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This study concerns the application of artificial neural networks in oxidation kinetic analysis of ceramic

nanocomposites. The oxidation of the Ti-Si-C ceramic nanocomposite in dry air was studied. The size of

the nanoparticles was determined by scanning electron microscopy (SEM). The gaseous oxidation products

were analysed by mass spectroscopy (MS) while the solid oxidation products by X-ray diffraction (XRD).

The kinetic analysis of the oxidation was based on the Coats-Redfern equation. The kinetic models were

identified for the consecutive stages and then the A and E parameters of the Arrhenius equations were

evaluated. Artificial neural networks were used at each step of the kinetic calculations.
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INTRODUCTION

Modelling of technological processes by structural and

non-structural methods is based on data sets with a sufficient

number of cases. During the analysis, appropriate input (tem-

perature, concentration of reacting substances etc.) and out-

put variables (conversion degree, conversion rate etc.) should

be measured
1
. The number of variables to record is usually

determined on the basis of the theory of the investigated

process. In some cases also additional information is needed.

Therefore, it should be assessed, if an appropriate number of

variables with sufficient accuracy was measured
2
.

In the case of structural models, a process theory is veri-

fied by the measurement data and then model parameters are

determined with a simultaneous assessment of measurement

accuracy. In the case of complex processes this procedure

can be of little effectiveness
3, 4

. In turn, the non-structural

models are created without an explanation of the process

mechanism but are based only on the data sets with a suffi-

cient number of cases. Some of the contemporary non-struc-

tural methods form separate science disciplines, like the

artificial neural networks
5 – 8

. This method allows verifica-

tion at each stage of a process modelling
9 – 11

.

In this study artificial neural networks were used in the

kinetic analysis of the oxidation of the Ti-Si-C ceramic

nanocomposite in dry air. That kind of processes is of crucial

importance in materials science and engineering
9 – 21

. The

aim was a structural model, based on chemical kinetics and

obtained with the help of artificial neural networks.

ARTIFICIAL NEURAL NETWORKS

Development of neural network technique started from

the model of a neuron, elaborated by Mc Culloch and Pitts
23

.

The theoretical background of the data transformation sys-

tems was formed by Widrow
24

. A dynamic progress in that

new field of knowledge was induced by Hopfield and his

works
25

. Artificial neural networks are now a separate dis-

cipline, used in many financial, medical, environmental and

technical science issues.

A neural network is a system of interconnected neurons,

which usually form layers: input, output and internal (hid-

den). The data set is loaded to the first layer, then, through

the existing connections transferred to the next layers. The

data obtained from the last layer are the result of calcula-

tions. Setting the proper network parameters (wages) of a

given neural network is called training. That process requires

the data describing the studied phenomena and is performed

using appropriate algorithms
5 – 8

. During the calculations the

cases are divided into three subsets: Tr (used for training), Ve

(verifying the training progress) and Te (used for the final

testing of a network performance)
5
.

There are many types of artificial neural networks that

differ in their structure and the principle of operation
5 – 8

.

The most popular are multilayer perceptrons (MLP), radial

basis function networks (RBF) and generalized regression

neural networks (GRNN). MLP neural networks form feed-

forward architecture of almost any complexity. RBF net-

works are complementary to MLP- their hidden layers con-

tain radial neurons, which are based on the Cover theorem
26

.

In turn, the GRNN neural networks are applicable to regres-

sion problems.

In this study Statistical Neural Networks software was

used for calculations
27 – 30

. It contains the Intelligent Prob-

lem Solver (IPS) module, which creates a set of neural

networks of the best performance.  Each model is assessed

by the following statistical parameters: Error Mean- average

RMS (Root Mean Squared) error value; Abs. E. Mean-

average of absolute error values; Error S.D.- error standard

deviation; S.D. Ratio- ratio of error standard deviation and

data standard deviation; Correlation- Pearson's correlation

coefficient between the target and the predicted data. Statis-

tical assessment is performed separately for the Tr, Ve and

the Te subsets. The values of S.D. Ratio lower than 0.1 and

Correlation higher than 0.9 describe high-performance mod-

els. In complex models with many input variables it is im-

portant to indicate the most important factors by sensitivity

analysis
5
.

Artificial neural network models must be based on suffi-

ciently large data sets of at least 100 cases.  In order to obtain

high performance, the analyzed data should be checked for

the presence of noise or incomplete cases and, if necessary,

scaled or transformed
27 – 30

.
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MATERIALS AND METHODS

The studied powder was the Ti-Si-C nanocomposite, ob-

tained by the sol-gel method within the framework of

MULTIPROTECT „Advanced Environmentally Friendly

Multifunctional Corrosion Protection by Nanotechnology”

European Union project (N
o
 NMP3-CT-011783). This

nanopowder was designed for coatings technology.  The

chemical and the phase composition were determined by X-

ray diffraction (XRD). The measurements were carried out

on a Philips X'Pert apparatus with a copper X-ray tube for

the wavelength CuKα =0.15418 nm, the current voltage of

35 kV, the intensity of 30 mA and the temperature of 298

K. The spectrum analysis was performed using the X'Pert

HighScore 1.0 software. TG (thermogravimetric) analyses

under non-isothermal conditions were performed on a

SETARAM 2915 apparatus in dry air and under atmos-

pheric pressure. The following linear heating rates were

applied: 3 K/min (sample mass 6.932 mg); 5 K/min (6.471

mg); 10 K/min (7.301 mg); 20 K/min (6.797 mg). The TG

and DTG curves were recorded. The identification of gase-

ous oxidation products using mass spectroscopy (MS) sup-

ported the division of the process into stages.  The measure-

ments were carried out on a Pfeiffer Vacuum apparatus, type

Thermostar GSD 301.

MEASUREMENT RESULTS

The XRD powder diagram of the Ti-Si-C nanocomposite

is shown in Figure 1. The following phases were identified:

TiC (ICCD card no. 32-1383) and SiC (ICDD card no. 73-

1708). Crystalline carbon was not observed. Thus, we con-

cluded that the carbon matrix had an amorphous form. Proper

division of the oxidation process was assured by the analysis

of mass spectrums. The gaseous products of the TiC oxida-

tion were carbon oxides (CO and CO
2
). Additionally, el-

ementary carbon was educed, which is in accordance with

former reports
31 – 33

. During the oxidation of the SiC phase

only the gaseous products (carbon oxides) were produced.

CO and CO
2
 spectral lines had the same course, therefore

in Figure 2 only the spectral line m/e 44 is shown. In Figure

3 the normalized TG curves are shown, obtained by dividing

an actual sample mass by the initial sample mass. They were

assessed by artificial neural networks. All the series of the

measurements were considered jointly. The output variable

was the normalized TG while the input variables were sam-

ple heating rate and temperature. The obtained model was

the GRNN 2/12306 neural network, which statistical assess-

ment is given in Table 1. The high performance of the model

indicated the good quality of the measurement data. There-

fore, they could be applied in further calculations.

First, the process was divided into stages
1, 11

. The distin-

guished conversions are given in Table 2. Stage II concerned

the combustion of elementary carbon educed in stage I (oxi-

dation of TiC) while stage III the combustion of carbon

matrix. Then, the α(T) functions were determined (Figure

4), according to the methodology reported by Straszko et

al
11

. They were assessed with the help of artificial neural

networks. The obtained models and their statistical assess-

ment are given in Table 3. Good accuracy in all the cases

confirmed that, in accordance with the theory, the conver-

sion degree depended on sample heating rate and the tem-

perature and could be used in further kinetic calculations.

Figure 1. XRD powder diagram of Ti-Si-C nanocomposite

Table 1. Statistical assessment of GRNN 2/12306 neural

model with norm. TG as dependent
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KINETIC ANALYSIS

The kinetic analysis of non-isothermal oxidation in this

study was based on the Coats-Redfern linear equation
22

:

Figure 2. Spectral lines m/e 44 and normalized TG curves recorded during oxidation of Ti-Si-C powder with the heating rate

of  a) 3 K/min, b) 5 K/min, c) 10 K/min, d) 20 K/min

Figure 3. Normalized TG curves from oxidation of Ti-Si-C

nanocomposite

Table 2. Temperature ranges and processes occurring in the

consecutive stages of oxidation of Ti-Si-C

nanocomposite

(1)

As a theoretical equation it cannot be sufficiently satisfied

in the case of real processes, which are affected by the changes

in particle size and their geometry or formation of the solid

products
30 – 33

. As a result, deviations from linearity hamper

the identification of the kinetic models and the determina-

tion of kinetic parameters A and E
34, 35

. Structural models

are usually assessed by statistical methods. Simple statistical

tests are often insufficient and residue analysis is important.

Distribution of residues depends on the quality of both the

measurement data and the model performance
8
.
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The following kinetic models were tested in this study: D1

(one-dimensional diffusion), D2 (two-dimensional diffusion,

cylindrical symmetry), D3 (three-dimensional diffusion,

spherical symmetry, Jander equation), D4 (three-dimensional

diffusion, spherical symmetry, Ginstling-Brounshtein equa-

tion), F1 (first-order reaction), F2 (second-order reaction),

F3 (third-order reaction), A2 (random nucleation, Avrami I

equation), A3 (random nucleation, Avrami II equation), R1

(phase-boundary reaction, zero-order reaction), R2 (phase-

boundary reaction, cylindrical symmetry), and R3 (phase-

boundary reaction, spherical symmetry. The preliminary

assumption was the fulfilment of linearity in the co-ordinate

system . The accuracy of the fit was as-

sessed by linear regression using Statgraf software, separately

for the consecutive series of the measurements. Additionally,

the fulfilment of the Coats-Redfern equation was evaluated

with the linear neural network models, using StatSoft soft-

ware STATISTICA Neural Networks 4.0A. In that case, all

the series of the measurements were considered jointly under

the assumption that the A and E parameters should be con-

stant and independent of the process conditions. The input

variable was sample heating rate and  while the output

Figure 4. Dependence of conversion degree on temperature in the distinguished stages of Ti-Si-C oxidation. a) stage I;

b) stage II; c) stage III; d) stage IV

Table 3. Statistical assessment of neural models with conversion degree as dependent variable
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variable was  function. The performance of the

linear neural network models was assessed by the Pearson's

correlation coefficient between the experimental and the

predicted data, and also by the SD Ratio. Those parameters

were calculated separately for the training (Tr), verification

(Ve) and the testing (Te) subsets.

The kinetic parameters were first determined by means of

linear regression for each series of the measurements sepa-

rately. Because of the deviations from linearity the

 lines had different slopes and as a result

different A and E values between the measurement series.

Moreover, the residues were independent random variables

and correlations between lnA and E were observed. There

were also difficulties in the identification of the kinetic

models. Therefore, it was supported by additional criteria. It

was required that linearity in all the series of the measure-

ments was fulfilled for the same g (α) function. The courses

of k (T) dependencies had to be convergent in spite of the

differences in the A and E values between the series. The

parameters of the Arrhenius equation, calculated from a

given model by means of linear regression, were adjusted by

stochastic linearization
39

, i.e. correction of the E value so

that the error in a series approached zero. Finally, consist-

ency in a wide range between the α (T) values calculated

from the Coats-Redfern equation and determined from the

measurements was demanded. The methodology of the cal-

culations is shown in the example of stage I.

The linearity condition was quite well fulfilled for models

D3, F1 and R3. The fit was assessed with the help of neural

networks. Good accuracy was obtained for all the considered

models (Table 4), therefore the A and E parameters were

calculated from each of them. The linear regression analysis

was performed separately for the consecutive measurement

series using Statgraf software. The results with statistical

assessment are given in Table 5. Still the unambiguous choice

of the best model could not be made. Therefore, an addi-

tional criterion was used- the convergence of k (T). This

requirement was fulfilled by model F1.

Using the A and E parameters, given in Table 5, the values

of the  function were calculated from the Coats-

Redfern equation. Considerable errors were obtained in spite

of good statistical assessment. The values of the E parameter

were slightly corrected until the errors in the series were

close to 0. The results are shown in Table 6. Using the

corrected kinetic parameters, α (T) dependencies were cal-

culated from the Coats-Redfern equation and compared with

the empirical values (Figure 5). Finally, it was assumed that

stage I (oxidation of TiC) proceeded according to model F1

with corrected kinetic parameters given in Table 6.

Table 4. Statistical assessment of neural networks. Kinetic models in stage I of Ti-Si-C oxidation

Table 5. Kinetic parameters for the consecutive series of measurements in stage I of Ti-Si-C oxidation

Figure 5. Comparison of experimental a(T) functions and

those calculated from kinetic models for stage I of

Ti-Si-C oxidation
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Table 7. Kinetic parameters obtained for all stages of the Ti-Si-C oxidation process

Table 6. Kinetic parameters before and after correction. Oxidation of Ti-Si-C nanocomposite in stage I

The calculations for the remaining stages were performed

in the same way and their final results are shown in Table 7.

The values of the E and A parameters differed between the

measurement series. This situation is caused by the devia-

tions from linearity and hampers the estimation of the actual

A and E values. Under the assumption, that lnA and E fulfill

the normality condition, arithmetic means are their esti-

mates. However, having only a few series of measurements,

the normality may not be obtained.

Another way of evaluating the actual kinetic parameters

consists in the application of artificial neural networks. The

linear models generate in the  co-ordinate

system parallel lines for the consecutive sample heating rates.

If the deviations from linearity are not considerable, sing

 values calculated by a linear network a set of A and

E values are obtained, the same for all the series. The results

of this kind of the calculations for the consecutive stages of

Ti-Si-C oxidation are given in Table 8.

It should be underlined, that in spite of the different A and

E values evaluated with both methods, similar k (T) plots

Figure 6. SEM images of titanium dioxide obtained in the

hydrolysis of titanyl sulfate from a solution with

the initial Al
3+

 concentration equal to: a) 0.07 wt

%, b) 0.3 wt %

Table 8. Kinetic parameters evaluated with linear neural

networks for the consecutive stages of Ti-Si-C oxi-

dation

were obtained. The results from the linear network were

assumed to be the proper ones, in accordance with former

reports
30 – 33, 36 – 38

 and are the starting point for the process

analysis
1, 11, 21

.

SUMMARY

Ceramic nanocomposites can be applied in various tech-

nological processes, where quantitative description is needed.

Due to the peculiarity of nanostructure material traditional

methods may not be sufficient. Quantitative description of

technological processes, usually in the form of structural

models, is obtained on the basis of the experimental data

with a simultaneous assessment of the underlying theory, the
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model parameters and the measurement quality. In the case

of complex processes this system may be of little effective-

ness and then non-structural methods are more useful, for

instance the artificial neural networks. This paper is an ex-

ample of an application of neural models in oxidation ki-

netic analysis. Neural models were used in the measurement

quality assessment as well as in the identification of kinetic

models and kinetic parameters estimation. The obtained

results were of high accuracy and proved applicability of

artificial neural networks in the discussed type of analysis.

NOMENCLATURE

A – pre-exponential Arrhenius factor, 1/min

E – apperent activation energy, kJ/mol

k(T) – rate constant, 1/min

r – rection rate, 1/min

T – temperature, K

T
m

– maximum conversion  rate temperature, K

α(T) – conversion degree

ß – sample heating rate, K/min

r* – correlation coefficient

R – gas constant, kJ/molK

t – time, min

F – Snedecor's variable

f(α) – conversion function dependent on mechanism of

   the reaction

g(α) – integral form of the conversion function

TESTED KINETIC MODELS
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