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The structures of small clusters are studied extensively by classical simulation methods because of

their interesting thermodynamic behavior. In this work, we study the thermodynamic properties of

binary mixtures of noble gas atoms. Interatomic interactions are defined by 6-12 Lennard-Jones (LJ)

potential. Starting from the global minimum of the potential energy surfaces, the systems are heated by

increasing the total energy until melting occurs. The melting is observed by monitoring the Lindemann

factor. The effects of the relative sizes of A and B atoms and the interaction strength of A-A, A-B,

and B-B on the melting temperature of clusters containing 50% of each component is analyzed by using

constant energy (NVE) molecular dynamics simulation. It is observed that the heterogeneous clusters

melt at lower temperatures as long as the relative interactions are of similar order. Melting points do

not follow a systematic trend with size, mostly due to the unusual stability of certain size clusters.

Introduction

In recent years, there has been a great growth of research on atomic and molecular cluster systems. The

development of new experimental techniques1−4 allow the spectroscopic characterization of clusters together
with the development of new algorithms and increased speed of computers making the realistic simulations
of clusters possible allow a better understanding of clusters.

Clusters form a bridge between the microscopic world of individual atoms or molecules and the
macroscopic world of bulk materials. Many researchers have performed studies to identify variations in the
properties of clusters as a function of cluster size, developing an improved microscopic-level understanding of

hydrogen bonding5 and other solvation phenomena6. Clusters also provide a information between topology of
the potential energy surface and the underlying dynamics and thermodynamics at a level of detail that is not
possible for bulk systems. Furthermore, clusters provide a profound insight into studies like glass formation
and protein folding. The number of atoms or molecules in clusters varies from 4-5 to a few hundred. Most
of the atoms can be placed on the surface where the local ordering can vary significantly from one atom to
another resulting in deviations from homogeneity. This is reflected in the dynamic properties of clusters;
especially when they are heated, they change from a solid-like structure to a liquid-like structure where the
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atoms are loosely bound7. Clusters are usually formed either by generating a vapor that contain atoms

or molecules and letting them aggregate or by knocking the clusters out of a bulk solid8. The effect of
temperature is very important for these systems. Clusters have found a great deal of application in material
sciences and have widely been used to search for new kinds of chemical reactions. Scientists work on these
materials in the hope that they will show certain desired microelectronic, mechanical or catalytic properties.

Clusters, at a definite range of temperature, coexist as solids and liquids and have different melting
and freezing points. In the coexistence range, the fraction of solid and liquid clusters depends on the free
energies of these two forms. The free energies of clusters vary with temperature change. The density of
energy levels and the interplay between energy and entropy result in a cluster having a distinct freezing point,
below which only the solid phase is stable, and a distinct melting point, above which only the liquid phase
is stable. It is known that at a temperature of about 20 to 30 K, small clusters behave like liquids and large
clusters behave like solids. Although atomic or molecular clusters may exhibit solid-like and liquid-like forms
that are quite similar to bulk matter in many respects, they have unequal freezing and melting temperatures
due to equilibrium between different isomeric forms. In thermal equilibrium, these forms occur in a ratio k

= [solid]/[liquid] = exp (-∆F/kT), which is fixed by the difference in free energy ∆F between the solid and

liquid forms. This is a dynamic equilibrium between the chemical isomers of clusters9 .
In studying the melting behavior of cluster systems it is essential to ensure that the simulations have

attained equilibrium. It has been known for some time that this is much harder to accomplish in some
cluster systems than in others, especially when a number of minima separated by large barriers exist. For
the melting temperature of clusters in general a simple estimation can be made by using an expression for

the free energy of the cluster as a function of particle number10−11. By setting the expressions for the free
energies of solid and liquid clusters equal, one obtains the phase equilibrium condition

T cm(N) = T bm −AN1/3 (1)

where Tcm is the melting temperature of a cluster of N atoms, Tbm is the bulk melting temperature, and A

is a positive constant. The equation expresses the fact that the melting temperature of the cluster is low
when the cluster is small and approaches the bulk melting temperature as the particle number of the cluster

increases12 .
Phase coexistence in clusters, the number of coexisting phases, and the occurrence of a solid-liquid

transition are related to the peculiarities of the density of states, and in large part to the density of states
just of the local minima on that surface. Both these densities can be found numerically, in principle.
To do this becomes impractical for systems containing a rather small number of particles; for example,

there are approximately 5 × 105 geometrically distinct local minima for Ar19 and the number increases
exponentially with N, the number of atoms in the cluster. Unfortunately, the high dimensionality of the
nuclear configuration space for a cluster means that the number of minima and transition states on the
potential energy surface can be astronomically large. Hence, for larger clusters, statistical sampling of
simple analytical models can be used to determine densities of states and thermodynamic properties, such

as free energies and equilibrium ratios of coexisting phase-like forms13.

To identify the complete potential energy surfaces in any cluster system is extremely difficult. If
we know the surface, we can, at least in principle, describe the behavior of our system on that surface,
for example by using classical mechanics in molecular dynamics simulations or by propagating quantum-

mechanical wave packets14. The most important features that arise on any cluster potential energy surface

628



Molecular Dynamics Simulation of Phase Transitions in..., A. TEKİN, M. YURTSEVER

are familiar objects in three-dimensional space but are rather harder to visualize in hundreds of dimensions15.

To define a potential surface we have to know the minima and the saddles that connect them. Local
minima form one kind of stationary point on the surface, where all the forces vanish. They are locally
stable, in that any infinitesimal change in structure raises the energy. A transition state, on the other hand,
corresponds to the highest point along the valley linking two basins. Transition states are also stationary
points, but correspond to mechanical instability; i.e. infinitesimal displacements in either direction along the
reaction path lower the energy. When one knows the geometry of a system at a saddle, one can determine
the entire “reaction path” or path of least energy between the two minima connected by that saddle, simply
by applying either of the methods for locating minima, starting with points near the saddle of interest.

Several researchers have extensively studied the potential energy surfaces to find local minima and
saddles and have formulated new methods. The methods are now fairly well established. To find minima,

the method of steepest descents16−17 seems most obvious, but the related, conjugate gradient method is

usually much faster18. Computational algorithms are readily available for both19, but new and more powerful

methods continue to be developed20−23. Two ways have emerged for finding saddles: a faster, “hill-climbing”

method24−31 and a “skiing-down” method that assures one will find important saddles, the method called

“slowest slides”32−33.
Hoare and Pal made the first extensive computations of the minima of rare gas clusters bound by

pairwise Lennard-Jones LJ and Morse potentials. Since then, minima have been cataloged for many other
clusters, including more rare gas clusters, molecular van der Waals clusters, alkali halides, simple metals,

transition metals and semiconductors, as well as some clusters containing dopant or impurity species34 .

The lowest energy morphology for clusters bound by pairwise-additive, isotropic forces is determined

by a balance between the total number of the nearest-neighbor interactions (stabilizing) and the strain energy

(destabilizing). The lowest energy structure is generally based on one of three different morphologies: Mackay

icosahedra, decahedra, and closed-packed fragments of regular bulk lattice. Of the three morphologies, the
icosahedron maximizes the number of nearest-neighbor contacts but has the highest strain, the truncated
octahedron minimizes the strain but has the fewest nearest-neighbour contacts, and the Marks decahedron
is intermediate in both categories. Direct comparisons between these structures are not straightforward
because complete geometries of high symmetry, which are expected to be particularly low in energy, occur
for different numbers of atoms. Hence, for clusters containing less than around 100 atoms, the most stable

morphology may change with the addition or removal of a single atom15.

In bulk material, the first-order melting transition is characterized by solid and liquid phases in contact
at the melting point. However, for small systems the energetic penalty for forming an interface is too large
for such phase separation to be observed. Instead, it is helpful to think of an isolated individual cluster
in terms of a two-state model where in the melting region the cluster behaves like both a solid and liquid.
A dynamical equilibrium exists between the two forms with an equilibrium constant that is related to the
difference in free energy. If the temperature of the cluster rather than its total energy is under experimental
control, the heat capacity has to be positive. Solid-like regions of phase space are associated with restricted
motion in low-energy minima. In contrast, liquid-like regions of phase space are associated with passage
between a multitude of higher energy, disordered minima. For an isolated cluster at constant total energy,
the kinetic energy is larger when the system is associated with a low-energy, solid-like minimum and smaller
when it visits liquid-like regions of phase space with higher potential energy. When the total energy is small,
the system simply vibrates in a particular low-lying potential well. As the energy rises, the amplitude of the
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vibrations increases until eventually the cluster can escape to regions of the potential energy surface that
correspond to liquid-like behavior. However, the mean kinetic energy, and hence our measure of the internal
temperature, can decrease when this happens.

In this study we would like to look at the melting behavior of heterogeneous clusters using molecular
dynamics simulations. The heterogeneity is introduced by changing the sizes of some atoms in the cluster
and consequently the packing and hence the thermodynamic stability should be strongly affected. By
systematically analyzing the melting of such clusters as functions of the size ratio as well as the relative
strength of interactions we aim to understand the structural transitions in binary systems.

Method

The molecular dynamics simulation method is one of the most important statistical mechanical computer

simulation techniques used to study many-particle systems35−36. The behavior of a macroscopic system is
usually too intricate for analytical statistical mechanical treatment. Computer simulations have been widely

used to study the structural and dynamical equilibrium and nonequilibrium properties of chemical systems37 .
The fundamental aim of the dynamics simulation technique is to define a real system via a mathematical
model. Based on this model the time evolution of the particles is then numerically calculated using classical
or quantum-mechanical methods. Then the outcome of computer experiments is statistically analyzed. The
calculated observables can be directly related to real experiments and to the results from analytic theory.

Therefore, computer simulations provide information for both experimental and theoretical studies38.

The MD method39 computes a trajectory of a N-particles system by solving Newton’s equations of
motion. A system of N-particle is positioned within a cell of fixed volume with the initial positions of the
particles exactly known. The initial velocities can be zero or can be obtained from the Maxwell distribution of
velocities. The subsequent trajectories of the particles are then calculated by stepwise numerical integration

of the classical equations of motion (Newton’s equation of motion). The particles are supposed to interact

through some prescribed force and at each step the force acting on each particle is calculated from the

interaction potential of the system. The length of the time step (about 10−15 s, which is shorter than the

average time between collisions) usually depends on factors such as temperature, density, particle masses

and the nature of the force employed. In MD, the total energy of the system is constant. The states
arising at each step of calculation represent a sample from the microcanonical ensemble where the number
of particles, volume, and total energy are constant. The solution of the equations of motion is an efficient
way of sampling phase space along a surface of constant total energy. The thermodynamic properties of the
system are then calculated as averages over time. The LJ model potential, which parameterizes a spherical
intermolecular interaction potential in terms of a molecular size parameter, σ, and an attractive potential
well-depth constant, ε, is used to represent used the interaction between the atoms in the cluster.

The LJ potential is given as

ULJ (rij) = −4ε

((
σ

rij

)2

−
(
σ

rij

)12
)

(2)

where σ is the hard-sphere diameter and the ε is the energy parameter.

Interactions between unlike atoms in different molecules can be approximated using the venerable
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Lorentz-Berthelot mixing rules38. In a binary AB mixture, the cross terms are given by

σAB =
1
2

[σAA + σBB] (3)

εAB = [εAA + εBB ]
1
2 (4)

Calculations

In this work, clusters containing 10-20 atoms are studied. Binary mixtures are obtained by changing the hard-
sphere diameters, σ, of approximately half of the total number of atoms so that the number fractions of the
different types of atoms are kept around 0.50. The interaction energy parameter ε of the LJ potential is also
kept constant during the variation of σ. The initial geometry of various size clusters is taken as one of their
minimum energy configurations and initial momenta are assigned in such a way that total momentum is zero.
Even for pure LJ clusters, the number of minima along the potential-energy-surface increases exponentially
with size. For heterogeneous clusters, this number is even larger. Therefore our starting configuration is
possibly not the global but one of the many low-lying local minima. However, our simulations are not strongly
affected by the choice of the initial geometry. The basic reason for choosing a minimum configuration and
zero momentum as explained below is to generate nonrotating clusters. The rotation of clusters around their

moment of inertia axes causes additional complications and they are excluded.40 Starting from the minimum
energy, the total energy of the system is increased systematically. At each energy the system is brought to

equilibrium by 5 × 105 time steps of integration. The number of integration steps is optimized as 500,000
steps. Our program simulates binary LJ clusters, and computes internal temperatures and Lindemann
factors for components A and B and the total cluster. A 4-point constant time-step Runga-Kutta integrator

is used to solve the coupled equations of motion. In the microcanonical ensemble (simulations are carried out

at constant energy) it is important to determine the corresponding temperature. The total internal energy

of a system can be written as a sum of kinetic and potential energy contributions and the temperature of
the system is proportional to its average kinetic energy, <EK>:

T =
2

3N − 6
Ekin
kB

(5)

where kB is the Boltzmann constant, and 3N − 6represents the total number of internal degrees of freedom.

To find the minimum energy configurations of the clusters, David Wales’s optimization program 41 OPTIM
has been used. The minimum energy configurations obtained this way have been inputted as starting points
for the further MD calculations. For small N, the overall rotation of the clusters induces a Coriolis force.
The Coriolis force acts on every molecule with a mass and velocity. The effect of this action is a distortion
of the molecular trajectory from that of a nonrotating cluster. It is expected that its influence will be

greater for smaller than for larger clusters. The influence of the Coriolis force disappears as 1/N. In our

calculations we have used nonrotating clusters in order to eliminate the effects of the rotational motion on
melting. To achieve zero angular momentum conditions, the normal modes of the cluster are calculated.
Among these modes, three have nonzero linear momentum corresponding to translational motion. Three
have zero linear and nonzero angular momentum corresponding to rotational modes. The remaining 3N-6
modes are vibrational ones and they all have zero angular momentum. The eigenvectors of these modes can
be simply used to describe initial momentum distribution of nonrotating clusters.
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We have monitored the Lindemann factor in each trajectory to locate the melting point of various
clusters. Lindemann factor can be defined in the form of fluctuations of distances between atoms or molecules:

δ =
∑(

< r2
ij > − < rij >

2

< rij >

)
(6)

For δ < 0.1, it is said that the cluster is a solid and for values δ > 0.1 the cluster is a liquid42. Phase
transition is observed in the region where δ varies between 0.1 and 0.3. Finally, throughout the discussion, we
have used generalized units where the mass, ε and σ of one component is assumed to be 1.0. Temperatures
are then also defined in these units and they have to be scaled with actual parameters of a LJ system in
order to convert into Kelvins.

Results and Discussion

In this work we attempted to understand the melting and phase coexistence behavior for binary LJ clusters
as a function of different interatomic forces and atom sizes. Small clusters containing 10-20 atoms are known
to exhibit very interesting behaviors upon heating and the physical properties may change drastically when
the number of particles is increased slightly. This is related to the drastic changes in the topology of the

potential energy surfaces (PES). The complexity of these surfaces seems almost independent of the number

of atoms in a cluster and they can be even more complex if the composition and the sizes of the constituent
atoms are changed. Finding the global minima and the other low-lying minima are the most important
part of cluster studies. The relative stabilities of the low-lying potential energy minima of the clusters are
highly dependent on the relative interatomic forces, which can be controlled by changing the potential energy
parameters εA and εB , and the atomic sizes, which can be controlled by the size ratio of the atoms of type

A and B. In our calculations the ratio (σB/σA) is varied between 0.55 and 0.95 for the binary mixtures and

the ratio is 1 for the homogeneous clusters. For every parameter set, we used a single trajectory to obtain
melting points. Even though the trajectory is integrated for a long time and sampled sufficiently, there exist
fluctuations, especially in the phase transition regime. They are expected as the cluster oscillates between

two phases (phase coexistence).

In Figure 1, we plotted δ versus average temperature of the homogeneous clusters equilibrated at
different energies starting from the global minimum structures. The size of the clusters was changed between
10 and 20. Upon heating the clusters, sudden changes in the slopes of the curves were observed implying
phase transitions from solid to liquid structure. The melting temperatures of these systems were obtained
from the midpoints of the transition regions. The determined values for the melting temperatures are
approximate because of the finite size effect in small clusters. For some N values, the transition curves are
different from the others. Some show very sharp transition whereas others have a very broad transition

range. In the literature, the 13 atom Lennard-Jones cluster (LJ13) system is one of the most studied cluster

systems, especially for argon clusters since it is a representative of clusters with a single funnel PES and has
an icosahedra global minimum. It has been noted that a consistent determination of the melting temperature
was not possible for the Ar13 cluster if the heating rate is low since there exists a broad coexistence region
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Figure 1. Change in Lindeman factor with average temperature in homogeneous clusters for different cluster sizes.

A) N = 10, B) N = 11, C) N = 12, D) N = 13, E) N=14, F) N = 15, G) N = 16, H) N = 17, I) N = 18, J) N = 19,

K) N = 20.
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of liquid and solid phases for these clusters. The heating of a cluster system is achieved by increasing the
total energy of the system starting from the minimum energy in the constant energy MD simulations. The
energy range scanned is also important. In this study, the energy is increased until the liquid phase is

obtained or the phase transition curve (δ vs. temperature or δ vs. energy curves) stays almost flat around

a δ value, which is above 0.3. For all clusters sizes and for all size ratios, a phase transition is observed.
The effect of the size parameter can be observed in Figure 2. For all clusters, the melting point of the
homogeneous system is higher than the melting points of the mixtures and it oscillates when σB is lowered.
The 13-atom cluster is the only one showing a regular increase upon increase of σB. In the Table, we present

the change in the total energy of the system at the melting point with cluster size (N) and the size of the B

component (σB).

Table. Change of melting temperatures with N and σB.

σB N = 10 N = 11 N = 12 N = 13 N = 14 N = 15
0.50 0.319 0.140 0.220 0.235 0.342 0.444
0.55 0.321 0.283 0.225 0.293 0.255 0.341
0.60 0.275 0.285 0.230 0.253 0.278 0.253
0.65 0.320 0.284 0.257 0.272 0.245 0.225
0.70 0.160 0.196 0.265 0.344 0.320 0.251
0.75 0.093 0.125 0.181 0.418 0.300 0.292
0.80 0.210 0.171 0.264 0.475 0.260 0.270
0.85 0.248 0.130 0.250 0.485 0.275 0.385
0.90 0.300 0.255 0.265 0.517 0.260 0.345
0.95 0.347 0.288 0.345 0.488 0.260 0.400
1.00 0.331 0.350 0.389 0.515 0.440 0.390

σB N = 16 N = 17 N = 18 N = 19 N = 20
0.50 0.390 0.320 0.290 0.276 0.400
0.55 0.234 0.375 0.280 0.330 0.407
0.60 0.272 0.210 0.265 0.360 0.300
0.65 0.304 0.250 0.275 0.230 0.245
0.70 0.270 0.248 0.273 0.360 0.300
0.75 0.400 0.300 0.307 0.272 0.369
0.80 0.300 0.280 0.346 0.430 0.300
0.85 0.358 0.300 0.420 0.525 0.400
0.90 0.400 0.410 0.430 0.552 0.486
0.95 0.410 0.410 0.440 0.525 0.530
1.00 0.411 0.437 0.495 0.536 0.553

In Figures 2 and 3, the change in melting temperature with cluster size and with size ratios is given.
The melting points of the N = 13 clusters violate the general tendency that the melting point increases with
cluster size, especially in the 0.7 < σB < 1.0 region. The A7B6 type mixed LJ13 clusters are known to have
very interesting potential energy surfaces with a large number of close-lying low-energy minima, which are
separated by large energy barriers; each of the low-lying structures is one of a set of icosahedra isomers.
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Figure 2. Change in melting temperature with cluster size for A) σB = 0.5, B) σB = 0.55, C) σB = 0.6, D) σB =

0.65, E) σB = 0.7, F) σB = 0.75, G) σB = 0.8, H) σB = 0.85, I) σB = 0.9, J) σB = 0.95, K) σB = 1.0.
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Figure 3. Change in melting temperature with increasing σB.

The effect of the ε, the energy parameter of the LJ interaction potential can be seen for 10- and
20-atom clusters in Figure 4. The melting points of the two different clusters show similar trends upon

increasing ε. The melting points increase as the εA/εB ratio increases as expected. This increase is sharper

for the 20-atom cluster.
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Figure 4. Change in melting point with εB/εA

Between the two extremes is a range of energies for clusters at constant energy in which some clusters
exhibit a remarkable phenomenon: they spend long intervals of time as solids, then more or less at random
jump into the liquid form for rather long periods, then turn back into solids and so on. This is called
phase coexistence, which is characteristic for clusters. Some clusters display such coexistence. Coexistence
is independent of cluster size. For example, in Ar13 clusters, coexistence involves the accessibility of distinct
sets of minima with rather different energies. The minima associated with solid-like behavior are more
compact and lower in energy, while those associated with liquid-like behavior involve more open structures,
which lie higher in energy. Ar15 and Ar19 clusters give a clear indication of two-phase coexistence but
Ar17 clusters show both stiff and soft solid forms. To observe phase coexistence behavior, we monitored
the short-time averages of the kinetic energy to see whether a bimodal distribution in a finite energy range
exists, implying that there is a dynamical coexistence of a hot solid-like phase and a cold liquid-like phase in
the above energy range. In this energy range the clusters are supposed to make dynamic excursions between
two distinct regions of phase space with different characteristics, solid-like and liquid-like. However, we were
unable to see this behavior for all clusters of various sizes and size ratios.

Conclusions

The melting behavior of one component and two component LJ mixtures is studied by classical simulation
techniques. Cluster size is varied between 10 and 20. These small clusters are equilibrated at different regions
of the microcanonical energy surface starting from the minimum energy configuration. Energy is increased
constantly, i.e., the system is heated until melting occurs. The phase transition from solid type phase to liquid

type phase is observed by monitoring the Lindemann index (δ). By plotting δ as a function of the average

kinetic energy, the melting, temperature of a given cluster is found. When the cluster size is increased, the
systems become more stable and the energy is reduced. As a result of this, melting temperature is lowered.
The melting temperatures of the finite-sized clusters are said to be higher than those of the corresponding
bulk melting temperatures. The melting points of the clusters show no correlation with the energy of initial
optimized structures. Clusters show similar trends when one component is smaller than the other. The
plots of melting temperature versus size of the component B show no general trends. In these plots one
thing is clearly seen: the melting points of the mixtures are approximately the same or lower than those
of the homogeneous clusters. The structures of homogeneous clusters go to fcc as the size increases and
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fcc corresponds to the packing with the least empty space and the nearest neighbor distances are almost at
the minima of the LJ interaction. Therefore, the interactions in the homogeneous clusters are stronger and
the melting points are higher. As the heterogeneity increases, the atoms move away from their positions
at the minima of the potential. This observation may of course change if the interaction parameter for

BB is very large. It is interesting to note that the melting temperature for homogeneous systems (σB =

1.0) or binary mixtures (σB < 1.0) containing 13 atoms behaves differently in the range where σB changes

between 0.7 to1.0. These clusters have higher melting points than the rest of the clusters and they have
comparable melting points with N = 20 clusters. The observed irregularities in melting points for some N

values (including N = 13) are attributed to the formation of high symmetry structures. Another parameter

that affects the melting temperature is the LJ potential parameter, ε. If ε for one of the component is
increased, the average kinetic energy and also the melting temperature are increased. This increase in
the temperature is larger for larger clusters. This is, of course, not a surprising result but it gives us the
opportunity to test the reliability of the method we used and the numerical results of the simulation. In
conclusion, the cluster mixtures melt at lower temperatures than the homogeneous clusters. The effect of
the size difference between the atoms in the cluster is not easily predictable for small clusters and it shows
oscillatory behavior as a function of size.
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