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ABSTRACT

When positioned opposite to a dA in a DNA
duplex, the prototype arylamine–DNA adduct
[N-(2’-deoxyguanosin-yl)-7-fluoro-2-aminofluorene
(FAF)] adopts the so-called ‘wedge’ (W) conforma-
tion, in which the carcinogen resides in the minor
groove of the duplex. All 16 FAF-modified 12-mer
NG�N/NAN dA mismatch duplexes (G� = FAF,
N = G, A, C, T) exhibited strongly positive induced
circular dichroism in the 290–360 nm range
(ICD290–360 nm), which supports the W conformation.
The ICD290–360 nm intensities were the greatest for
duplexes with a 3’-flanking T. The AG�N duplex
series showed little adduct-induced destabilization.
An exception was the AG�T duplex, which displayed
two well-resolved signals in the 19F NMR spectra.
This was presumably due to a strong lesion-
destabilizing effect of the 3’-T. The flanking T effect
was substantiated further by findings with the TG�T
duplex, which exhibited greater lesion flexibility and
nucleotide excision repair recognition. Adduct con-
formational heterogeneity decreased in order
of TG�T>AG�T>CG�T>AG�A>AG�G>AG�C. The
dramatic flanking T effect on W-conformeric
duplexes is consistent with the strong dependence
of the ICD290-360 on both temperature and salt con-
centration and could be extended to the arylamine
food mutagens that are biologically relevant in
humans.

INTRODUCTION

Arylamine carcinogens are among the most notorious
environmental carcinogens (1). Arylamine–DNA adducts
have been detected in various human tissues and thus have

been implicated in the etiology of human cancers (2,3).
It is important to resolve the structural and conforma-
tional properties of arylamine–DNA adducts in order to
elucidate the mechanisms by which bulky adducts are
accommodated by repair proteins and polymerases (4).

The most persistent and major adduct generated by the
environmental arylamine carcinogen 2-aminofluorene is
the N-deacetylated adduct [N-(20-deoxyguanosin-yl)-
2-aminofluorene (AF)] (Figure 1a) (5,6). The mutational
and repair characteristics of AF have been shown to be
highly dependent on sequence context and the type of cells
employed (7,8). Fully paired AF-modified DNA duplexes
are known to exist in sequence dependent equilibrium
between external B-type (B) and stacked (S) confor-
mations with an exchange time in the millisecond
range (Figure 1b) (9–13). A similar S/B conformational
heterogeneity has been observed with the food-borne
heterocyclic arylamine mutagen 2-amino-l-methyl-
6-phenylimidazo[4,5-b]pyridine (PHIP) (14). A large
planar aminopyrene (AP) adduct derived from the envi-
ronmental mutagen 1-nitropyrene adopts the S-conformer
exclusively (15,16). In contrast, the small, non-planar ami-
nobiphenyl (ABP) adduct derived from the human blad-
der carcinogen 4-ABP adopts predominantly the
B-conformer (17). These findings provide strong evidence
for the importance of the planarity of carcinogens in
determining S/B heterogeneity (9,10).

The so-called ‘wedge’ (W) conformation predominates
in those DNA duplexes in which AF-modified dGs mis-
pair with dAs at the lesion site (18). Such a configura-
tion forces the hydrophobic aminofluorene to be
positioned within the narrow minor groove. At neutral
pH, there is evidence of hydrogen bonds stabilizing the
(syn)dG�:(anti)dA mispair. At acidic pH, however, the
protonated N1 of dA forms a single hydrogen bond with
O6-dG�, thus displacing the carcinogen further away from
the helix axis relative to its position under neutral pH
conditions (19). Similar situations have been observed
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with dG or dI situated opposite to this lesion (20).
Modeling studies indicate that both ABP and AP can
also exist in the W-conformation (21), favoring G!T
transversions, the most targeted point mutations by
these bulky carcinogens (7,8). Stone and coworkers
have shown that the food mutagen 2-amino-
3-methylimidazo[4,5-f]quinoline (IQ) positioned at G3 in
the NarI sequence (50-CG1G2CG3CC-30) adopts an S-like
conformation (22,23). In contrast, G1- and G2-IQ adducts
adopt a W-like conformer, in which the isoquinoline
moiety is pushed further into the minor groove (24).
These prior findings suggest that helix intercalation is
favored when both the 50- and 30-flanking nucleotides
in the complementary strand are dGs. Zalizniak
et al. (25) have reported that the minor (<15%), but
most persistent, N2-AAF [3-(20deoxyguanosin-N2-yl)-
2-acetylaminofluorene] adduct maintains a right-handed
helix with Watson–Crick base pairing throughout the
duplex including across the lesion site. Such a configura-
tion allows the carcinogen moiety to be sandwiched
tightly by the walls of the minor grove, resulting in an
unusually stable duplex molecule (�Tm+6.28C;
��G� 1.8 kcal/mol) (25).

We have previously examined the mutagenic relevance
of the AF-induced S/B/W-heterogeneity in translesion
DNA synthesis by dynamic circular dichroism (CD)/19F
nuclear magnetic resonance (NMR) and differential scan-
ning calorimetry (DSC) (26–29). The results indicated that
the steric free B-conformer accommodates a correct dCTP
resulting in either a faithful replication or deletion muta-
tions via a slippage mechanism. However, existence of the
S-conformer could lead to a thermodynamically stable
W-conformeric dG�:dA mispair at the lesion site. The
rate and fidelity of nucleotide insertion opposite the mod-
ified base has been shown to be governed both by flanking

sequence context and nature of polymerase, which deter-
mines the balance between kinetic and thermodynamic
effects (30). Microcalorimetry studies showed little ther-
modynamic preference (��G8

�0 kcal/mol) for insertion
of dCTP over dATP opposite to the AF-adduct (29),
rationalizing a wide range (2–59%) of sequence-dependent
G-T mutational specificity in COS cells (7). During repli-
cation elongation, the carcinogen in the minor groove
imposes a steric burden in the DNA-binding area of a
polymerase, consequently reducing the rate of nucleotide
insertion at several 50 downstream bases (26).
Although extensive studies have examined sequence

effects of AF-induced S/B equilibrium (9–13), very little
is known about sequence effects on the W-conformation.
In the present study, we investigated sequence effects on
W-conformeric DNA duplexes by dynamic CD and 19F
NMR spectroscopy. To this end, we prepared 16 12-mer
NG�N/NAN duplexes (50-CTTCTNG�NCCTC-
30:50-GAGGNANAGAAG-30, G�=FAF) (Figure 1a),
in which the fluorinated AF lesion (FAF) was mispaired
with dA and the flanking sequences were systematically
varied (N=G, A, C, T). We determined the conformation
adopted by the dA mismatch duplexes and their relative
lesion conformational flexibilities.

EXPERIMENTAL SECTION

Crude oligodeoxynucleotides in 10–15 mmol scales in
desalted form were obtained from Sigma-Genosys (The
Woodlands, TX). All high performance liquid chromatog-
raphy (HPLC) solvents were purchased from Fisher Inc.
(Pittsburgh, PA). (Caution: 2-Aminofluorene derivatives
are mutagens and suspected human carcinogens and there-
fore must be handled with caution).
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Figure 1. (a) Chemical structures of dG-C8 aminofluorene adducts and 12-mer DNA sequence contexts used in the present study. AF,
N-(20-deoxyguanosin-8-yl)-2-aminofluorene; FAF, N-(20-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene. (b) The major groove views for AF-induced
conformational motifs in duplex DNA: B (B-type), S (stacked), and W (wedge) conformers. The modified dG and the complementary (dC for B and
S, and dA for W) are indicated with red and green lines, respectively, and the carcinogenic aminofluorene is highlighted with grey CPK. Hydrogen
atoms are not shown for visual clarity.
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The model sequence systems

Following the published procedures (11,13), we prepared
four sets of 12-mer oligonucleotides (namely, GG�N
series, d[CTTCTGG�NCCTC]; AG�N series, d[CTTCT
AG�NCCTC]; CG�N series, d[CTTCTCG�N CCTC];
and TG�N series, d[CTTCTTG�NCCTC];), in which the
FAF-modified guanines (G�) are flanked by four natural
bases (N=G, A, C, T] (Figure 1a, see also Supplementary
Table S1 for complete duplex sequences). The HPLC
system consisted of a Hitachi EZChrom Elite unit with a
L2450 diode array as a detector and employed a Waters
XTerra MS C18 column (10� 50mm, 2.5 m) with a 60-min
gradient system involving 3–15% acetonitrile in pH 7.0
ammonium acetate buffer (0.10M) with a flow rate of
2.0ml/min. Characterization of FAF-modified AG�N
and CG�N sequences have already been reported (13).
The FAF-modified GG�C and TG�T sequences were char-
acterized similarly by analyses of their UV and enzyme-
digests/ESI-TOF-MS characteristics in the negative
mode and the experimental details are described in
Supplementary Figures S1 and S2. All the purified
sequences were annealed with appropriate 12-mer comple-
mentary strand [d(GAGGNANAGAAG)] to produce the
desired dA-mismatched duplexes (Figure 1a). An identical
set of 16 unmodified duplexes was also prepared as
controls.

UV-melting experiments

UV-melting data were obtained using a Beckman DU 800
UV/VIS spectrophotometer equipped with a six-chamber,
1 cm path-length Tm cell. Sample cell temperatures were
controlled by a Peltier temperature controller. Duplexes
with a total concentration in the range of 0.2–14 mM were
prepared in solutions containing 0.2M NaCl, 10mM
sodium phosphate, and 0.2mM EDTA at pH 7.0.
Thermomelting curves were constructed by varying the
temperature of the sample cell (18C/min) and monitoring
the absorbance of the sample at 260 nm. A typical melting
experiment consisted of forward/reverse scans and was
repeated three times. Thermodynamic parameters were
calculated using the program MELTWIN

�
version 3.5 as

described previously (11).

CD experiments

CD measurements were conducted on a Jasco J-810 spec-
tropolarimeter equipped with a Peltier temperature con-
troller. Typically, 2 ODS of each strand were annealed
with an equimolar amount of a complementary sequence.
The samples were dissolved in 400 ml of a neutral buffer
(0.2M NaCl, 10mM sodium phosphate, 0.2mM EDTA)
and placed in a 1mm path-length cell. The samples were
heated at 858C for 5min and then cooled to 158C over a
10min period to ensure complete duplex formation.
Spectra were acquired every 0.2 nm with a 2 s response
time from 200 to 400 nm at a rate of 50 nm/min and
were the averages of 10 accumulations and smoothed
using 17 point adoptive smoothing algorithms provided by
Jasco. For salt experiments, CD spectra were recorded

at 158C with increasing amount of NaCl: 0.2, 0.5, 1.0,
2.0, 3.0 and 5.0M.

NMR experiments

Approximately 20–60 ODS of pure modified oligonucleo-
tides were annealed with equivalent amount of comple-
mentary sequences to produce the corresponding 12-mer
dA mismatch duplexes. The duplex samples were ultracen-
trifugated using a Pall Microsep MF centrifugal device
(Yellow, MW cutoff=1000). The centrifuged samples
were dissolved in 300 ml of a neutral buffer (10% D2O/
90% H2O containing 100mM NaCl, 10mM sodium phos-
phate and 100 mM tetrasodium EDTA, pH 7.0) and fil-
tered into in a Shigemi tube through a 0.2 mm membrane
filter for NMR experiments.

All 1H and 19F NMR results were recorded using
a dedicated 5mm 19F/1H dual probe on a Bruker
DPX400 Avance spectrometer operating at 400.0 and
376.5MHz, respectively. Imino proton spectra were
obtained using phase sensitive jump-return sequences at
58C and referenced relative to DSS. 19F NMR spectra
were acquired in the 1H-decoupled mode and referenced
to CFCl3 by assigning external hexafluorobenzene in
C6D6 at� 164.90 ppm. One-dimensional 19F NMR spec-
tra were measured between 58C and 608C with increment
of 5–108C. Additional temperatures were used as needed
to clarify signal exchange process (Supplementary
Figure S3). Temperatures were maintained by a
BRUKER-VT unit by adding liquid N2 to the probe.
Spectra were obtained by collecting 65 536 points using a
37 664Hz sweep width and a recycle delay of 1.0 s. A total
of 1600 scans were acquired for each dynamic NMR spec-
trum. All FIDs were processed by zero-filling, exponential
multiplication using a 20Hz line broadening factor and
Fourier transformation. NOESY/exchange 19F NMR
spectra were obtained in the phase-sensitive mode using
the following parameters: sweep width 4529Hz, number
of complex data points in t2 1024, number of complex
FIDs in t1 256, number of scans 96, dummy scans 16,
recycle delays 1.0 s and mixing time 400ms. The data
were apodized with sine function using 2Hz line broad-
ening in both dimensions and Fourier transformed with
the 1024� 256 data matrix.

RESULTS

ICD290–360 nm of theNG�N/NANmismatch duplexes

Figure 2 shows CD overlays of the FAF-modified dA mis-
match duplexes in four series: (a) GG�N, (b) AG�N, (c)
CG�N and (d) TG�N (N=G, A, C T). All of the NG�N/
NAN duplexes exhibited very strongly positive induced
CD in the 290–360 nm range (ICD290–360 nm). This is in
contrast with the unmodified control duplexes which
showed no such ICD290–360 nm (11). We have shown pre-
viously that positive ICD290–360 nm is indicative of a S- or
W-conformation, whereas negative ICD290–360 nm is indic-
ative of a B-type conformation (27). The intense
positive ICD290–360 nm values observed for the NG�N/
NAN duplexes were sequence dependent, presumably
due to varied interactions of the carcinogen with
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W-conformer minor groove chiral DNA. With the excep-
tion of the CG�T duplex (Figure 2c), the extent of positive
ICD290–360 nm of duplexes with a 30-T was significantly
greater than that observed for other duplexes within the
same series.

Temperature dependent ICD290–360 nm of the AG�N, CG�T
and TG�T dAmismatch duplexes

As shown in Figure 3a, variation was observed in the
ICD290–360 nm of the AG�N, CG�T and TG�T duplexes
in the 5–358C range. The isomeric AG�C and AG�G
duplexes showed little change in ICD290–360 nm, whereas
those with a flanking T (AG�T, CG�T and TG�T) exhib-
ited greater temperature dependence. The temperature/
ICD290–360 nm effect decreased in order of
TG�T>AG�T>CG�T>AG�A>AG�C � AG�G. The
large temperature dependence of ICD290–360 nm intensity
provides evidence of an effect of the flanking T on the
conformational flexibility of W-conformer duplexes (27).

Salt-dependent ICD290–360 nm of the AG�N, CG�T and TG�T
dAmismatch duplexes

Mismatch duplexes were exposed to a range of salt con-
centrations to assess conformational flexibility at the
lesion site. Figure 3c shows overlays of CD spectra of
the AG�N, CG�T and TG�T duplexes in solutions of
increasing ionic strength. The ICD290–360 nm of all of the
mismatch duplexes, except for AG�C and CG�T,
decreased steadily with increasing salt concentration
(0.2–5.0M NaCl). The results indicate gradual

conformational disturbance of the lesion structure and
the trend is generally consistent with the temperature
dependent CD experiments and the dynamic 19F NMR
results (see below).

Duplex stability

Both FAF-modified and control duplexes exhibited UV
melting profiles that were characteristic of a mono-
phasic, sigmoidal, helix-coil transition. Thermal and
thermodynamic parameters were obtained by van’t Hoff
analyses as described previously (11) and the results are
shown in Table 1. The Tm and iG8 values of the AG�N,
CG�T and TG�T duplexes were found to be comparable
to those of the control duplexes. The lack of noticeable
adduct-induced duplex destabilization is most likely due
to van der Waals’ interactions between the carcinogen
moiety and surfaces in the minor groove (26). This is in
contrast to the S/B conformeric DNA duplexes, which
induces thermodynamic destabilization as a result of loss
of Watson–Crick base pairs (S-conformer) or unfavorable
carcinogen-solvent interactions (B-conformer) (11). The
Tm values of the chemically isomeric AG�A, AG�T and
TG�T duplexes varied (43.68C, 41.98C and 39.28C, respec-
tively), evidencing the importance of flanking base polar-
ity (A:T versus T:A). The Tm results from the UV melting
data tend to be more sensitive to the overall Tm, while the
dynamic NMR described below represents a localized
melting, whose effect would be minimized in longer
duplexes.
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Figure 2. CD spectral overlays of the FAF-modified duplexes in the 200–400 nm range at 158C for (a) the GG�N, (b) AG�N, (c) CG�N and (d)
TG�N duplex series.

Nucleic Acids Research, 2009, Vol. 37, No. 5 1631



Dynamic 19F NMR spectra

Although powerful, obtaining 19F NMR spectra of a
series of duplex samples is an enormous undertaking
(11–13,26–28). Therefore, our focus was placed initially
on a small group of selected sequences, namely a series
of four AG�N duplexes. The TG�T and CG�T duplexes

were added subsequently to further investigate the confor-
mational effect of flanking T (see below). Figure 3b shows
dynamic 19F NMR spectra of the six FAF-duplexes in the
10–508C range (see Supplementary Figure S3 for full tem-
perature ranges). These duplexes could be grouped into
two categories on the basis of their isomeric status: (a)
AG�C, AG�G and CG�T; (b) AG�A, AG�T and TG�T.
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Table 1. Thermodynamic parameters for the FAF-modified AG�N, TG�T and CG�T dA mismatch duplexes

Sequencea ��Gb

(kcal/mol)
��Hb

(kcal/mol)
Tm

c

(8C)
��Gd

(kcal/mol)
��He

(kcal/mol)
�Tm

f

(8C)

-AG�G/CAT- 9.3 (9.0)g 74.9 (68.5) 48.3 (48.5) �0.3 �6.4 �0.2
-AG�A/TAT- 7.7 (7.9) 59.6 (75.5) 43.6 (43.1) 0.2 15.9 0.5
-AG�C/GAT- 8.4 (9.7) 47.0 (81.5) 50.2 (49.6) 1.3 34.5 0.6
-AG�T/AAT- 7.4 (7.8) 59.3 (70.5) 41.9 (42.6) 0.4 11.2 �0.7
-TG�T/AAA- 7.0 (6.6) 74.6 (68.7) 39.2 (37.5) �0.4 �5.9 1.7
-CG�T/AAG- 8.1 (8.6) 62.8 (78.4) 47.1 (47.8) 0.5 15.6 �0.7

aThe central trimer portion of the 12-mer duplex (G�=FAF-adduct). See Table S1 for full sequence details.
bThe results of curve fit and Tm–lnCt dependence were within �15% of each other and therefore these numbers are average of the two methods. The
average standard deviations for ��G8 and �i�H8 are �0.22 and �6.33, respectively.
cTm values at 14mM taken from the 1/Tm� lnCt/4.
d��G=�G (FAF�modified duplex) ��G8 (control duplex).
e��H=�H8 (FAF-modified duplex) ��H8 (control duplex).
f�Tm=Tm (FAF-modified duplex) �Tm (control duplex).
gData in parentheses are from unmodified control duplexes.
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AG�C and AG�G. The AG�C and AG�G dA mismatch
duplexes are chemically isomeric with each other, differing
only in the polarity of their 30-flanking base pair (G:C
versus C:G). The dynamic NMR profiles of the two
duplexes produced similar single persistent signal below
308C. These signals exhibited significant H/D isotope
effects (0.17 and 0.24 ppm at 208C for the AG�G and
AG�C duplexes, respectively). The 19F resonance of the
exposed FAF residue in a B- or W-conformer has been
shown to be more susceptible to solvent-induced shielding
(usually >0.2 ppm) than the buried FAF in the S confor-
mer (usually < 0.1 ppm) upon increasing the deuterium
content from 10% to 100% (13,26). These NMR results,
coupled with the strong positive ICD290–360 nm (Figure 2,
described above), provide evidence for the presence of a
stable W-conformation, in which FAF is partially exposed
in the minor groove. The imino proton spectra of the
AG�C and AG�G duplexes at 58C showed well-resolved
signals, consistent with a single conformation. The stable
W-conformeric 19F NMR signals underwent duplex melt-
ing in the 35–408C range, coalesced around 458C and
eventually narrowed at 508C as the duplexes denatured
into FAF-modified single strands. The NMR and salt-
dependency CD results demonstrated that the AG�G
duplex exhibits slightly greater conformational heteroge-
neity than the AG�C duplex (Figure 3).

AG�A and AG�T. The isomeric AG�A and AG�T
duplexes showed significant H/D isotope effects (0.14
and 0.25 ppm at 208C for the AG�A and AG�T duplexes,
respectively) and positive ICD290–360 nm intensities, both of
which are characteristic of the W-conformation (26,27).
However, it was noted that the AG�A and AG�T pair
exhibited generally greater conformational heterogeneity
than the AG�C and AG�G isomeric pair, especially at
lower temperatures (Figure 3b). These results indicate
that an A:T flanking base pair has greater influence on
conformational flexibility at the lesion site than a G:C
flanking base pair.

The AG�T duplex showed markedly greater conforma-
tional heterogeneity than the AG�A duplex as evidenced
by its two well resolved signals at 208C (Figure 3b).
Meanwhile, the NOESY spectrum of the AG�T duplex
(data not shown) failed to yield any discernable off-
diagonal cross-peaks at 208C, suggesting that no chemical
exchanges occurred. This is contrasted to the S/B confor-
meric exchange of the corresponding AG�T dC match
duplex, which showed well-defined exchangeable contours
(13,26). The shape and chemical shifts of the upfield
W-conformer signal at –118.8 ppm did not change appre-
ciably until the temperature was brought to 308C; it then
proceeded to collapse quickly in the narrow 30–358C
range. The dynamic NMR results are consistent with the
strong temperature and salt-dependent CD findings
(Figure 3a and c, respectively) and can be considered to
be a non-exchangeable W- to B-transition rather than an
S/B dynamic exchange typically observed for fully paired
dC match duplexes. The greater heterogeneity of AG�T
relative to AG�A is a clear indication of the impact of
30-T:A over 30-A:T on W-conformer stability.

TG�T duplex. To substantiate the destabilizing flanking T
effect, we conducted 19F NMR analysis of the TG�T dA
mismatch duplex in which the lesion was flanked by T on
both sides. The ICD290–360 nm of the TG�T duplex was
strongly positive as expected for the W-conformation.
The TG�T duplex exhibited at least three 19F signals of
varying intensity, all of which interchanged with one
another (NOESY) (Figure 4). This could be interpreted
as evidence of an S/B/W equilibrium. Specifically, the
highest, most upfield signal at 58C, �118.8 ppm, could
be assigned to the W-conformer and the remaining signals,
�118.0 and �118.4 ppm, as the B- and S-conformers,
respectively. At 258C, the B/S signals started to coalesce
with the major W-conformeric signal at �117.3 ppm
(Figure 3b and Supplementary Figure S3). This W-signal
remained steady until the temperature reached 408C, at
which time it underwent a typical exchange process with
a denatured signal at 408C. Furthermore, the imino
proton spectrum exhibited complex proton signals with
varying degrees of intensity indicative of a mixture of con-
formers (Supplementary Figure S4). Given the isomeric
nature of the AG�A, AG�T and TG�T duplexes, the dra-
matic heterogeneity observed for the TG�T duplex must
be due to the 50-flanking T. The progressive nature of
decreasing conformational heterogeneity among the iso-
mers (TG�T>AG�T>AG�A) indicates the critical role
of flanking T on both sides (30 and 50) of the lesion. The
effect of base polarity (T:A versus A:T) is clear especially
when the dynamic 19F NMR profiles of the isomeric TG�T
and AG�A duplexes are compared (Figure 3b).

CG�T duplex. The CG�T duplex is chemically isomeric to
the AG�C and AG�G duplexes, with a unique flanking
base arrangement. As shown in Figure 3, the conformer
heterogeneity profile of CG�T exists in between those
of AG�A and AG�T. The imino proton spectrum at
58C (Supplementary Figure S4) showed well-resolved sig-
nals, indicating presence of a single W-conformation at
lower temperature. The major signal exhibited an
H/D isotope shift of 0.3 ppm at 208C as expected for a
W-conformation (Supplementary Figure S5). The inter-
mediacy of CG�T is not surprising given that the lesion
is flanked by a stabilizing C:G pair and a destabilizing
T:A pair on the 50 and 30-sides, respectively. Thus while
both AG�T and CG�T are flanked by a 30-T, a change of

(a) (b)

2°C 15°C

Figure 4. Temperature-dependent 19F NMR NOESY spectra of the
TG�T/AAA duplex recorded in 10% D2O/90% H2O pH 7.0 buffer at
(a) 28C and at (b) 158C.
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50-A to 50-C imparts greater conformational stability.
Taken together, it can be concluded from these results
that conformational flexibility decreases in order of flank-
ing T:A>>>A:T>G:C>C:G on both sides (30, 50) of
the lesion.

Comparison of dA-mismatch versus dC-match
duplexes. Figure 5 compares 19F NMR spectra of the
dA-mismatch duplexes recorded in the present study
with their normal dC-match counterparts at 208C. As
stated above, mismatch duplexes in general afforded a
single major 19F signal and a positive ICD290–360 nm,
strong evidence for the presence of the W-conformation.
Notable exceptions were the TG�T and AG�T duplexes,
which exhibited multiple signals at lower temperatures,
presumably due to a complex S/B/W-conformational
heterogeneity. This is contrasted to the corresponding
dC-match duplexes, which have been shown to exist in a
well-defined, sequence-dependent conformeric mixture of
B and S (11,13). The W-conformeric signals were generally

comparable or slightly shifted downfield (�118 to
�119 ppm) to that of the S-conformer, indicating the sim-
ilarity of their shielding environment, i.e. base-displace-
ment and minor groove for S and W, respectively. The
effect of flanking T on the lesion conformational flexibility
was particularly prominent for mismatch duplexes (i.e.
AG�T and TG�T).

DISCUSSION

All 16 of the examined NG�N/NAN dA mismatch
duplexes (Figure 2) exhibited a positive ellipticity in the
range of 290–360 nm (ICD290–360 nm). This is a strong indi-
cation for adoption of the W-conformation, in which the
carcinogen moiety resides in the narrow minor groove
region (27). Sequence dependence of ICD290–360 nm inten-
sity was also demonstrated. Of particular importance was
the unusually intense ICD290–360 nm produced by the
sequences with a 30-flanking T (with the exception of
CG�T, Figure 2c) in all of the NG�N duplex series. The
dynamic 19F NMR experiments conducted on several
selected duplexes provided additional evidence of this
flanking sequence effect. The AG�N duplex series all
gave a single major 19F signal in the �118 to �119 ppm
range at 58C with minimal alteration in duplex stability
(�Tm �0.7 to +0.68C; ��G� 0.3 to +0.4, Table 1).
Meanwhile, the corresponding dC match AG�N duplexes
exhibited S/B equilibriums with significant adduct-induced
duplex destabilization (�Tm �6.3 to �10.78C; ��G+2.1
to +2.8 kcal/mol) (11,13). On comparison, effect of flank-
ing T on the lesion conformational flexibility was partic-
ularly prominent for mismatch duplexes (i.e. AG�T and
TG�T) (Figure 5).

The dynamic 19F NMR profiles (Figure 3b) demon-
strate the importance of the nature and polarity of the
flanking base pairs (A:T versus G:C) in determining
lesion conformational stability. The isomeric AG�A and
AG�T duplexes exhibited collectively greater conforma-
tional heterogeneity than the isomeric AG�G and AG�C
duplexes. A significant base polarity effect was also
observed. Thus, while the AG�G and AG�C duplexes
had relatively similar 19F NMR dynamic melting profiles,
the AG�A and AG�T duplexes exhibited dramatic differ-
ences in this regard (Figure 3b). Conformational flexibility
was found to be greatest for AG�T, which emphasizes the
power of the flanking T effect. In line with this observa-
tion, the AG�T duplex exhibited the most dramatic
ICD290–360 nm effect as a function of both temperature
and salt concentration (Figure 3a and c).

Dynamic 19F NMR spectra of the TG�T duplex,
in which the lesion is flanked by T on both sides,
demonstrated that the duplex exhibited the most severe
conformational flexibility of all duplexes examined;
this pronounced flexibility is consistent with an S/B/
W-equilibrium. The ICD290–360 nm/

19FNMR analysis of
AG�T and TG�T duplexes led us to hypothesize that
the greater the lesion conformational heterogeneity, the
higher the ICD290–360 nm intensity. To verify this, we
obtained dynamic 19F NMR of CG�T duplex, which
unlike the rest of the 30-T duplexes of NG�N series

5’-CTTCTNG*NCCTC-3’
3’-GAAGANX NGGAG-5’

X=C: match    =A: mismatch

-AG*C-
-TX G-

-AG*G-
-TX C-

-AG*A-
-TX T-

-AG*T-
-TX A-

-TG*T-
-AX A-

-CG*T-
-GX A-

Figure 5. Comparison of 19F NMR spectra of FAF-modified AG�N,
TG�T and CG�T match (X=C) duplexes with the corresponding
mismatch (X=A) series.
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exhibited lower ICD290–360 nm. The results showed that the
melting profile of the CG�T duplex was in between that of
AG�A and AG�T. The enhanced stability of CG�T rela-
tive to AG�T and TG�T is governed by a 50-C. Taken
together, these results indicate that the stability of an
FAF-induced W-conformation depends on the flanking
base 30 of the lesion, such that there is decreasing stability
in the following order: C>G>A>T. A similar sequence
effect was observed for the corresponding dC-match
duplexes (13). While there are slight variations, a similar
trend for a neighboring effect has also been observed for
other duplexes containing mismatches and adducts (31).
The dramatic effect of base polarity at the flanking posi-
tion is clearly evident when the 19F NMR melting profiles
of the isomeric TG�T and AG�A duplexes are compared
(Figure 3b).

The ICD290–360 nm and 19F NMR spectra of the
dC-match and dA-mismatch duplexes in the AG�A and
AG�T sequence contexts are shown together in Figure 6 to
enable a visual comparison. Positive ICD290–360 nm values
are indicative of a S- or W-conformation, whereas nega-
tive ICD290–360 nm values are associated with a B-type
conformation (27). In both cases, the differences in
ICD290–360 nm are striking, in accordance with their
conformational heterogeneity. The AG�A dA mismatch
duplex adopted exclusively a W-conformation, whereas
the corresponding dC match duplex adopted a
61%:39% mixture of S and B-conformers (13)
(Figure 6a). Similarly, the AG�T dA mismatch duplex
existed primarily in the W-conformation, whereas the cor-
responding dC match duplex adopted in a 36%:64%
equilibrium of S and B-conformers (Figure 6b) (13).
These examples demonstrate clearly the utility of the
ICD290–360 nm/dynamic 19F NMR patterns for probing
arylamine-induced conformational heterogeneity.

BIOLOGICAL IMPLICATION

In the present model study we investigated the effects
of sequence context on the conformational flexibility
of DNA duplexes containing a G[FAF]: a mismatch
base pair. Our data were acquired primarily in non-
physiological conditions (i.e. buffer-only systems, low
temperatures, no enzymes and proteins), and thus may

be viewed of limited cellular relevance. However,
adduct-induced conformational heterogeneity occurs in a
millisecond time scale (13), and consequently the observed
conformational effects could be localized in the active
motifs of enzymes and recognition proteins, thereby pro-
viding valuable molecular insights on the efficiency of
post-replication repair processes such as nucleotide exci-
sion repair (NER).
Adduct-induced conformational flexibility is greatly

modulated by the type of base pair configuration and
polarity flanking the lesion. This appears to be generally
true for both match (13) and mismatch (present study)
duplexes. We have shown previously that the presence of
a purine base at the 30-flanking position promotes S-con-
formation in the AF-adduct with greater efficiency in the
UvrABC NER system in E. coli (12,13). The molecular
basis for this novel ‘conformation-specific NER’ is not
clear, even though available data points to the disruption
of Watson–Crick bonds and base-displacement as major
culprits.
Zou et al. (32) have shown that AF and AAF adducts in

the TG�T sequence context are incised more efficiently in
E. coli by a factor of 1.7 than in the CG�C context. It was
argued that the T:A flanking base pairs in the former
allow for local bend and flexibility, thus promoting greater
conformational heterogeneity. Clearly, the weaker local
base–base stacking interactions involving the TG� and
G�T dinucleotides facilitated destabilization. In line with
this finding, lower Tm and ��G8 values were observed for
unmodified, as well as AF- (11) and FAF-modified TG�T
(Table 1) duplexes. Figure 7 compares the 19F NMR spec-
tra of fully-paired FAF-modified 12-mer dC match
duplexes in the CG�C and TG�T sequence contexts. The
CG�C duplex exhibited an equal intensity of two well-
resolved signals at �117.4 and �118.9 ppm, which corre-
spond to the B- and S-conformer, respectively. In contrast,
the TG�T duplex exhibited complex heterogeneities with
what appears to be pseudo B-type conformers (labeled �).
These NMR data support a linkage between the flanking
T-induced lesion-conformational flexibility and repair
susceptibility. Thus, NER recognition of the bulky
AF-adduct involves not just thermodynamics and the
quality of Watson–Crick base pairs, but also conforma-
tional flexibility and mobility at the lesion site.
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Figure 6. CD spectral overlays of the FAF-modified duplexes in the 200–400 nm range at 108C for (a) AG�A/TCT, AG�A/TAT, and (b) AG�T/
TCA, AG�T/TAA. The 19F NMR results of the dC match duplexes give the relative populations of B and S conformers. The corresponding dA
mismatch duplexes exist exclusively as W-conformers.
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Similar ‘flanking T-effects’ have been reported for other
lesions. For example, Geacintov and co-workers (33,34)
have shown that the trans-anti-BP-dG adduct flanked by
T (TG�T) existed in dynamically flexible multiple confor-
mations, featuring more perturbed stacking interaction at
the lesion site, whereas the same adduct in the CG�C con-
text adopted a single minor groove conformation. The
multi-conformeric TG�T duplex exhibited significantly
lower Tm (�158C) and was found to be more repair-
prone by a factor of 2.3 than the CG�C duplex (33).
Kalam et al. (35) have studied the replication of vectors
modified by the oxidative damage lesions Fapy-dG and
8-oxo-dG in simian kidney (COS-7) cells. It was found
that Fapy-dG was mutagenic, inducing primarily targeted
G to T transversions and the mutational frequency was
greater by a factor of 3.8 in the TG�T sequence relative to
the CG�C context. 8-Oxo-dG, which was slightly less
mutagenic than Fapy-dG, exhibited similar effect, i.e.
4-fold G to T transversions occurred in the 50-TG�T
sequence relative to TG�A. Molecular modeling showed
that syn Fapy-dG:dATP pairing in the active site of pol b
produces greater stacking in the TG�T sequence than in
the TG�A sequence, thus leading to greater G to T effi-
ciency. A similar stacking effect was observed for syn
8-oxo-dG (35). The same 8-oxo-dG afforded greater fre-
quency of G to T transversions when it is adjacent to an
abasic site, indicating the potential importance of tandem
mutations (36).
It has been shown that the carcinogen moiety in the

major groove of an AF-induced B-type conformer at the
replication fork would reside in the solvent-exposed major
groove of a template–primer DNA throughout the repli-
cation/translocation process (26). This is contrasted with
the dA-mismatch W-conformer, in which the carcinogenic
moiety in the minor groove would impose a major steric

clash with the tight-packing amino-acid residues on the
DNA-binding area of a replicative DNA polymerase
(26). These results support a model in which adduct-
induced conformational heterogeneities at positions
remote from the replication fork affect polymerase func-
tion through a long-range DNA–protein interaction
(27,37). The results in the present study were obtained in
the duplex setting, and thus should be relevant to proof-
reading and/or NER of bulky lesions. Our structural data
also provided valuable mutational insight as to how flank-
ing sequences influence the lesion-induced conformational
flexibility opposite dA at the replication fork.

In summary, we employed a combined ICD290–

360 nm/
19F NMR procedure to study flanking sequence

effects on AF-modified dA mismatch DNA duplexes.
The nature of base pairs flanking the lesion and their
polarity are important factors in determining the confor-
mational flexibility of arylamine–DNA adducts
(50-T:A>>>A:T>G:C>C:G) when the affected base
is mispaired with a dA. We also discussed the effect of
the flanking T sequence on the lesion flexibility and mobil-
ity of W-conformeric DNA duplexes and its consequences
on mutation and repair. The dramatic flanking T effect
may be extended to the arylamine food mutagens that
are biologically relevant in humans.
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