Turk J Chem 24 (2000) , 381 – 388. © TÜBİTAK

X-RAY Powder Diffraction and IR Study of Calcium Borophosphate, CaBPO₅

A. BAYKAL, G. GÖZEL, M. KIZILYALLI*

Department of Chemistry Middle East Technical University, Ankara-TURKEY

M. TOPRAK

Royal Institute of Technology, Department of Material Science and Engineering, Materials Chemistry Division, Stockholm-SWEDEN

R. KNIEP

Max-Planck-Institut Für Chemische Physik Fester Stoffe im VEM-Sachsenwerk Pirnaer Landstr. 176 D-01257 Dresden-GERMANY

Received 20.07.1999

In this study, $CaBPO_5$ was synthesized by different solid state reactions than reported before and its X-ray powder diffraction and IR data were reported. In one of these solid state reactions BPO_4 was used as a phosphating agent.

The examination of the X-ray powder diffraction data showed that this compound crystallized in a hexagonal system and the refined unit cell parameters were a = 6.684, c = 6.616(2) Å, with Z=3 as reported before. From the observed reflections, the space group was determined as P3₁21, and its density was found to be 3.15 g/cc. The X-ray powder diffraction and IR data, which were in agreement with the reported crystal structure, are given the first time in this work.

Key Words: Ca, Phosphate, Borophosphate, **CaBPO**₅, X-ray Powder Diffraction, and Crystal structure

Introduction

Alkaline-earth borophosphates are interesting solid-state materials which have an isoelectronic relationship with silicates. These materials are biocompatible with the living body, so they are called bioceramics. The crystal structure of these alkaline earth borophosphates has been solved and reported by Gözel¹ and Kniep et al.² for the first time in the literature. The infrared studies of these materials have not been reported before. The lack of vibrational spectra can lead to a misinterpretation of their X-ray powder diffraction data.

Most of the best-known materials with optical and electro-optical applications are either borates or phosphates³. Names such as BBO (β -BaB₂O₄)⁴, LBO (LiB₃O₅)⁵, KTP (KTiOPO₄) and KDP (KH₂PO₄)⁶ are well-known commercially and are heavily used industrially for making a range of different optical

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

elements. In the last couple of years, the first few compounds combining both borate and phosphate groups were synthesized and structurally characterized. High temperature syntheses have produced a handful of metal borophosphates, all of main group metals.

Rulmont and Tarte⁷ were able to synthesize $LnBSiO_5$ and $LnBGeO_5$, which have stillwellite (CeBSiO₅) structure. These compounds received some attention in connection with the hydrothermal crystallization of a radioactive waste storage glass.

As has been stated before² in the field of microporous solids, the intermediate phases of $M_2{}^I O M^{II} O B_2 O_3 - P_2 O_5$ (-H₂O) systems (M^I = alkali metal, M^{II} = alkaline earth metal) have been "forgotten". Bauer^{8,9} reported the synthesis and X-ray diffraction patterns of the isostructural (hexagonal) phases $M^{II}[BPO_5]$ (M^{II} = Ca, Sr, Ba). PbBPO₅ has been synthesized and characterized by Rulmont and Tarte¹⁰.

Ca[BPO₅] was obtained as a single-phase microcrystalline powder using solid state reactions at 900°C by Gözel¹ and Kniep et al.², but Sr[BPO₅] was not successfully obtained as a single phase. ¹¹B and ³¹P Mass-NMR spectroscopy showed that Ca[BPO₅] was nearly pure but Sr[BPO₅] contains β -Sr₂P₂O₇ and BPO₄ as impurities¹¹.

Ramamoorthy and Rockett¹² confirmed the existence of Ca[BPO₅] from phase equilibria studies on the system CaO-B₂O₃-P₂O₅ at 900°C. Sedmale et al.¹³, using the BaO.B₂O₃.P₂O₅ system, prepared a glassy compound. After Gözel's study¹ on the crystal structure solution of MBPO₅, Shi Y. et al.¹⁴ studied the crystal structure and thermal decomposition of BaBPO₅ by X-ray diffraction and vibration spectroscopy and found that the decomposed products are Ba₃BP₃O₁₂ and Ba₂P₂O₇. The structure of BaBPO₅ is refined by the Rietveld technique, which indicates that the structure units of this compound are PO₄ and BO₄ tetrahedra as well as irregular rare earth polyhedra.

The aim of this work is to synthesize $Ca[BPO_5]$ by different solid state reactions and confirm the reported structure by indexing X-ray powder diffraction data and interpreting the IR data.

Experimental

Substances

CaHPO₄.2H₂O, H₃BO₃, B₂O₃, CaCO₃ (From Aldridge), and BPO₄ (prepared in our laboratory).

Instrumentation

X-ray powder diffraction patterns (XRD) were taken by Philips diffractometer with PW 1050/25 goniometer and Co (K α 30-40 kV, 10-20 mA, $\lambda = 1.79021$ Å) radiation, and by Huber Diffractometer with Cu (K α_1 30-40 kV, 10-20 mA, $\lambda = 1.54059$ Å).

A Nicolet 510 FTIR Infrared Spectrometer was used in the region 400-4000 cm⁻¹. Spectra of solid samples were obtained from KBr pellets with 100:30 (wt/wt) KBr to product ratio.

The solid state reactions were carried out in air with the aid of Heraous, SFL West-6100, and Ney 2-525 furnaces. Heating range was 550-1500°C using Cr-Ni-Cr and Rh-Pt-Rh thermocouples and controller.

Procedure

The synthesis of $CaBPO_5$ was attempted with three different sets of starting materials. The reactants were weighed separately and ground together in an agate mortar. Then the mixture was transferred into a porcelain crucible, weighed again and put into a furnace for heating.

i. In the first method, for comparison purposes, the compound was synthesized by heating CaHPO₄.2H₂O with H₃BO₃ at 600°C for 6 h and then at 900°C for three days using the procedure of Bauer et al.^{8,9} and Gözel¹. The reaction was as follows:

$$CaHPO_4.2H_2O(s) + H_3BO_3(s) \longrightarrow CaBPO_5(s) + 4H_2O(g)$$

ii. The reaction reported above was repeated by using B_2O_3 instead of H_3BO_3 . The reactants were heated at 900°C for 3 days. The reaction is given by the following equation:

$$2CaHPO_4.2H_2O(s) + B_2O_3(s) \longrightarrow 2CaBPO_5(s) + 5H_2O(g)$$

iii. The third method is reported for the first time in this work. BPO_4 was previously synthesized and used in the following reaction. The mixture of reactants was heated at 900°C for 4 days. The predicted reaction is as follows:

$$CaCO_3(s) + BPO_4(s) \longrightarrow CaBPO_5(s) + CO_2(g)$$

Results and Discussion

In the first and second method, $CaBPO_5$ was obtained successfully. Theoretical and experimental weight losses were in agreement, which were 31% and 30.7% for the first reaction, and 21.75 and 22.4% for the second, respectively.

In the X-ray powder pattern of the product obtained by the third method, together with $CaBPO_5$, weak lines of BPO_4 were also observed. The theoretical and experimental losses were in agreement, which were 21.3% and 21.7% respectively. The X-ray powder indexing data and the X-ray powder diffraction patterns of the samples obtained in experiments **i**, **ii** and **iii** are given in Table 1 and Figure 1 respectively.

There was good agreement between the X-ray powder patterns obtained by different solid state reactions. CaBPO₅ obtained using the reaction in the first experiment was indexed in the hexagonal system with the unit cell parameters a = 6.684(2) and c = 6.616(2) Å, and space group P3₁21, which were in good agreement with the reported data^{1,2}.

X-RAY Powder Diffraction and IR Study of Calcium..., A. BAYKAL, et al.,

 $\mathbf{Figure}~\mathbf{1.}$ The X-ray Powder Diffraction Patterns of Experiments i, ii, and iii

Exp.i		Exp. ii		Exp. iii		
I/I_o	d(Å)	I/I_o	d(Å)	I/I_o	d(Å)	hkl
13	4.3355	14	4.3410	12	4.3589	$1 \ 0 \ 1$
				39	3.6301	BPO ₄
80	3.3337	94	3.3254	72	3.3337	1 1 0
4	3.2132	8	3.2113	7	3.2110	BPO_4
30	2.9767	8	2.9768	36	2.9849	111
75	2.8904	80	2.8889	96	2.8811	2 0 0
100	2.8674	100	2.8736	100	2.8735	$1 \ 0 \ 2$
5	2.6490	5	2.6489			$2 \ 0 \ 1$
17	2.3490	17	2.3490	19	2.348	$1 \ 1 \ 2$
		12	2.1986			003
				19	2.253	BPO_4
15	2.1878		2.1980			$2\ 1\ 0$
17	2.1789	20	2.1773			2 0 2
35	2.0765	36	2.0792	24	2.08	$2\ 1\ 1$
4	1.9304	4	1.9483			$3\ 0\ 0$
		4	1.8521			$3\ 0\ 1$
69	1.8248	70	1.8234	60	1.8248	$2\ 1\ 2$
8	1.6671	14	1.6660	6	1.6665	$3\ 0\ 2$
8	1.6060	14	1.6049	9	1.6049	$3\ 1\ 0$
3	1.5904	4	1.5904	7	1.5904	104
		2	1.5606	7	1.5606	$3\ 1\ 1$

Table 1. X-ray Powder Diffraction Data of $CaBPO_5$

Gözel¹ and Kniep et al.² solved the crystal structure of CaBPO₅ by Rietveld Refinement (Fig 2). The unit cell parameters are given in the Table 2. After the refinement, the "c" parameter was obtained as half of the Bauers parameter^{8,9}. The unit cell parameters obtained in this work are in close agreement with the parameters obtained by Gözel¹ and Kniep et al.² as given in Table 2. In Table 3, the comparison of the hexagonal cell parameters of CaBPO₅, PbBPO₅, PbBAsO₅, LaBGeO₅ and PrBGeO₅, which have stillwellite structures, are given. All of them confirmed the unit cell parameters given by Gözel¹ and Kniep et al.² and those reported in this work.

Table 2. The unit Cell Parameters of $M^{II}BPO_5$ Compounds.

	$\mathbf{Bauer}^{8,9}$		$\mathbf{G\ddot{o}zel}^{1}$		This work	
Compound	a (Å)	c (Å)	a (Å)	c (Å)	a (Å)	c (Å)
$CaBPO_5$	6.688	13.234	6.6799	6.6121	6.684	6.616

Table 3. Comparison of the Cell Parameters of XBYO₅ (X:Ca, Pb, La, and Pr; Y:P, As and Ge)

Compound	a (Å)	c (Å)
$CaBPO_5$	6.684	6.616
\mathbf{PbBPO}_5^9	6.91	6.871
\mathbf{PbBAsO}_5^9	7.113	6.942
$LaBGeO_5^7$	6.992	6.863
$PrBGeO_5^7$	6.935	6.808

IR Study of CaBPO₅

The IR spectra of the products obtained in experiments i, ii and iii are given in Fig 3. and the observed bands together with the assignments are listed in Table 4.

Figure 2. The Crystal Structure of CaBPO₅ Projected Along the c-axis Showing the Infinite Loop-Branched Chain of BO_4 and PO_4 Tetrahedra.

X-RAY Powder Diffraction and IR Study of Calcium..., A. BAYKAL, et al.,

Figure 3. The IR Spectra of $CaBPO_5$

Assignment	Frequency (cm^{-1})
ν P=O	1230, 1213
ν_3 (BO ₄)	1185.1120.1100

1068

971

899

841,796

750,700

673

 $\frac{588}{627,517,\,439}$

485, 439, 426

 ν_3 (PO₄)

 $\nu_{as} (POP)$

 $\frac{\nu_s \text{ (BOP)}}{\nu_s \text{ (POP)}}$

 δ (OPO)

 $\frac{\nu_4 \text{ (BO_4)}}{\nu_4 \text{ (PO_4)}}$

 ν_1

 ν_1

 ν_{as}

 (PO_4)

 (BO_4)

(BOP

Table 4. IR Assignments of CaBPO5

The IR spectra of CaBPO₅ contains bands in the 1185-900 cm⁻¹ region which are characteristic of tetrahedral BO₄ groups, but in this region of the spectra, there are also broad bands centered around 1100-970 cm⁻¹ due to the phosphate anion¹⁴⁻¹⁶. Strong absorption band at 1230 cm⁻¹ and a weaker band at 1213 cm⁻¹ may be assigned to P=O nonbridging and stretching vibrations¹⁷. Bands between 850 and 750 cm⁻¹ were assigned as ν_{as} B-O-P and ν_s B-O-P stretching vibrations. B-O-B and B-O-P bending motions^{18,19} were reported between 700 and 670 cm⁻¹ and δ O-P-O in borophosphates appeared at around 588-547 cm⁻¹. The low frequency side of the spectrum can be attributed to the ν_4 and ν_2 regions of the PO₄ and BO₄ tetrahedra¹⁹. Due to instrumental limitations it was not possible to observe the ν_2 region.

Structure Description for CaBPO₅

The crystal structure of $CaBPO_5^2$ projected along c-axis showing the infinite loop-branched chain of BO₄ and PO₄ tetrahedra in the hexagonal cell is given in Fig. 2. It can be described as an infinite chain of B tetrahedra each of which is connected by its free vertices two P tetrahedra, as reported by Gözel¹.

Conclusion

In this work, $CaBPO_5$ was prepared by three different solid-state reactions. The powder data of the products were found to be the same. The X-ray powder diffraction pattern and indexing of the powder data of $CaBPO_5$ was presented for the first time in this work. The method given in experiment iii, using BPO_4 as a phosphating agent for $CaCO_3$, resulted in $CaBPO_5$, which was pure enough for comparison purposes. The IR spectra of $CaBPO_5$ was also discussed and assignments were made which are in agreement with the structure.

Acknowledgements

The authors would like the thank the TÜBİTAK Münir Birsel Foundation of Turkey for a grant; Anorganische Chemie II, Eduard Zintl Institute, Darmstadt, Germany for providing research facilities; and METU AFP No:98-06-02-00-06 and the Volkswagen Foundation for financing the X-ray powder diffractometer.

References

- G.Gözel, "Preparation and Structural Investigation of Alkaline-Earth Borophosphates", Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 1993.
- R.Kniep, G.Gözel, B.Eisenmann, C.Röhr, M.Ashbrand, M.Kızılyallı, Angew. Chem. Int. Ed. Eng., 33, 749-751, 1994.
- 3. P.B.Bontchev, and S.C.Sevov, Inorganic Chemistry, 35, 6910-6911, 1996.
- 4. S.P.Velsko, M.Webb, L.Davis, and D.Huang, IEEE J. Ouant. Electron., 27, 2182-2192, 1991.
- 5. C.Chen, Y.Wu, and R.Li, Journal of Crystal Growth, 99, 790, 1990.
- T.Y.Fan, C.E.Huang, B.Q.Hu, R.C.Eckhardt, Y.X.Fan, R.L.Bayer, and R.S.Feigelson, Appl.Opt., 26, 2391-2394, 1987.
- 7. P.Tarte, U.W.Schroder, C.R. Acad. Sc. Paris Serie II, t295, 351-354, 1982.
- 8. H.Z.Bauer, Anorg. Allg. Chem., 337, 183-190, 1965.
- 9. H.Z.Bauer, Anorg. Allg. Chem., 345, 225-229, 1966.
- 10. A.Rulmont and P.Tarte, Journal of Solid State Chemistry, 75, 244-250, 1988.
- A.R.Grimmer, D.Müller, G.Gözel, and R.Kniep, Fresenius Journal of Analytical Chemistry, 357, 485-488, 1997.
- 12. T.Ramamoorthy, and T.J.Rockett, Journal American Ceramic Society, 57, 501-503, 1974.
- G.Sedmale, J.Vaivads, U.Sedmalis, V.O.Kabanov, and O.V.Yanush, Journal of Non. Crys. Solids, 129, 284-291, 1991.
- Y.Shi, J.K.Liang, H.Zhang, Q.L.Liu, X.L.Chen, J.LYang, W.D.Zhuang, and G.H.Raa, Journal of Solid State Chemistry, 135(1), 43-51, 1998.
- 15. N.N.Ray, Inorganic Polymers, Academic Press, London, 1978.
- 16. Montagne L., Palavit G., J. Non. Cryst. Solids, 155, 115-121, 1993.
- 17. A.Osaka, K.Takashi, M.Ikeda, J. Mat. Sci. Letters, 3, 36-38, 1984.

X-RAY Powder Diffraction and IR Study of Calcium..., A. BAYKAL, et al.,

- 18. E.A.Porai-Koshits, V.V.Globukov, A.P.Totov and J.Vasilevskaya, J. Non. Cryst. Solids, 49, 143-56, 1982.
- A.Baykal, "Synthesis and Characterization of Alkaline Earth and Rare Earth Borophosphate Compounds" PhD Thesis, Chemistry Department, Middle East Technical University, Ankara, Turkey, May, 1999.