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ABSTRACT

Type-l DNA restriction-modification (R/M) systems
are important agents in limiting the transmission of
mobile genetic elements responsible for spreading
bacterial resistance to antibiotics. EcoKl, a Type |
R/M enzyme from Escherichia coli, acts by methyla-
tion- and sequence-specific recognition, leading to
either methylation of DNA or translocation and cut-
ting at a random site, often hundreds of base pairs
away. Consisting of one specificity subunit, two
modification subunits, and two DNA translocase/
endonuclease subunits, EcoKIl is inhibited by the
T7 phage antirestriction protein ocr, a DNA mimic.
We present a 3D density map generated by nega-
tive-stain electron microscopy and single particle
analysis of the central core of the restriction com-
plex, the M.EcoKIl M,S; methyltransferase, bound to
ocr. We also present complete atomic models of
M.EcoKI in complex with ocr and its cognate DNA
giving a clear picture of the overall clamp-like oper-
ation of the enzyme. The model is consistent with
a large body of experimental data on EcoKl pub-
lished over 40 years.

INTRODUCTION

The EcoKI Type I DNA restriction—modification (R/M)
enzyme was the first R/M enzyme to be discovered (1) and

purified (2). It was determined that EcoKI, like all Type I
R/M enzymes (3-8), is a complex oligomer formed from a
core methyltransferase (MTase, M.EcoKI) comprised one
HsdS DNA Specificity subunit and two HsdM DNA
Modification subunits, M,S;, with a total molecular
weight of ~169kDa. This is complexed with two addi-
tional HsdR DNA Restriction subunits, giving a complex
R,M,S; with a total molecular weight of ~440 kDa that is
capable of functioning as both MTase and restriction
endonuclease (EcoKI or R.EcoKI) (9,10). Other Type I
R/M enzymes display more variable subunit structures
with some subunits weakly bound or capable of forming
larger aggregates (11-13). Nevertheless, the core functions
are performed by the M,S; MTase and the R,M,S;
bifunctional MTase/endonuclease. Despite much subse-
quent work, it is only recently that crystal structures of
HsdS from Methanococcus jannaschi and Mycoplasma
genitalium (14,15) and HsdM from Escherichia coli and
Bacteroides thetaiotaomicron (pdb code: 2ar0, New York
Structural GenomiX Research Consortium, DOI 10.2210/
pdb2ar0/pdb and pdb code: 2o0kc, Joint Center for
Structural Genomics, DOI 10.2210/pdb2okc/pdb, respec-
tively) have become available. The overall structure is not
known for either the MTase or the complete R/M complex
although several models have been proposed (16-20).
The absence of these structures has hindered study of
Type I R/M enzymes but their enduring appeal as research
targets (21) is due to their extraordinary complexity of
operation. This comprises recognition of a bipartite,
asymmetric DNA specificity sequence (e.g. EcoKI recog-
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nizes AAC[Ng]GTGC), the recognition of methylation of
the adenines at the bold underlined positions, and switch-
ing between an MTase activity on newly replicated, hemi-
methylated host DNA and an endonuclease activity on
unmethylated foreign DNA (3). The latter reaction
requires massive ATP hydrolysis to drive translocation
of up to 50kb of DNA (22,23) at rates of up to 1kb per
second (24-29). The DNA is then cleaved at a random
sequence remote from the original specificity sequence,
with the generation of variable length single-strand over-
hangs (28,29). DNA-induced dimerization of EcoKI prior
to translocation has been observed using atomic force
microscopy (30,31). These varied activities have functional
analogies with the operation of other complex DNA-
manipulating machines (32,33). Of further note is the
presence of two target recognition domains (TRDs) in
HsdS that can be easily exchanged for other TRDs to
generate novel DNA sequence specificities. The Type
R/M systems can be divided into, at present, five related
families, TA to IE, defined by genetic complementation,
antibody cross reactivity, DNA hybridization and
sequence comparisons (34,35).

Of great topical interest due to the spread of drug resis-
tance by horizontal gene transfer in bacteria (36,37), is the
susceptibility of the R/M enzymes to antirestriction mea-
sures encoded by a variety of mobile genetic elements such
as phage, conjugative plasmids and transposons (38-43).
These antirestriction measures include the production of
proteins that structurally mimic DNA (44). DNA mimics
block the binding sites within R/M enzymes and inactivate
them (45-47). The dimeric protein ocr from T7 phage
matches the shape and surface potential characteristics
of double-stranded DNA bent to the degree necessary
for recognition by EcoKI.

We now present a model of M.EcoKI bound to ocr at
~18 A resolution as determined by negative-stain electron
microscopy (EM). Combining the EM model with new
atomic models generated from the known crystallographic
structures of the subunits allows a detailed structure of the
M.EcoKI enzyme to be constructed. This structure is con-
sistent with and rationalizes many experimental results
obtained with M.EcoKI and other Type I MTases.

MATERIALS AND METHODS
Protein samples

M.EcoKI and the ocr protein were prepared as previously
described (9,10,46). A complex of M.EcoKI and ocr was
prepared by mixing the two proteins together at a molar
ratio of 1:1.5 29uM M,S; and 44 uM dimeric ocr) in
20mM Tris, 100mM NaCl, pH 7 buffer and incubating
at room temperature for 5min. The excess of ocr was not
visible in the EM due to its small size.

EM

Grids were made by placing M.EcoKI and ocr complexes
diluted 400 times onto UV-treated (48) continuous
carbon-coated copper mesh grids, then stained with 1%
uranyl acetate solution. Grids were viewed in a Jeol
1200EX electron microscope fitted with a LaBg electron
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source operating at 80kV in low dose mode. Negatives
(Kodak SO63) were taken at either 40000x or 50000 x
magnification with defocus ranging from 250 to 850 nm,
and digitized at 6.25 um step size using a Coolscan8000
(Nikon). The defocus and astigmatism were determined
with CTFIND3 (49), then 17807 particles were picked
from selected micrographs using Boxer (EMAN) (50) in
autobox mode. Particles were band-pass filtered using
Imagic (ImageScience, Germany), with low frequencies
below 1/150 A and those above the first zero of the con-
trast transfer function (CTF) being removed. After inter-
polating the 40 000x and 50 000x magnified particles to a
common scale (3.125 A/pixel), initial class average images
without reference bias were generated in Imagic (51) by
multi-variate statistical analysis and classification. Six
independent starting models consisting of 16 randomly
placed Gaussian spheres were made in EMAN and each
used in nine rounds of 3D refinement with the dataset.
Two of the randomly generated starting models converged
on a map similar to others made with some degree of a
priori knowledge of the structure using the angular recon-
stitution method (52). These two 3D maps also showed
approximate 2-fold symmetry. One was taken for further
refinements in EMAN with C2 point group symmetry
imposed. At several steps during refinement, classes that
had the best match to the reprojections were selected and
new 3D maps made. The final map has a nominal resolu-
tion of 18 A at 0.5 Fourier shell cross-correlation using the
odd—even test, and was 3D Fourier filtered at 12 A. Maps
were visualized using UCSF Chimera (53).

Model building

Full details of the model building are described in the
Supplementary Data and so are described only briefly
here. The model of M.EcoKI bound to DNA or to ocr
was built using the following crystal structures:
HsdS(MjaXIP) from M. jannaschi (pdb code: 1yf2) (15),
HsdM (EcoKI) (pdb code: 2ar0, New York Structural
GenomiX Research Consortium, DOI 10.2210/pdb2ar0/
pdb) and HsdM from B. thetaiotaomicron VPI-5482
(pdb code: 20kc, Joint Center for Structural Genomics,
DOI 10.2210/pdb2okc/pdb), the structure of a Type II
MTase bound to its cognate DNA duplex, M.Taql—
DNA (pdb code: 1g38) (54), and the ocr structure (pdb
code: 1s7z) (44). The M.Taql-DNA structure was used for
modelling of the HsdS—-HsdM orientation. HsdS was
modelled on the 1yf2 template by homology modelling
and the short C-terminal regions missing from the tem-
plate were modelled de novo using ROSETTA (55). The
crystal structure of the EcoKI HsdM has been solved, but
we have remodelled its domain—domain contacts based on
the crystal structure of a related HsdM from B. thetaio-
taomicron VPI-5482. The missing C-terminal regions of
EcoKI HsdM were modelled de novo using ROSETTA
and fitted into the EM map for M.EcoKI-ocr described
below.

To build the M.EcoKI-DNA model, DNA was added
to the HsdS model based on the orientation of DNA in
1g38. HsdM were docked together using HADDOCK (56)
to form a dimer via their N-terminal domains. Then, the



764 Nucleic Acids Research, 2009, Vol. 37, No. 3

HsdS-DNA model was combined with the HsdM dimer
model so as to satisfy the orientation between the TRD
and the catalytic domains of M.Taql. To find the best fits,
normal mode analysis was performed to generate a range
of conformations of HsdS and HsdM.

The M.EcoKI-ocr model was constructed by multi-
body flexible docking using HADDOCK (56). During
the docking procedure, residues of HsdS and HsdM that
form contacts with the DNA in the model of M.EcoKI-
DNA were restrained to make contact with ocr, based on
the assumption that ocr binds to HsdS and HsdM in a
similar manner as DNA (44). The alternative models of
M.EcoKI-ocr were fitted to the EM map as single rigid
bodies using the COLORES module from the SITUS
package (57) and the best scoring model was selected.

RESULTS
EM results

Addition of stoichiometric quantities of the ocr inhibitor
was found to stabilize the otherwise labile M.EcoKI com-
plex. Individual molecules of M.EcoKI-ocr complexes
embedded in heavy metal stain were imaged by EM and
analysed by single particle methods. Particles appeared to

¥ ¥

be homogeneously sized and were well distributed. Class
averages showed a wide variety of views and exhibited
considerable detail (Figure 1a) that allowed a unique 3D
reconstruction of the complex to a nominal resolution of
18 A (Figure 1b and c¢). The atomic model described below
has been placed within the EM reconstruction in Figure 1b
and has been used to colour the reconstruction surface in
Figure lc. Although at the atomic level, the complex is
asymmetric, 2-fold symmetry was imposed since HsdS is
known to have strong pseudo-symmetry (14,15,17). The
EM map longest dimension was ~120A and 100A
along the base, and the overall shape was an excellent
match to the complex modelled in silico based on bio-
chemical and X-ray data, as described below. As described
below and in the Supplementary Data, when one takes the
size, shape and symmetry constraints of the HsdS, HsdM
and ocr crystal structures and constraints from biochem-
ical data, only one arrangement of these structures within
the EM reconstruction was possible. Given this unique
solution, density attributable to the two-helix coiled-coil
spacer of HsdS could be clearly identified, as well as
regions attributable to the two HsdM. In addition to con-
tacting the TRDs of HsdS, the two HsdM wrap around
ocr and make contact with each other. An extension pro-
jects from the bottom of each HsdM to either side of the
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Figure 1. EM data, 3D reconstructions and model for the M.EcoKI-ocr complex. (a) Eight selected EM class average images (top row) with their
corresponding reprojections of the EM map (second row), showing a range of views. (b) Two orthogonal semi-transparent surface representations of
the EM 3D reconstruction each with a view of the modelled coordinates fitted as a rigid body (green and red—HsdM; blue—ocr dimer; yellow—
HsdS). (¢) Three surface views of the M.EcoKI-ocr EM 3D reconstruction coloured according to proximity to the fitted coordinates, with the
positions of individual protein chains indicated with arrows. (d) A stereo view of the M.EcoKI-ocr atomic model. (e) Schematic diagram of proposed
mechanism of clamping and release of DNA substrate (light blue) facilitated by twisting of the coiled-coil (yellow, viewed end-on).



HsdS coiled-coil spacer. This density returned in subse-
quent 3D refinements if masked out of the EM map, sup-
porting the presence of these regions. These extensions
could be attributed to the C-terminal regions of HsdM
that are not present in the X-ray coordinates, as described
below. Density in the centre of the map suggested the
presence of the bound inhibitor protein ocr as it is
known that ocr is fully enfolded by HsdS and HsdM
(47). Sufficient detail was not present to show its exact
orientation but its general position could be inferred.
Features in the 3D map such as the straight coiled-coil
spacer, which was ~16A wide, could also be seen in
many class average images (Figure la). That features of
this size were visible, just below the limit of resolution
as measured by FSC, attests to the quality of the map
and suggests that the 18 A estimate of resolution is
conservative.

Model of the M.EcoKI-ocr complex

The general shape of the model of M.EcoKI in complex
with ocr dimer is shown in Figure 1d. This atomic model
was constructed independently of the EM imaging based
upon crystal structures of subunits and biochemical data.
The MTase forms a clamp-like structure encircling the ocr
dimer. The coiled-coil region of HsdS contains a consid-
erable kink to allow the ocr molecule to fit optimally
within this clamp. Each TRD of HsdS contacts one mono-
mer of the ocr molecule and one HsdM. The exact loca-
tion of the C-terminal helix of the HsdS subunit is
speculative but has little effect on the overall outline
shape of the molecule. The C-terminal regions of each
HsdM, aa ~470-529, project down to contact the coiled-
coil region of HsdS. The location of the C-terminal
regions of each HsdM is also speculative but the postu-
lated location does bring conserved regions of HsdM and
HsdS into close contact as discussed later and does fit with
the EM model. This is important as the other region of
contact between HsdM and HsdS uses the TRD regions of
HsdS; these are highly variable in sequence in Type I R/M
enzymes and not expected to provide a good HsdM—HsdS
interface. The interface between the two HsdM is formed
by their N-terminal domains, aa 1-153. The clamp-like
shape of the MTase model suggests that it must open up
along the interface between the two HsdM to allow access
for ocr or DNA (Figure le). The interfaces between the
subunits in the M Tase—ocr complex are less extensive than
in the MTase-DNA complex described below and the
whole MTase appears to be strained to accommodate
the ocr molecule that is slightly larger than a DNA
duplex. The model structure with ocr bound may repre-
sent a ‘partially open clamp’ state, while the model with
DNA bound would be a ‘fully closed clamp’ state.
Opening of the clamp to allow ocr (or DNA) binding
may be accomplished by simply flexing the coiled-coil
region of HsdS. Normal mode calculations indicate that
such motions should occur with sufficient amplitude to
allow binding of ocr or DNA (data not shown). Having
constructed the atomic M.EcoKI-ocr model, it is obvious
that this can be simply docked into the EM model as
shown (Figure 1b). A comparison of the fit of the
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Figure 2. Model of the EcoKI MTase in complex with substrate DNA
and AdoMet cofactors. HsdS is shown in yellow, the HsdM at the rear
is shown in grey, DNA strands are shown in blue and cyan with
phosphates in black, the two AdoMet molecules in purple. The
HsdM in the foreground shows the N-terminal domain (aa 1-153) in
orange, the catalytic domain (aa 154-469) in red and the C-terminal
domain (aa 470-529) in magenta.

EcoKI MTase—ocr complex model to the EM map with
the fits obtained for models in which subunit structures are
randomly docked in to the EM map indicate that our data
driven model fits the EM map significantly better than
random models (see Supplementary Data).

Model of the M.EcoKI-DNA complex

The model of M.EcoKI bound to DNA is shown in
Figure 2. The two major differences between this and
the partial models of Type I R/M enzymes published pre-
viously (16-19) are that the locations of the N-terminal
and C-terminal regions of the HsdM are now defined
within the overall structure. Most importantly, the N-
terminal domains of HsdM can be seen to form a bridge
over the DNA duplex, thus forming a clamp-like structure
encircling the DNA, which is a key feature that was miss-
ing in earlier models. The location of the C-terminal
regions of each HsdM with respect to HsdS is slightly
different from that in M.EcoKI-ocr model, since the rel-
ative orientation of the subunits is altered. The coiled-coil
region linking the two TRDs is straighter and the subunit
interfaces within the MTase are more extensive in area
than in the M.EcoKI-ocr model as the DNA duplex
appears to fit better within the MTase allowing the
clamp to close fully. The DNA bound to the TRDs con-
tains a sharp bend in the non-specific spacer part of the
target sequence and the bend angle of ~45° matches that
observed experimentally (44,58).

DISCUSSION

The proposed in silico models, based upon crystallo-
graphic data, fit extremely well with the EM reconstruc-
tion and are attractive atomic resolution solutions to the
structure of the MTase core of a Type I R/M enzyme. It is
important to assess whether the models can accommodate
the large body of experimental information concerning
M.EcoKI. As most of the published work concerns inter-
action between EcoKI and DNA, we focus the following
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Figure 3. (a) A top view of the M.EcoKI-DNA model highlighting the interface between the N-terminal domains of HsdM subunits. One N-terminal
domain is shown as an orange surface and the second as a green ribbon. The R72Q mutation giving an r “m* phenotype is shown in blue and lies on
the HsdM interface. (b) The m* mutations in the HsdM subunit. The N-terminal domain of HsdM is coloured orange and the central methyl-
transferase catalytic domain in red (the C-terminal domain is omitted). Residues where mutations cause the r m* and r* m* phenotypes are shown
coloured cyan and blue, respectively. Two flexible loops, disordered in the crystal structure, are shown in green and yellow. Both are associated with
several m* residues. The cofactor AdoMet, in purple, can be seen in the catalytic domain. (¢) The m* mutations in N-terminal domain of
HsdM subunit presented in the M.EcoKI-DNA model. The HsdS subunit is yellow, the rear HsdM subunit as a green surface. The domains of
the HsdM in the foreground are coloured as in Figure 2. The labelled residues in this HsdM subunit that cause rm* and r"m* phenotypes are
coloured cyan and blue, respectively. DNA is coloured blue and cyan with phosphates in black. (d) The contact between coiled-coil region of HsdS
subunit and the C-terminal domain of HsdM subunit in M.EcoKI-DNA model. HsdS subunit surface is shown in yellow with the coiled-coil
running horizontally across the image, HsdM subunits are coloured red and green with their C-terminal domains shown as a surface and the
remainder as a ribbon. The close contact between the ends of the coiled-coil in HsdS with the C-terminal domains of HsdM can be seen.
(e) Recognition of DNA by the N-terminal TRD of HsdS. Non-specific DNA is coloured blue and cyan with phosphates in black. The sequence
AAC with the flipped out second A is shown in orange and the complementary sequence in dark green. The HsdS subunit is shown as a yellow
ribbon with the previously identified DNA-contacting loops aa 83-91 in red and aa 96118 in purple. These loops contact the complementary strand.
The previously identified contact by Y27 (pink) can just be seen pointing into the minor groove at the rear of the image. The newly identified loop
S130AGANINNIK 45 is in green and primarily contacts the AAC sequence. (f) Contacts between the catalytic site of HsdM and DNA. DNA is
shown as in (e) with the flipped out base sandwiched between HsdM F269 in the ‘NPPF’ motif IV and F345, both shown in yellow. The AdoMet
cofactor is shown in purple and the HsdM motif I (beige) containing G177 is contacting the AdoMet. The rest of HsdM is in red. Two phenylalanine
residues (F269 and F345, yellow) are available to form stacking interactions with the flipped out DNA base, and N266 (green) is within range for
hydrogen bonding.

discussion primarily on the M.EcoKI-DNA model rather

than the M.EcoKI-ocr model. Each section of the discus- Analysis of the M. EcoKI-DNA model

sion describes how experimental data can be accommo- Interface between the two HsdM via their N-terminal
dated by the EM structure and the derived structural domains. Our model fits each HsdM into the EM struc-
model and indicates new regions of interaction, which ture in such a way as to bring their N-terminal domains
could be investigated in the future. Lastly, we compare into contact with each other (Figure 3a). They effectively

the structural model of M.EcoKI with those recently pro- form a bridge over the DNA and this bridge must swing
posed for the type IC enzyme, EcoR1241 (19,20). open to allow the DNA to enter and be recognized by



HsdS. It is known that the ocr protein, which acts as a
DNA mimic, is encircled by M.EcoKI (47) supporting the
positioning of the N-terminal domains to complete the
clamp encircling the DNA. The main interaction between
these two domains is via helix GgQEQLQFYRKM
LVHL 5 contacting, in an antiparallel manner, the equiv-
alent helix within the other HsdM. A second contact
region is between a loop Ho;NVSTTITeg with the equiv-
alent loop in the other subunit. The helical axes and loops
in this interface run approximately parallel to the axis of
the coiled-coil in HsdS.

The N-terminal domain of each HsdM contains the
m™ mutations (Figure 3a—c) (59), so called because they
change the strong preference of M.EcoKI for methylat-
ing hemimethylated DNA target sequences (9) to an
ability to additionally methylate unmodified targets.
It is noteworthy that the disruption caused by the m*
mutations does not affect the ability of the enzyme to
methylate DNA, only its ability to recognize the methyla-
tion state of the target sequence. A single m* mutation,
R72Q, lies within the predicted helix Gg4QEQLQFYRK
MLVHLs and contacts the equivalent helix in the other
HsdM (Figure 3a). This mutation has an r “m* phenotype
suggesting a small deformation of the interface affecting
communication of the methylation status of the two ade-
nines in the target sequence and closure of the proposed
clamp around the DNA but without affecting restriction
by a complete EcoKI.

The mutations Q48K, L85Q, R124L, R124C, L134V,
R153H and R153S also give rise to an r' m* phenotype.
These locations in the model lie on the interface between
the N-terminal m* domain (aa 1-153) and the middle cat-
alytic domain (aa 154-469) of the same HsdM. It is pos-
sible to envisage how these non-conservative changes will
disrupt this interface resulting in the observed r " m* phe-
notype, perhaps by interfering with closure of the clamp.

The remaining mutations, LI113R, LI113P, L113Q,
WI15R and S144Y all give an r m* phenotype. L113,
WI115 and S144 lie on the surface of the modelled struc-
ture and do not contact any other part of the MTase
(Figure 3b and c). It is possible that they induce a minor
folding problem for the N-terminal domain affecting its
interaction with the other HsdM although the mutant
enzymes can be purified as normal (our unpublished
results). The observation that restriction activity is lost
because of these mutations may further suggest that this
small region interacts with the HsdR subunit in the com-
plete EcoKI.

Interactions between HsdM and HsdS. The EM density at
the bottom of HsdM has a protrusion that passes close to
the HsdS coiled-coil and we believe this to be the C-term-
inal region of HsdM comprising residues ~470-529. This
region is disordered in the two HsdM crystal structures
available suggesting that it is flexible in the absence of
HsdS. The EM results support the rigidity of the exten-
sions in the complex, since flexible areas are invariably
blurred out by the averaging inherent in the single particle
methodology. However, the limited resolution of the EM
map, and lack of X-ray data, only allows the computa-
tional atomic model to be positioned approximately.
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Sequence analysis indicates that the C-terminal region of
HsdM has a propensity to form a-helices and the model
suggests that these reach out and contact the coiled-coil in
HsdsS, as shown in Figure 3d. These contacts would play a
central role in the assembly of the MTase providing an
interface between known regions of high sequence conser-
vation in both HsdS and HsdM of the Type TA family
(5,8). This high degree of conservation in the interface
between HsdS and HsdM would be essential to facilitate
the exchange of subunits of different Type IA family sys-
tems by complementation. Experimental support for this
aspect of the EM and computational model comes from
proteolysis experiments. It was found that ~43 residues
from the C-terminal region of HsdM could be easily
removed, leaving a stable, 55-kDa folded protein (60,61).
However, this truncated HsdM was unable to bind to
M;S; complexes indicating that a subunit interface had
been removed (60).

In the model, a second HsdS—HsdM interface occurs via
a helix-loop structure, N;3;3KISSLSAGANIA 44, within
the first TRD of HsdS and two loops, aa 430-433 and
aa 464-470, on the edge of the catalytic domain within
HsdM (not shown in Figure 3). Contacting the same
region of the second HsdM, one can identify an equivalent
helix and loop in the second TRD of HsdS as
A3 MMNCVKTTSGQK355. It is known that the TRDs
within a family of Type I R/M systems can be exchanged
easily to generate new sequence specificities (5,8).
However, the TRD amino acid sequences are very variable
and would not be expected to offer enough conservation
to allow the formation of a particularly stable interface
with HsdM. Hence, these regions must be of secondary
importance to the regions discussed in the previous
paragraph.

HsdS to DNA contacts. The N-terminal part of HsdS
forms the first TRD, which recognizes the sequence
5-AAC-3’. Many mutations in this TRD of HsdS from
EcoKI have been catalogued (62,63) but the majority of
these were silent. Early modelling studies (64) suggested
that these were not on the protein—-DNA interface.
However, two loops were identified in this analysis, aa
83-91 and aa 96-118, as contacting the DNA and this is
corroborated in the current model. Within the second of
these loops, mutations of aa 91, 95, 105, 107 and 108 led to
a loss of activity although the protein was folded and
could bind DNA (62,63). In our model, these appear to
contact the complementary strand to the 5-AAC-3
sequence (Figure 3e). Chen et al. (65) identified a further
amino acid, Y27, by cross-linking experiments in contact
with the DNA target. In our map, Y27 is within 4 A of the
minor groove of DNA (not visible in Figure 3e as it is
behind the DNA).

In the first TRD of HsdS, our model has an additional
loop to those identified previously, S;30AGANINNIK 45
(Figure 3e). This loop is closest to the major groove DNA
bases forming the target sequence 5-AAC-3’. Mutations
S139P, G141V and Gl141A affected activity but other
more conservative substitutions did not alter activity
(62,63). N145 is the residue in our model that appears to
be able to contact the unpaired thymine base (the partner
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of the flipped out adenine). In the second TRD, the equiv-
alent loop is T354SGQKGISGK 363, and Q357 is able to
contact the unpaired thymine in the complementary
strand for the second part of the target sequence,
5-GATC-3'.

HsdM to DNA contacts. Willcock et al. (66) substituted
amino acids within the well-characterized, conserved
MTase motifs within the catalytic domain of HsdM. The
substitution in the AdoMet binding motif I, G177D,
affected cofactor binding and the model shows motif I in
close contact with the AdoMet (Figure 3f). Changes at
locations N266 or F269 in the catalytic motif IV led to a
loss of activity. In the model of M.EcoKI with DNA
bound, these locations can be seen adjacent to the
flipped-out adenine (Figure 3f). In addition, F345 is
close to the flipped-out adenine. A similar sandwich of a
flipped-out adenine between two aromatic side chains was
observed in the crystal structure of the M.Taql MTase
(67).

Analysis of the M.EcoKI-ocr model

This atomic model (Figure 1) is more open than the model
with DNA (Figure 2) as there are fewer contacts between
the three subunits of M.EcoKI. In particular, the interface
between the two HsdM is formed only by helix 64-78, and
the C-terminal helices of HsdM, 487-507, appear to have
minimal contact with the coiled-coil region of HsdS. It
appears that ocr is slightly too large to be as easily accom-
modated as the DNA molecule. As the subunit interfaces
are smaller, one might say that the MTase is almost
‘bursting at its seams’ as it attempts to enwrap the ocr
protein (47). This suggests that a clamp-like open and
shut mechanism is used by M.EcoKI to bind DNA or ocr.

Mechanism for binding DNA or ocr

The EM structure makes it clear that M.EcoKI can encir-
cle DNA and, to a lesser extent, ocr. Therefore, the struc-
ture must open up to allow the DNA (or the ocr protein)
access to the TRDs on HsdS and the catalytic site on
HsdM. Simple normal mode calculations were performed
on HsdS to examine the potential role of the coiled-coil
region in allowing such an opening (data not shown).
These calculations showed that the lowest mode was a
flexing of the coiled-coil moving the TRDs closer together
and then further apart. The next lowest mode was a twist-
ing of the coiled-coil around its axis. Noting that the inter-
face between the two HsdM runs approximately parallel
to the axis of the coiled-coil in HsdS, then these motions
would move the N-terminal domains of the HsdM apart
and allow access to circular DNA. A twist of the coiled-
coil region of ~12-14° in our model would produce a gap
between HsdM N-terminal domains sufficient to allow
passage of DNA or ocr. Obviously, the motions of the
complete M.EcoKI will be considerably more complex
but this analysis is strongly suggestive of a flexible
clamp-like enzyme.

Comparison to the Type IC enzyme EcoR1241

Kneale (17) originally recognized the 2-fold symmetry
imposed upon Type I enzymes via the structure of the S
subunit. This symmetry defines the location of the M sub-
units and was exploited by Obarska et al. (19) to produce
a rather opened-out model of the MTase where the
N-terminal domains of each HsdM subunit were specula-
tively placed some distance from both the DNA and any
contact with the other HsdM subunit. Although based
upon an erroneous structure of an HsdM subunit (pdb
2ar0 is incomplete and partially incorrectly assigned, see
Supplementary Data), the model could, if correct, explain
the large compaction of M.EcoR 1241 observed by small
angle neutron scattering when DNA is added to the
enzyme (67). This compaction was suggested to be the
movement of the HsdM subunits swinging in towards
the DNA and closing like a clamp to trap the DNA
rather like the closed state we have observed in our struc-
ture (Figure 1). Thus, it is probable that the structure of
Type I MTases fluctuates between an open form as
approximately modelled by Obarska er al. (19) and the
closed form observed here and by Taylor et al. (67).
Normal mode analyses of our model make it clear that
this opening and closing motion, which must open a gap
at least 2nm wide between HsdM subunits to allow
double-stranded DNA to pass through, is facilitated by
twisting and bending of the coiled-coil region in the
HsdS subunit.

More recently, small-angle neutron scattering data and
computer modelling of the HsdR subunit of EcoR1241
have been presented (20). The HsdR subunit appears to
be a disc-shaped protein but a unique atomic model could
not be constructed. Presumably, one of these subunits
could be placed on either side of the MTase structure so
that the ends of the DNA helix would contact the helicase
domains in the HsdR subunit. Until a unique structure of
the HsdR subunit is presented and more data are acquired
on its contacts to the MTase, further speculation on the
complete structure of the Type I R/M enzymes seems pre-
mature. However, we note that we are currently making
progress towards this goal.

CONCLUSION

The new EM structure and computational model of
M.EcoKI rationalize, for the first time, a large body of
experimental data obtained using many different methods
over many years. A mechanistic explanation of the Type I
MTase enzymes is suggested by the model, which clearly
indicates locations for further analyses such as the HsdM—
HsdS and HsdM-HsdM interfaces. When combined with
data on M.EcoR124I (67), the model also suggests that a
dynamic opening and closing of the protein, driven by a
flexing and twisting of the conserved coiled-coil region
within HsdS, is required to open up the HsdM-HsdM
interface to allow either DNA binding or attack of the
ocr antirestriction protein, a protein that ‘disguises itself’
as DNA. The model also provides a basis for completing
or constructing models of other Type I MTases from other



families such as the Type IC enzyme M.EcoR1241 (19)
and the Type IB enzyme M.EcoAl.

Data depositions

Atomic coordinates from M.EcoKI-ocr and M.EcoKI-
DNA complexes are available from the authors or ftp://
ftp.genesilico.pl/iamb/models/MTases/EcoKI/. The EM
map is deposited with the EMDB (www.ebi.ac.uk/msd)
with code 1543.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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