H 7.4; found: C 80.1; H 7.7.

3-Ethyl-2,2-diphenyl-3,5,6,7-tetrahydro-1-benzofuran-4(2H)-one (3g): colorless solid, mp: $113-115{ }^{\circ} \mathrm{C}$; IR, $v_{\max }$: 3055, 2959, $2928(\mathrm{C}-\mathrm{H}), 1656(\mathrm{C}=\mathrm{O}), 1631(\mathrm{C}=\mathrm{C}), 1219(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta$ (ppm): $0.53\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.29\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.98\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.22\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.33$ $(\mathrm{m}, 1 \mathrm{H},-\mathrm{CH}), 2.56(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 3.78(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{H}-3), 7.20-7.28(\mathrm{~m}, 8 \mathrm{H}, \operatorname{arom}),. 7.42(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=$ $7.0,1.62 \mathrm{~Hz}$, arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta(\mathrm{ppm}): 11.2,21.5,24.2,24.7,36.9,48.0,98.5$ (C-2), 118.3 (C-3a), 126.5, $126.8,127.3,127.8,128.0,128.2,140.7,144.6,175.1(\mathrm{C}-7 \mathrm{a}), 195.2(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{APCI}, 150 \mathrm{eV}), \mathrm{m} / \mathrm{z}(\%)$: $319\left(\mathrm{MH}^{+}, 35.7\right), 241\left(\mathrm{M}^{+}{ }_{-} \mathrm{C}_{6} \mathrm{H}_{5}, 14.8\right), 167\left(\mathrm{C}_{13} \mathrm{H}_{11}^{+}, 100.0\right), 105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}, 28.6\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 30.2\right)$; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}$: C 83.0; H 6.9; found: C 83.0; H 6.8.

3-Methyl-2,2,6-triphenyl-3,5,6,7-tetrahydro-1-benzofuran-4(2H)-one (3h): yellow oil; IR, $v_{\max }: 3034,2959,2920(\mathrm{C}-\mathrm{H}), 1635(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C}), 1053(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.65(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $\left.=7.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.39\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.63\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.91\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.51(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 3.92(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{H}-3), 7.24-7.39(\mathrm{~m}, 13 \mathrm{H}, \operatorname{arom}),. 7.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, arom.); MS (APCI, 150 eV), m/z (\%): $395\left(\mathrm{MH}^{+}, 100.0\right), 317\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}, 12.3\right), 167\left(\mathrm{C}_{13} \mathrm{H}_{11}^{+}, 74.3\right), 105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}, 16.3\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}\right.$, 15.3); Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3}$: C 85.3; H 6.6 ; found: C 85.0 ; H 6.9 .
[4-ethyl-5,5-diphenyl-2-(trifluoromethyl)-4,5-dihydrofuran-3-yl](phenyl) methanone (3i): colorless solid, mp: $174-176{ }^{\circ} \mathrm{C}$; IR, $v_{\max }$: 3059, 2965, $2930(\mathrm{C}-\mathrm{H}), 1646(\mathrm{C}=\mathrm{O}), 1606(\mathrm{C}=\mathrm{C}), 1211$ (C-O-C), $1134(\mathrm{C}-\mathrm{F}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.67\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.43 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.55(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 1.67(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH})$, $4.23(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.41 \mathrm{~Hz}, \mathrm{H}-4), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}, \operatorname{arom}),. 7.36-7.49(\mathrm{~m}, 5 \mathrm{H}$, arom.), $7.56(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.3$ Hz , arom.), 7.65 (d, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$, arom.), 7.78 (d, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$, arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta(\mathrm{ppm}): 10.7$, $25.4,49.7,97.5(\mathrm{C}-5), 113.4(\mathrm{C}-3), 120.6\left(\mathrm{q}, \mathrm{J}_{C-F}=286.4 \mathrm{~Hz},-\mathrm{CF}_{3}\right), 126.6,126.9,127.9,128.3,128.5$, $128.7,128.8,129.9,130.5,132.5,140.2,144.0,171.4(\mathrm{C}-2) 176.3\left(\mathrm{q}, \mathrm{J}_{C-F}=34.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}, \delta$ (ppm): -78.5 (s, $\left.-\mathrm{CF}_{3}\right)$; MS (APCI, 100 eV$), m / z(\%): 423\left(\mathrm{MH}^{+}, 0.1\right), 422\left(\mathrm{M}^{+}, 0.3\right), 404\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 0.3\right)$, $393\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 1.9\right), 353\left(\mathrm{M}^{+}-\mathrm{CF}_{3}, 0.2\right), 317\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, 4.1\right), 296\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{CF}_{3} \mathrm{CO}, 3.6\right), 165$ $\left(\mathrm{C}_{13} \mathrm{H}_{10}^{+}, 15.0\right), 105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}, 100.0\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 4.7\right), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}, 62.7\right), 43\left(\mathrm{C}_{3} \mathrm{H}_{7}^{+}, 7.2\right)$; Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2}$: C 73.9; H 5.0; found: C 73.5; H 5.3.
[4-ethyl-5,5-diphenyl-2-(trifluoromethyl)-4,5-dihydrofuran-3-yl](thien-2-yl)methanone (3j): yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta(\mathrm{ppm}): 0.46\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4,-\mathrm{CH}_{3}\right), 1.52\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 4.12(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}$, $\mathrm{H}-4), 7.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}$, arom.), $7.19(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}$, arom.), 7.20 ($\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$, arom.), 7.36 (d, 2H, J = 7.2 Hz, arom.), 7.55 (d, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$, arom.), 7.64 (dd, $1 \mathrm{H}, \mathrm{J}=5.0,0.9 \mathrm{~Hz}$, arom.), 8.53 (dd, $1 \mathrm{H}, \mathrm{J}=3.9,0.9 \mathrm{~Hz}$, arom.) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta(\mathrm{ppm}): 12.1,25.7,50.5,95.5(\mathrm{C}-5), 105.4(\mathrm{C}-3), 119.6\left(\mathrm{q}, \mathrm{J}_{C-F}=\right.$ $292.4 \mathrm{~Hz},-\mathrm{CF}_{3}$), 125.6, 126.1, 126.7, 127.4, 127.8, 128.1, 128.5, 128.7, 129.4, 129.9, 131.1, 136.0, 138.6, 150.2, $174.2(\mathrm{C}-2) 175.7\left(\mathrm{q}, \mathrm{J}_{C-F}=35.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}, \delta(\mathrm{ppm}):-76.8\left(\mathrm{~s}, \mathrm{CF}_{3}\right) ; \mathrm{MS}(\mathrm{APCI}, 100 \mathrm{eV}), m / z$ (\%): $429\left(\mathrm{MH}^{+}, 6.6\right), 428\left(\mathrm{M}^{+}, 1.56\right), 399\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 10.7\right), 317\left(\mathrm{M}^{+}{ }_{-} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{OS}, 5.4\right), 302.0\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{CO}\right.$ $\left.-\mathrm{C}_{2} \mathrm{H}_{5}, 12.0\right), 165.0\left(\mathrm{C}_{13} \mathrm{H}_{10}^{+}, 11.2\right), 111.0\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{OS}^{+}, 100.0\right), 105.0\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}, 46.3\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}, 6.8\right)$, $77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}, 24.7\right), 69\left(\mathrm{CF}_{3}^{+}, 4.9\right)$; Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}$: C 67.3; H 4.4; found: C 67.6; H 4.2.

Results and Discussion

We studied the $\mathrm{Mn}(\mathrm{OAc})_{3}$ mediated radical cyclizations of dimedone 1a, 2,4-pentanedione $\mathbf{1 b}$, ethyl acetoacetate $\mathbf{1 c}, 1,3$-cyclohexanedione $\mathbf{1 d}$, 5 -phenyl-1,3-cyclohexanedione $\mathbf{1 e}, 4,4,4$-trifluoro-1-phenylbutane1,3 -dione $\mathbf{1 f}$ and 4,4,4-trifluoro-1-thien-2ylbutane-1,3-dione $\mathbf{1 g}$ with 1,1 -diphenyl-1-butene ${ }^{29} \mathbf{2 a}$ and 1,2-diphenyl-1-pentene $\mathbf{2 b}$. As a result of these reactions we obtained polysubstituted 4,5-dihydrofuran, tetrahydrobenzofuran and 3-trifluoroacetyl-4,5-dihydrofuran derivatives.

The manganese(III) acetate dihydrate used as radical oxidant was obtained from the bipolar packedbed reactor by the electrochemical method described in the literature ${ }^{30}$. 2a was prepared by removing water from the carbinol formed during the Grignard reaction of phenylmagnesium bromide and 1phenylbutanone. 2b was synthesized through the Wittig method with benzyltriphenylphosphonium bromide and 1-phenylbutanone. 2a and $\mathbf{2 b}$ olefins were purified by distillation under reduced pressure and were characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Radical cyclization reactions were performed in 2:1:3 molar ratio (1,3-dicarbonyl:olefin: $\mathrm{Mn}(\mathrm{OAc})_{3}$, respectively) under N_{2} atmosphere, at $80^{\circ} \mathrm{C}$, in HOAc . Products were purified by column chromatography or preparative TLC. The results of the reactions of $\mathbf{1 a} \mathbf{a} \mathbf{c}$ with $\mathbf{2 a}$ and $\mathbf{2 b}$ are given in Table 1.

We performed the radical cyclizations of $\mathbf{1 a - c}$ with 1,1 -diphenyl substituted and 1,2 -diphenyl substituted olefins comparatively. The treatment of 1a with 1,1-diphenyl substituted olefin 2a formed 3a in a good yield (77%). However, we obtained tetrahydrobenzofuran $\mathbf{3 b}$ in a lower yield (42%) as a result of the treatment of $\mathbf{1 a}$ with 1,2 -diphenyl substituted olefin $\mathbf{2 b}$. The treatments of $\mathbf{1 b}$ and $\mathbf{1 c}$ with $\mathbf{2 a}$ gave $\mathbf{3 c}(72 \%), \mathbf{3 e}(63 \%)$ polysubstituted 4,5 -dihydrofurans, respectively, and we obtained $\mathbf{3 d}$ and $\mathbf{3 f}$ from the reactions of $\mathbf{1 b}$ and $\mathbf{1 c}$ with $\mathbf{2 b}$ in moderate yields. From these results we conclude that 1,1-diphenyl substituted olefin is more reactive than 1,2-diphenyl substituted olefin; this is the result of the high stability of the intermediate product formed with the addition of α-carbon radical, which was obtained by the treatment of $\mathrm{Mn}(\mathrm{OAc})_{3}$ and 1,3-dicarbonyl. Both of the intermediate products are tertiary radical carbons in the addition reactions to olefins. However, since the tertiary radical forming on 1,1-diphenyl-1-butene $\mathbf{2 a}$ is conjugated with phenyl groups, its stability is higher than that of the tertiary radical forming on $\mathbf{2 b}$, and more stable intermediate product cyclization forms dihydrofuran in a higher yield.

The results of $\mathrm{Mn}(\mathrm{OAc})_{3}$ mediated radical cyclization of $\mathbf{2 a}$ with $\mathbf{1 d} \mathbf{d}$ are given in Table 2. We obtained tetrahydrobenzofurans $\mathbf{3 g}(61 \%)$ and $\mathbf{3 h}(55 \%)$ by the treatment of $\mathbf{1 d}$ and $\mathbf{1 e}$ with $\mathbf{2 a}$. The best

Manganese(III) Acetate Mediated Free Radical Cyclization of..., M. YILMAZ, et al.,
result was obtained from $\mathbf{1 a}$ in the radical cyclizations of $\mathbf{1 a - e}$ with $\mathbf{2 a}$, and the reaction activities of the other 1,3 -dicarbonyls decreased in the following order: $\mathbf{1 b}, \mathbf{1 c}, \mathbf{1 d}$, and $\mathbf{1 e}$.

Table 1. The radical cyclizations of $\mathbf{1 a} \mathbf{- c}$ with $\mathbf{2 a}$ and $\mathbf{2 b}$.
Entry
a: Yield of isolated product based on the olefin

3-Trifluoroacetyl-4,5-dihydrofurans ($\mathbf{3 i}$ and $\mathbf{3 j}$) were formed by the treatment of $\mathbf{1 f}$ and $\mathbf{1 g}$ with $\mathbf{2 a}$ in good yields. We assume that these results are derived from the enol forms of $\mathbf{1 f}$ and $\mathbf{1 g}$, which speed up the formation of the $\mathrm{Mn}(\mathrm{III})$-enolate complex of 1,3 -dicarbonyls and $\mathrm{Mn}(\mathrm{OAc})_{3}$, in higher ratios (100% and 97%, respectively). In the literature it is reported that $\mathbf{1 g}$ is present in only 1 enol form, whereas $\mathbf{1 f}$ has 2 possible enol forms ${ }^{31}$. Since the cyclization of the adduct intermediate product occurs on the enol form
of 1,3 -dicarbonyl, 2 possible enol forms of $\mathbf{1 f}$ bring about the formation of 2 different dihydrofurans. The reaction mechanisms of $\mathbf{1 f}$ and $\mathbf{1 g}$ with $\mathbf{2 a}$ are given in the Scheme.

Table 2. Synthesis of tetrahydrobenzofurans and 3-trifluoroacetyl-4,5-dihydrofurans.
Entry

[^1]$\operatorname{Mn}(\mathrm{OAc})_{3}$ forms $\operatorname{Mn}(\mathrm{III})$-enolate complexes (structures \mathbf{A} and $\left.\mathbf{B}\right)$ with the enol forms of $\mathbf{1 f}$ and $\mathbf{1 g}$. Here while Mn^{+3} is reduced to Mn^{+2}, the oxo-radical forms on the 1,3 -dicarbonyl compound. A radical intermediated product (2) is obtained in the addition of an electron from alkene to 1,3 -dicarbonyl. $\mathrm{Mn}(\mathrm{II})-$ enolate complex is formed by removing $\alpha-\mathrm{H}$ from this structure and the radical is oxidized to carbocation $\mathbf{3}$ with the equivalent $\operatorname{Mn}(\mathrm{OAc})_{3}$. The intramolecular cyclization of $\mathbf{2}$ with oxanion forms 3 -trifluoroacetyl-4,5dihydrofurans ($\mathbf{3 i}$ and $\mathbf{3 j}$). The intramolecular cyclization of the carbocation intermediate product $\mathbf{5}$, which forms when the α-carbon radical \mathbf{B} obtained from the other enol form of $\mathbf{1 f}$ follows the same steps, gives 2-trifluoromethyl-4,5-dihydrofuran 6. However, since the chemical shift value in the isolated compound's ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of the neighboring carbon on which $-\mathrm{CF}_{3}$ is bound is $176.3 \mathrm{ppm}\left(\mathrm{q}, \mathrm{J}_{C-F}=34.5 \mathrm{~Hz}\right)$, the $-\mathrm{CF}_{3}$ group is neighboring the carbonyl. Therefore, in the reaction of $\mathbf{1 f}$ with $\mathbf{2 a} 2$-trifluoromethyl-4,5dihydrofuran $\mathbf{6}$ does not form, which indicates that the tautomeric form of \mathbf{B} does not appear.

Manganese(III) Acetate Mediated Free Radical Cyclization of..., M. YILMAZ, et al.,

Scheme

Acknowledgments

The authors thank Ankara University Scientific Research Projects (BAP 20010705065) for its financial support. MS analyses were performed at the Scientific Research Center of Ankara University (BITAUM).

References

1. H.B. Kagan and J.L. Namy, Tetrahedron 42, 6573-6614 (1986).
2. G.A. Molander, Chem. Rev. 92, 29-68 (1992).
3. J. Igbal, B. Bhatia and N.K. Nayar, Chem. Rev. 94, 519-64 (1994).
4. G.G. Melikyan, A.B. Sargsyan and Sh.O. Badanyan, Chem. Heterocyclic Comp. 606-9 (1989).

Manganese(III) Acetate Mediated Free Radical Cyclization of..., M. YILMAZ, et al.,
5. E.J. Corey and A.K. Ghosh, Chem. Lett. 223-26 (1987).
6. M. Yılmaz and A.T. Pekel, Synthetic Comm. 31, 3871-76 (2001).
7. J.M. Mellor and S. Mohammed, Tetrahedron Lett. 32, 7111-14 (1991).
8. J.M. Mellor and S. Mohammed, Tetrahedron 49, 7547-56 (1993).
9. S. Kajikawa, H. Nishino and K. Kurosawa, Heterocycles 54, 171-83 (2001).
10. R. Fujino, H. Nishino, Synthesis 731-40 (2005).
11. G.G. Melikyan, Synthesis 833-50 (1993).
12. B.B. Snider, Chem Rev., 96 339-63 (1996).
13. D. Yang, X. Ye, S. Gu and X. Ming, J. Am. Chem. Soc. 121, 5579-80 (1999).
14. B.B. Snider, J.Y. Kiselgof and B.M. Foxman, J. Org. Chem. 63, 7945-52 (1998).
15. B.B. Snider, L. Han and C. Xie, J. Org. Chem. 62, 6978-84 (1997).
16. M.E. Kurz, P. Ngoviwatchai and T. Tantrarant, J. Org. Chem. 46, 4668-72 (1981).
17. A. Citerio, R. Santi, T. Fiorani and S. Strologo, J. Org. Chem. 54, 2703-12 (1989).
18. A.S. Demir and A. Jeganathan, Synthesis 235-47 (1992).
19. A.S. Demir, H. Akgün, C. Tanyeli, T. Sayrac and D.S. Watt, Synthesis 719-21 (1991).
20. N.K. Dunlap, M.R. Sabol and D.S. Watt, Tetrahedron Lett. 25, 5839-42 (1984).
21. A.S. Demir and A. Saatcioglu, Synthetic Comm. 23, 571-75 (1993).
22. A.S. Demir, Ö. Reis and A.C. Igdir, Tetrahedron 60, 3427-32 (2004).
23. A.S. Demir, Ö. Reis and M. Emrullahoğlu, Tetrahedron 58, 8055-58 (2002).
24. A.S. Demir, Ö. Reis and M. Emrullahoğlu, J. Org. Chem. 68, 578-80 (2003).
25. A.S. Demir, Ö. Reis and E. Özgül-Karaaslan, J. Chem. Soc., Perkin Trans. 1, 3042-45 (2001).
26. M. Yılmaz and A.T. Pekel, Synthetic Comm. 31, 2189-94 (2001).
27. M. Yılmaz and A.T. Pekel, J. Fluorine Chem. 126, 401-06 (2005).
28. B.B. Snider, J.J. Patricia and S.A. Kates, J. Org. Chem. 53, 2137-43 (1988).
29. C.M. Hill, R.A. Walker, M.E. Hill, J. Am. Chem. Soc. 73, 1663-64 (1951).
30. A. Guvenc, A.T. Pekel and O.M. Kockar, Chem. Engineering J. 99, 257-63 (2004).
31. S. Kimitaka and A. Kiichi, Nippon Kaguku Zasshi 89, 1110-13 (1968), CA: 70, 86838 (1970).

[^0]: * Corresponding author

[^1]: a: Yield of isolated product based on the olefin

