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The Hiickel molecular orbital spectra (HMO) of Hiickel- and Mébius-type cyclacenes having 3-15
benzenoid rings were investigated and it was found that certain eigenvalues are topologically invariant,
whereas others exhibit topological periodicity. For example, Hiickel-type cyclacenes having 2r (r: 2,3,4,...)
benzenoid rings which possess nonbonding molecular orbitals (NBMO) and are thus expected to be open
shell structures.

Introduction

Acenes and cyclacenes are structurally interrelated condensed aromatics!. The latter compounds (Fig.1)
could be considered topologically to be cyclic acenes. Acenes, being cata-condensed aromatics, are character-
ized by the property that no carbon atom belongs to more than two rings, thus implying that every carbon
atom is on the periphery of the conjugated system. In other words, the topology of the cata-condensed
hydrocarbons is determined by the requirement that no two rings possess more than one common edge and

no three rings possess a common vertex?~>.

Figure 1. a) Hiickel-type cyclacene skeleton, b) Mébius-type cyclacene skeleton.

It is evident that in acenes, one sextet of m-electrons (Clar’s sextet !) is shared among several rings,
which must necessarily lead to a gradual loss of benzenoid characteristics in higher acenes, and that with
an infinite number of rings, the system becomes a cyclic polyene in which one sextet is not sufficient to give
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any degree of stability!. Hence, acenes are not fully benzenoid compounds; that is, a Clar’s formula without
double bonds does not exist 6.

Acenes and Hiickel-type cyclacenes are even alternant systems’. The main topological difference
between them is the cyclic nature of cyclacenes, which is responsible for the existence of two more ring
systems, the top and bottom polyene rings (peripheres) present in the cyclacene structure (see Figure la).

Because of their cyclic nature, cyclacenes may be considered continuous ring systems. Moreover, the

presence of annulenic peripheries implies that cyclacenes possess interesting properties®.

Graph theory has been employed as a useful tool for the study of those properties of molecules which
depend only upon their topologies. It is known that graph theory, when applied to the investigation of
conjugated hydrocarbons, is fully equivalent to a simple HMO treatment®'%!'  In particular, the HMO
energies, in units of 8, are identical to the eigenvalues of the adjacency matrix of the corresponding graph of
the molecule being considered. It is known that, in many cases, the entire spectrum of one graph is contained
in the spectrum of another, larger graph!?. In such a case, the larger (composite) graph and the smaller
(component) graph are said to be subspectral. Various methods have been reported for the investigation of

subspectral graphs2-17,

The investigation of subspectral structures embedded in cyclacenes would be interesting because of
the remarkable topology of the latter class of compounds.

In the present study, Hiickel molecular orbital spectra of various cyclacenes were investigated, and
some subspectral structures (components) were identified.

Results and Discussion

Hiickel- and Mobius-type cyclacenes are determined by the number of phase dislocations (k). If the number
is even, the Hiickel-type arises; if not, the Mobius type arises. In the present study, only the systems having
k=0 and 1 were considered. For the purpose of investigation of HMO eigenvalues of cyclacenes, a computer

8

program written by Lowe!® was used.

Hiickel-Type Cyclacenes

Cyclacenes having R benzenoid rings belong to the D,gp, point group and thus possess various elements of
symmetry. In such a symmetrical structure it is possible to identify various embedded component graphs,
some acting a repeating units.

Since cyclacenes are even alternant hydrocarbons, their molecular orbital energies (X;) are symmetri-
cally distributed about the zero level. These energies are for the most part doubly degenerate except in few
cases (2.5615 and 1.5615 3). All the molecular orbitals having energies (in 3 units) 2.5615 > X; > 1.5615
have the associated orbitals characterized by X; such that X j = Xi—1; thus 1.5615 > X; > 0.

Invariant Eigenvalues

The adjacency matrices of all Hiickel-type cyclacene molecular graphs are characterized by the property
that they possess two common eigenvalues, 2.5615 and 1.5615 ((17)%/2 £ 1)/2), which are interrelated by
a difference of 1.0000. The first corresponds to the energy (X;) of the deepest-lying molecular orbital.
Topologically, its lowest bound is estimated to be 2.5495 the formula!”
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X? >= mean d? (1)

where d; is the degree of vertices in the graph. Note that in the structures of cyclacenes there exist only two
kinds of vertices, having degrees of two and three (d2 and d3). The number of vertices of each type is given
as 2R, whereas the total number of vertices is expressed as 4R, where R is the total number of benzenoid

rings. The invariant eigenvalues of cyclacenes are nondegenerate.
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Figure 2. HMO spectra of certain Hiickel cyclacenes. Energy levels drawn with thick lines are doubly degenerate,
those with thin lines are nondegenerate. Numbers on the lines represent the degeneracy of the corresponding energy

level.

Topologically Periodic Eigenvalues

Certain eigenvalues of cyclacenes exhibit periodicity depending on the topology. For instance, in the spectra
of cyclacenes X = 2.000 3 appears whenever the number of benzenoid rings, R, becomes 4,8,12,...,4r where
r = 1,2,3 etc. (periodicity of 4, see Figure 2.). The corresponding orbitals are doubly degenerate. The

occurrence of periodic eigenvalues of cyclacenes can be explained on the basis of the existing two-fold
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symmetry element'?. For example, in the case of a cyclacene with R = 8, the vertical symmetry plane,
0., bisects the molecule into two halves such that anthracene energies are embedded in the spectra, which
include X = 2.000 8 and X = 1.000 3. The last eigenvalue possessess a periodicity of 2; thus it appears in the
spectra of cyclacenes having R = 4,6,8,...2r (r = 1,2,3...) etc. However, the degeneracy varies alternately.The
cyclacenes characterized by R = 4r (r = 1,2,3...) exhibit triple degeneracy whereas those having R = 4r +
2 possess a nondegenerate orbital for X = 1.000 3.

Similarly, tetracene, pentacene and hexacene energies survive in cyclacenes having R = 10,12 and 14,
respectively.

As the cyclacene structure increases in size, some other systems, such as those with R = 13, 15 which
do not fit the 4r or 4r + 2 type exhibit some roots nearly equal to the above-mentioned eigenvalues (1.000
and 2.000) (see Figure 2), implying that the regular periodicity of certain eigenvalues should virtually appear
to be changed such that R > 15.

Perhaps the most interesting feature of cyclacenes lies in the existence of degenerate NBMOs in certain
members of the family (R = 4,6,8,...2r; r = 2,3,4,...). The occurrence of NBMOs in those systems cannot
be due to certain embedded structures interrelated to the composite molecular graph through a symmetry
operation involving o, (vertical plane of symmetry). On the other hand, o5, (horizontal plane of symmetry)
produces two ring systems (peripheries), which are actually polyene rigns (see Figure 3).
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Figure 3. Periphery of a cyclacene molecule

When R = 4,6,8,...2r, each of the peripheries of the corresponding cyclacenes possessess 8,12,16,...4m
carbon atoms, respectively. The peripheries of cyclacenes may be considered to be special types of the
corresponding annualenes. It is known that although 4m annulenes are even alternant hydrocarbons, they
are characterized by the existence of supernumerary nonbonding molecular orbitals!®. It is clear that these
cyclacenes are expected to be open shell structures within the constraints of HMO theory.

Some other periodic roots of the adjacency matrices of cyclacenes exist. Of these, butadiene energies
(1.618 and .618 () survive in structures having R = 3,6,9,...3r. Napthalene and cyclacenes with R = 6,12,...6r
are subspectral systems. note that naphthalene and structure I (Fig. 4) are subspectral systems (structure
possesses doubly degenerate NBMOs.
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Figure 4. Some subgraphs embedded in cyclacenes.

Although allyl energies (1.414 8 and 0.000 §) are readily detected in the spectrum of cyclooctacene
(R = 8), a careful analysis reveals that the allyl system (or Dewar benzene) is subspectral with structure

170



Investigation of HMO Spectra of., L. TURKER & S. ERKOC.,

IT (Fig. 4) which has energies of 2.4142, 2.0000, 1.4142. 1.0000, 0.4142, 0.0000, and 0.0000 in units of 3.
Structure 1I subspectral with cyclooctacene.
For cyclacenes having R = 5, 10, 15,..5r (r = 1,2,3,...), ortho-quinodimethane energies (2.193, 1.294,
1.193 and 0.294 ) were found to exist (structure III, Fig. 4).

Mobius-Type Cyclacenes

Mobius-type cyclacenes are nonalternant systems; hence, in contrast to the Hiuickel-type, they do not possess
symmetrical spectra. Inspection of the spectra of these systems reveals that the topology invariant roots
of the Hiickel type, that is, the eigenvalues of 2.5615 and 1.5615, now do not occur simultaneously in the

occupied and unoccupied parts of the spectra, but the latter one represents an unoccupied molecular orbital,

by reversal of the sign (see Figure 5).
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Figure 5. HMO spectra of certain Mdbius-type cyclacenes. a) Occupied b) Unoccupied. Refer to Figure 2 for

details of the figure.

The NMBO situation in this case in interesting. Whenever R is odd, they are occupied (HOMO), but
for even values of R they stand for the LUMO of the system. The eigenvalue 1.618 is periodic and emerges for
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R =3, 6,9, etc. Another periodic eigenvalue is 1.000, which occurs for R = 4, 6, 8 etc. Thus, the occupied
orbitals, except the above-mentioned four different periodic eigenvalues, possess structure,dependent original
roots in the range of R = 3-15.

In the case of unoccupied orbitals, there exist three other periodic eigenvalues: —0.618, —1.000 and
—1.561. Of these, the last is common in every cyclacene. The first is periodic for systems having R = 3,
6, 9, etc. The eigenvalue —1.000 occurs for R = 3, 5, 7, 9, etc. However, it also occurs for other systems
nonperiodically.

Conclusion

The high symmetry existing in cyclacene structures causes the emergence of interesting HMO spectra having
certain regularities and periodicity. Topology invariant roots such as annulenes are common in some other
systems. In light of the above investigation it is evident that peripheries of cyclacenes have certain effects
on HMO spectra. Therefore, those vertices of cyclacenes characterized by degree 3 are actually shared
not by two, but by three rings. Furthermore, the two existing common edges shared by the periphery
and the benzenoid ring present in the structures of cyclacenes definitely excludes cyclacenes from being
cata-condensed systems although their parent compounds, acenes, are cata-condensed aromatics.

Another interesting feature of these rather strained molecules is the existence of NBMOs which lead
to open shell structures in certain cyclacenes.
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